kern_exec.c revision 1.488 1 /* $NetBSD: kern_exec.c,v 1.488 2020/01/12 22:03:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.488 2020/01/12 22:03:22 ad Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <machine/reg.h>
116
117 #include <compat/common/compat_util.h>
118
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126
127 struct execve_data;
128
129 extern int user_va0_disable;
130
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134 char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137 char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148 __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156
157 /*
158 * DTrace SDT provider definitions
159 */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164
165 /*
166 * Exec function switch:
167 *
168 * Note that each makecmds function is responsible for loading the
169 * exec package with the necessary functions for any exec-type-specific
170 * handling.
171 *
172 * Functions for specific exec types should be defined in their own
173 * header file.
174 */
175 static const struct execsw **execsw = NULL;
176 static int nexecs;
177
178 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
179
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182 LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 LIST_ENTRY(exec_entry) ex_list;
185 SLIST_ENTRY(exec_entry) ex_slist;
186 const struct execsw *ex_sw;
187 };
188
189 #ifndef __HAVE_SYSCALL_INTERN
190 void syscall(void);
191 #endif
192
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 .e_name = "netbsd",
201 #ifdef EMUL_NATIVEROOT
202 .e_path = EMUL_NATIVEROOT,
203 #else
204 .e_path = NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 .e_flags = EMUL_HAS_SYS___syscall,
208 .e_errno = NULL,
209 .e_nosys = SYS_syscall,
210 .e_nsysent = SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 .e_sc_autoload = netbsd_syscalls_autoload,
214 #endif
215 .e_sysent = sysent,
216 .e_nomodbits = sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 .e_syscallnames = syscallnames,
219 #else
220 .e_syscallnames = NULL,
221 #endif
222 .e_sendsig = sendsig,
223 .e_trapsignal = trapsignal,
224 .e_sigcode = NULL,
225 .e_esigcode = NULL,
226 .e_sigobject = NULL,
227 .e_setregs = setregs,
228 .e_proc_exec = NULL,
229 .e_proc_fork = NULL,
230 .e_proc_exit = NULL,
231 .e_lwp_fork = NULL,
232 .e_lwp_exit = NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 .e_syscall_intern = syscall_intern,
235 #else
236 .e_syscall = syscall,
237 #endif
238 .e_sysctlovly = NULL,
239 .e_vm_default_addr = uvm_default_mapaddr,
240 .e_usertrap = NULL,
241 .e_ucsize = sizeof(ucontext_t),
242 .e_startlwp = startlwp
243 };
244
245 /*
246 * Exec lock. Used to control access to execsw[] structures.
247 * This must not be static so that netbsd32 can access it, too.
248 */
249 krwlock_t exec_lock;
250
251 static kmutex_t sigobject_lock;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static void
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 PNBUF_PUT(*rpath);
332 *rpath = NULL;
333 return;
334 }
335 epp->ep_resolvedname = *rpath;
336 if ((p = strrchr(*rpath, '/')) != NULL)
337 epp->ep_kname = p + 1;
338 }
339
340
341 /*
342 * check exec:
343 * given an "executable" described in the exec package's namei info,
344 * see what we can do with it.
345 *
346 * ON ENTRY:
347 * exec package with appropriate namei info
348 * lwp pointer of exec'ing lwp
349 * NO SELF-LOCKED VNODES
350 *
351 * ON EXIT:
352 * error: nothing held, etc. exec header still allocated.
353 * ok: filled exec package, executable's vnode (unlocked).
354 *
355 * EXEC SWITCH ENTRY:
356 * Locked vnode to check, exec package, proc.
357 *
358 * EXEC SWITCH EXIT:
359 * ok: return 0, filled exec package, executable's vnode (unlocked).
360 * error: destructive:
361 * everything deallocated execept exec header.
362 * non-destructive:
363 * error code, executable's vnode (unlocked),
364 * exec header unmodified.
365 */
366 int
367 /*ARGSUSED*/
368 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
369 char **rpath)
370 {
371 int error, i;
372 struct vnode *vp;
373 size_t resid;
374
375 if (epp->ep_resolvedname) {
376 struct nameidata nd;
377
378 // grab the absolute pathbuf here before namei() trashes it.
379 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
380 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
381
382 /* first get the vnode */
383 if ((error = namei(&nd)) != 0)
384 return error;
385
386 epp->ep_vp = vp = nd.ni_vp;
387 #ifdef DIAGNOSTIC
388 /* paranoia (take this out once namei stuff stabilizes) */
389 memset(nd.ni_pnbuf, '~', PATH_MAX);
390 #endif
391 } else {
392 struct file *fp;
393
394 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
395 return error;
396 epp->ep_vp = vp = fp->f_vnode;
397 vref(vp);
398 fd_putfile(epp->ep_xfd);
399 exec_resolvename(l, epp, vp, rpath);
400 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
401 }
402
403 /* check access and type */
404 if (vp->v_type != VREG) {
405 error = EACCES;
406 goto bad1;
407 }
408 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
409 goto bad1;
410
411 /* get attributes */
412 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
413 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
414 goto bad1;
415
416 /* Check mount point */
417 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
418 error = EACCES;
419 goto bad1;
420 }
421 if (vp->v_mount->mnt_flag & MNT_NOSUID)
422 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
423
424 /* try to open it */
425 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
426 goto bad1;
427
428 /* now we have the file, get the exec header */
429 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
430 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
431 if (error)
432 goto bad1;
433
434 /* unlock vp, since we need it unlocked from here on out. */
435 VOP_UNLOCK(vp);
436
437 #if NVERIEXEC > 0
438 error = veriexec_verify(l, vp,
439 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
440 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
441 NULL);
442 if (error)
443 goto bad2;
444 #endif /* NVERIEXEC > 0 */
445
446 #ifdef PAX_SEGVGUARD
447 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
448 if (error)
449 goto bad2;
450 #endif /* PAX_SEGVGUARD */
451
452 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
453
454 /*
455 * Set up default address space limits. Can be overridden
456 * by individual exec packages.
457 */
458 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
459 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
460
461 /*
462 * set up the vmcmds for creation of the process
463 * address space
464 */
465 error = ENOEXEC;
466 for (i = 0; i < nexecs; i++) {
467 int newerror;
468
469 epp->ep_esch = execsw[i];
470 newerror = (*execsw[i]->es_makecmds)(l, epp);
471
472 if (!newerror) {
473 /* Seems ok: check that entry point is not too high */
474 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
475 #ifdef DIAGNOSTIC
476 printf("%s: rejecting %p due to "
477 "too high entry address (>= %p)\n",
478 __func__, (void *)epp->ep_entry,
479 (void *)epp->ep_vm_maxaddr);
480 #endif
481 error = ENOEXEC;
482 break;
483 }
484 /* Seems ok: check that entry point is not too low */
485 if (epp->ep_entry < epp->ep_vm_minaddr) {
486 #ifdef DIAGNOSTIC
487 printf("%s: rejecting %p due to "
488 "too low entry address (< %p)\n",
489 __func__, (void *)epp->ep_entry,
490 (void *)epp->ep_vm_minaddr);
491 #endif
492 error = ENOEXEC;
493 break;
494 }
495
496 /* check limits */
497 if ((epp->ep_tsize > MAXTSIZ) ||
498 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
499 [RLIMIT_DATA].rlim_cur)) {
500 #ifdef DIAGNOSTIC
501 printf("%s: rejecting due to "
502 "limits (t=%llu > %llu || d=%llu > %llu)\n",
503 __func__,
504 (unsigned long long)epp->ep_tsize,
505 (unsigned long long)MAXTSIZ,
506 (unsigned long long)epp->ep_dsize,
507 (unsigned long long)
508 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
509 #endif
510 error = ENOMEM;
511 break;
512 }
513 return 0;
514 }
515
516 /*
517 * Reset all the fields that may have been modified by the
518 * loader.
519 */
520 KASSERT(epp->ep_emul_arg == NULL);
521 if (epp->ep_emul_root != NULL) {
522 vrele(epp->ep_emul_root);
523 epp->ep_emul_root = NULL;
524 }
525 if (epp->ep_interp != NULL) {
526 vrele(epp->ep_interp);
527 epp->ep_interp = NULL;
528 }
529 epp->ep_pax_flags = 0;
530
531 /* make sure the first "interesting" error code is saved. */
532 if (error == ENOEXEC)
533 error = newerror;
534
535 if (epp->ep_flags & EXEC_DESTR)
536 /* Error from "#!" code, tidied up by recursive call */
537 return error;
538 }
539
540 /* not found, error */
541
542 /*
543 * free any vmspace-creation commands,
544 * and release their references
545 */
546 kill_vmcmds(&epp->ep_vmcmds);
547
548 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
549 bad2:
550 #endif
551 /*
552 * close and release the vnode, restore the old one, free the
553 * pathname buf, and punt.
554 */
555 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
556 VOP_CLOSE(vp, FREAD, l->l_cred);
557 vput(vp);
558 return error;
559
560 bad1:
561 /*
562 * free the namei pathname buffer, and put the vnode
563 * (which we don't yet have open).
564 */
565 vput(vp); /* was still locked */
566 return error;
567 }
568
569 #ifdef __MACHINE_STACK_GROWS_UP
570 #define STACK_PTHREADSPACE NBPG
571 #else
572 #define STACK_PTHREADSPACE 0
573 #endif
574
575 static int
576 execve_fetch_element(char * const *array, size_t index, char **value)
577 {
578 return copyin(array + index, value, sizeof(*value));
579 }
580
581 /*
582 * exec system call
583 */
584 int
585 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
586 {
587 /* {
588 syscallarg(const char *) path;
589 syscallarg(char * const *) argp;
590 syscallarg(char * const *) envp;
591 } */
592
593 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
594 SCARG(uap, envp), execve_fetch_element);
595 }
596
597 int
598 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
599 register_t *retval)
600 {
601 /* {
602 syscallarg(int) fd;
603 syscallarg(char * const *) argp;
604 syscallarg(char * const *) envp;
605 } */
606
607 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
608 SCARG(uap, envp), execve_fetch_element);
609 }
610
611 /*
612 * Load modules to try and execute an image that we do not understand.
613 * If no execsw entries are present, we load those likely to be needed
614 * in order to run native images only. Otherwise, we autoload all
615 * possible modules that could let us run the binary. XXX lame
616 */
617 static void
618 exec_autoload(void)
619 {
620 #ifdef MODULAR
621 static const char * const native[] = {
622 "exec_elf32",
623 "exec_elf64",
624 "exec_script",
625 NULL
626 };
627 static const char * const compat[] = {
628 "exec_elf32",
629 "exec_elf64",
630 "exec_script",
631 "exec_aout",
632 "exec_coff",
633 "exec_ecoff",
634 "compat_aoutm68k",
635 "compat_netbsd32",
636 "compat_sunos",
637 "compat_sunos32",
638 "compat_ultrix",
639 NULL
640 };
641 char const * const *list;
642 int i;
643
644 list = (nexecs == 0 ? native : compat);
645 for (i = 0; list[i] != NULL; i++) {
646 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
647 continue;
648 }
649 yield();
650 }
651 #endif
652 }
653
654 /*
655 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
656 * making it absolute in the process, by prepending the current working
657 * directory if it is not. If offs is supplied it will contain the offset
658 * where the original supplied copy of upath starts.
659 */
660 int
661 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
662 struct pathbuf **pbp, size_t *offs)
663 {
664 char *path, *bp;
665 size_t len, tlen;
666 int error;
667 struct cwdinfo *cwdi;
668
669 path = PNBUF_GET();
670 if (seg == UIO_SYSSPACE) {
671 error = copystr(upath, path, MAXPATHLEN, &len);
672 } else {
673 error = copyinstr(upath, path, MAXPATHLEN, &len);
674 }
675 if (error)
676 goto err;
677
678 if (path[0] == '/') {
679 if (offs)
680 *offs = 0;
681 goto out;
682 }
683
684 len++;
685 if (len + 1 >= MAXPATHLEN) {
686 error = ENAMETOOLONG;
687 goto err;
688 }
689 bp = path + MAXPATHLEN - len;
690 memmove(bp, path, len);
691 *(--bp) = '/';
692
693 cwdi = l->l_proc->p_cwdi;
694 rw_enter(&cwdi->cwdi_lock, RW_READER);
695 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
696 GETCWD_CHECK_ACCESS, l);
697 rw_exit(&cwdi->cwdi_lock);
698
699 if (error)
700 goto err;
701 tlen = path + MAXPATHLEN - bp;
702
703 memmove(path, bp, tlen);
704 path[tlen - 1] = '\0';
705 if (offs)
706 *offs = tlen - len;
707 out:
708 *pbp = pathbuf_assimilate(path);
709 return 0;
710 err:
711 PNBUF_PUT(path);
712 return error;
713 }
714
715 vaddr_t
716 exec_vm_minaddr(vaddr_t va_min)
717 {
718 /*
719 * Increase va_min if we don't want NULL to be mappable by the
720 * process.
721 */
722 #define VM_MIN_GUARD PAGE_SIZE
723 if (user_va0_disable && (va_min < VM_MIN_GUARD))
724 return VM_MIN_GUARD;
725 return va_min;
726 }
727
728 static int
729 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
730 char * const *args, char * const *envs,
731 execve_fetch_element_t fetch_element,
732 struct execve_data * restrict data)
733 {
734 struct exec_package * const epp = &data->ed_pack;
735 int error;
736 struct proc *p;
737 char *dp;
738 u_int modgen;
739
740 KASSERT(data != NULL);
741
742 p = l->l_proc;
743 modgen = 0;
744
745 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
746
747 /*
748 * Check if we have exceeded our number of processes limit.
749 * This is so that we handle the case where a root daemon
750 * forked, ran setuid to become the desired user and is trying
751 * to exec. The obvious place to do the reference counting check
752 * is setuid(), but we don't do the reference counting check there
753 * like other OS's do because then all the programs that use setuid()
754 * must be modified to check the return code of setuid() and exit().
755 * It is dangerous to make setuid() fail, because it fails open and
756 * the program will continue to run as root. If we make it succeed
757 * and return an error code, again we are not enforcing the limit.
758 * The best place to enforce the limit is here, when the process tries
759 * to execute a new image, because eventually the process will need
760 * to call exec in order to do something useful.
761 */
762 retry:
763 if (p->p_flag & PK_SUGID) {
764 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
765 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
766 &p->p_rlimit[RLIMIT_NPROC],
767 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
768 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
769 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
770 return EAGAIN;
771 }
772
773 /*
774 * Drain existing references and forbid new ones. The process
775 * should be left alone until we're done here. This is necessary
776 * to avoid race conditions - e.g. in ptrace() - that might allow
777 * a local user to illicitly obtain elevated privileges.
778 */
779 rw_enter(&p->p_reflock, RW_WRITER);
780
781 if (has_path) {
782 size_t offs;
783 /*
784 * Init the namei data to point the file user's program name.
785 * This is done here rather than in check_exec(), so that it's
786 * possible to override this settings if any of makecmd/probe
787 * functions call check_exec() recursively - for example,
788 * see exec_script_makecmds().
789 */
790 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
791 &data->ed_pathbuf, &offs)) != 0)
792 goto clrflg;
793 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
794 epp->ep_kname = data->ed_pathstring + offs;
795 data->ed_resolvedname = PNBUF_GET();
796 epp->ep_resolvedname = data->ed_resolvedname;
797 epp->ep_xfd = -1;
798 } else {
799 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
800 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
801 epp->ep_kname = "*fexecve*";
802 data->ed_resolvedname = NULL;
803 epp->ep_resolvedname = NULL;
804 epp->ep_xfd = fd;
805 }
806
807
808 /*
809 * initialize the fields of the exec package.
810 */
811 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
812 epp->ep_hdrlen = exec_maxhdrsz;
813 epp->ep_hdrvalid = 0;
814 epp->ep_emul_arg = NULL;
815 epp->ep_emul_arg_free = NULL;
816 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
817 epp->ep_vap = &data->ed_attr;
818 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
819 MD_TOPDOWN_INIT(epp);
820 epp->ep_emul_root = NULL;
821 epp->ep_interp = NULL;
822 epp->ep_esch = NULL;
823 epp->ep_pax_flags = 0;
824 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
825
826 rw_enter(&exec_lock, RW_READER);
827
828 /* see if we can run it. */
829 if ((error = check_exec(l, epp, data->ed_pathbuf,
830 &data->ed_resolvedname)) != 0) {
831 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
832 DPRINTF(("%s: check exec failed for %s, error %d\n",
833 __func__, epp->ep_kname, error));
834 }
835 goto freehdr;
836 }
837
838 /* allocate an argument buffer */
839 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
840 KASSERT(data->ed_argp != NULL);
841 dp = data->ed_argp;
842
843 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
844 goto bad;
845 }
846
847 /*
848 * Calculate the new stack size.
849 */
850
851 #ifdef __MACHINE_STACK_GROWS_UP
852 /*
853 * copyargs() fills argc/argv/envp from the lower address even on
854 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
855 * so that _rtld() use it.
856 */
857 #define RTLD_GAP 32
858 #else
859 #define RTLD_GAP 0
860 #endif
861
862 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
863
864 data->ed_argslen = calcargs(data, argenvstrlen);
865
866 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
867
868 if (len > epp->ep_ssize) {
869 /* in effect, compare to initial limit */
870 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
871 error = ENOMEM;
872 goto bad;
873 }
874 /* adjust "active stack depth" for process VSZ */
875 epp->ep_ssize = len;
876
877 return 0;
878
879 bad:
880 /* free the vmspace-creation commands, and release their references */
881 kill_vmcmds(&epp->ep_vmcmds);
882 /* kill any opened file descriptor, if necessary */
883 if (epp->ep_flags & EXEC_HASFD) {
884 epp->ep_flags &= ~EXEC_HASFD;
885 fd_close(epp->ep_fd);
886 }
887 /* close and put the exec'd file */
888 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
889 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
890 vput(epp->ep_vp);
891 pool_put(&exec_pool, data->ed_argp);
892
893 freehdr:
894 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
895 if (epp->ep_emul_root != NULL)
896 vrele(epp->ep_emul_root);
897 if (epp->ep_interp != NULL)
898 vrele(epp->ep_interp);
899
900 rw_exit(&exec_lock);
901
902 exec_path_free(data);
903
904 clrflg:
905 rw_exit(&p->p_reflock);
906
907 if (modgen != module_gen && error == ENOEXEC) {
908 modgen = module_gen;
909 exec_autoload();
910 goto retry;
911 }
912
913 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
914 return error;
915 }
916
917 static int
918 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
919 {
920 struct exec_package * const epp = &data->ed_pack;
921 struct proc *p = l->l_proc;
922 struct exec_vmcmd *base_vcp;
923 int error = 0;
924 size_t i;
925
926 /* record proc's vnode, for use by procfs and others */
927 if (p->p_textvp)
928 vrele(p->p_textvp);
929 vref(epp->ep_vp);
930 p->p_textvp = epp->ep_vp;
931
932 /* create the new process's VM space by running the vmcmds */
933 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
934
935 #ifdef TRACE_EXEC
936 DUMPVMCMDS(epp, 0, 0);
937 #endif
938
939 base_vcp = NULL;
940
941 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
942 struct exec_vmcmd *vcp;
943
944 vcp = &epp->ep_vmcmds.evs_cmds[i];
945 if (vcp->ev_flags & VMCMD_RELATIVE) {
946 KASSERTMSG(base_vcp != NULL,
947 "%s: relative vmcmd with no base", __func__);
948 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
949 "%s: illegal base & relative vmcmd", __func__);
950 vcp->ev_addr += base_vcp->ev_addr;
951 }
952 error = (*vcp->ev_proc)(l, vcp);
953 if (error)
954 DUMPVMCMDS(epp, i, error);
955 if (vcp->ev_flags & VMCMD_BASE)
956 base_vcp = vcp;
957 }
958
959 /* free the vmspace-creation commands, and release their references */
960 kill_vmcmds(&epp->ep_vmcmds);
961
962 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
963 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
964 vput(epp->ep_vp);
965
966 /* if an error happened, deallocate and punt */
967 if (error != 0) {
968 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
969 }
970 return error;
971 }
972
973 static void
974 execve_free_data(struct execve_data *data)
975 {
976 struct exec_package * const epp = &data->ed_pack;
977
978 /* free the vmspace-creation commands, and release their references */
979 kill_vmcmds(&epp->ep_vmcmds);
980 /* kill any opened file descriptor, if necessary */
981 if (epp->ep_flags & EXEC_HASFD) {
982 epp->ep_flags &= ~EXEC_HASFD;
983 fd_close(epp->ep_fd);
984 }
985
986 /* close and put the exec'd file */
987 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
988 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
989 vput(epp->ep_vp);
990 pool_put(&exec_pool, data->ed_argp);
991
992 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
993 if (epp->ep_emul_root != NULL)
994 vrele(epp->ep_emul_root);
995 if (epp->ep_interp != NULL)
996 vrele(epp->ep_interp);
997
998 exec_path_free(data);
999 }
1000
1001 static void
1002 pathexec(struct proc *p, const char *resolvedname)
1003 {
1004 /* set command name & other accounting info */
1005 const char *cmdname;
1006
1007 if (resolvedname == NULL) {
1008 cmdname = "*fexecve*";
1009 resolvedname = "/";
1010 } else {
1011 cmdname = strrchr(resolvedname, '/') + 1;
1012 }
1013 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1014 resolvedname);
1015
1016 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1017
1018 kmem_strfree(p->p_path);
1019 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1020 }
1021
1022 /* XXX elsewhere */
1023 static int
1024 credexec(struct lwp *l, struct vattr *attr)
1025 {
1026 struct proc *p = l->l_proc;
1027 int error;
1028
1029 /*
1030 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1031 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1032 * out additional references on the process for the moment.
1033 */
1034 if ((p->p_slflag & PSL_TRACED) == 0 &&
1035
1036 (((attr->va_mode & S_ISUID) != 0 &&
1037 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1038
1039 ((attr->va_mode & S_ISGID) != 0 &&
1040 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1041 /*
1042 * Mark the process as SUGID before we do
1043 * anything that might block.
1044 */
1045 proc_crmod_enter();
1046 proc_crmod_leave(NULL, NULL, true);
1047
1048 /* Make sure file descriptors 0..2 are in use. */
1049 if ((error = fd_checkstd()) != 0) {
1050 DPRINTF(("%s: fdcheckstd failed %d\n",
1051 __func__, error));
1052 return error;
1053 }
1054
1055 /*
1056 * Copy the credential so other references don't see our
1057 * changes.
1058 */
1059 l->l_cred = kauth_cred_copy(l->l_cred);
1060 #ifdef KTRACE
1061 /*
1062 * If the persistent trace flag isn't set, turn off.
1063 */
1064 if (p->p_tracep) {
1065 mutex_enter(&ktrace_lock);
1066 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1067 ktrderef(p);
1068 mutex_exit(&ktrace_lock);
1069 }
1070 #endif
1071 if (attr->va_mode & S_ISUID)
1072 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1073 if (attr->va_mode & S_ISGID)
1074 kauth_cred_setegid(l->l_cred, attr->va_gid);
1075 } else {
1076 if (kauth_cred_geteuid(l->l_cred) ==
1077 kauth_cred_getuid(l->l_cred) &&
1078 kauth_cred_getegid(l->l_cred) ==
1079 kauth_cred_getgid(l->l_cred))
1080 p->p_flag &= ~PK_SUGID;
1081 }
1082
1083 /*
1084 * Copy the credential so other references don't see our changes.
1085 * Test to see if this is necessary first, since in the common case
1086 * we won't need a private reference.
1087 */
1088 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1089 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1090 l->l_cred = kauth_cred_copy(l->l_cred);
1091 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1092 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1093 }
1094
1095 /* Update the master credentials. */
1096 if (l->l_cred != p->p_cred) {
1097 kauth_cred_t ocred;
1098
1099 kauth_cred_hold(l->l_cred);
1100 mutex_enter(p->p_lock);
1101 ocred = p->p_cred;
1102 p->p_cred = l->l_cred;
1103 mutex_exit(p->p_lock);
1104 kauth_cred_free(ocred);
1105 }
1106
1107 return 0;
1108 }
1109
1110 static void
1111 emulexec(struct lwp *l, struct exec_package *epp)
1112 {
1113 struct proc *p = l->l_proc;
1114
1115 /* The emulation root will usually have been found when we looked
1116 * for the elf interpreter (or similar), if not look now. */
1117 if (epp->ep_esch->es_emul->e_path != NULL &&
1118 epp->ep_emul_root == NULL)
1119 emul_find_root(l, epp);
1120
1121 /* Any old emulation root got removed by fdcloseexec */
1122 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1123 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1124 rw_exit(&p->p_cwdi->cwdi_lock);
1125 epp->ep_emul_root = NULL;
1126 if (epp->ep_interp != NULL)
1127 vrele(epp->ep_interp);
1128
1129 /*
1130 * Call emulation specific exec hook. This can setup per-process
1131 * p->p_emuldata or do any other per-process stuff an emulation needs.
1132 *
1133 * If we are executing process of different emulation than the
1134 * original forked process, call e_proc_exit() of the old emulation
1135 * first, then e_proc_exec() of new emulation. If the emulation is
1136 * same, the exec hook code should deallocate any old emulation
1137 * resources held previously by this process.
1138 */
1139 if (p->p_emul && p->p_emul->e_proc_exit
1140 && p->p_emul != epp->ep_esch->es_emul)
1141 (*p->p_emul->e_proc_exit)(p);
1142
1143 /*
1144 * This is now LWP 1.
1145 */
1146 /* XXX elsewhere */
1147 mutex_enter(p->p_lock);
1148 p->p_nlwpid = 1;
1149 l->l_lid = 1;
1150 mutex_exit(p->p_lock);
1151
1152 /*
1153 * Call exec hook. Emulation code may NOT store reference to anything
1154 * from &pack.
1155 */
1156 if (epp->ep_esch->es_emul->e_proc_exec)
1157 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1158
1159 /* update p_emul, the old value is no longer needed */
1160 p->p_emul = epp->ep_esch->es_emul;
1161
1162 /* ...and the same for p_execsw */
1163 p->p_execsw = epp->ep_esch;
1164
1165 #ifdef __HAVE_SYSCALL_INTERN
1166 (*p->p_emul->e_syscall_intern)(p);
1167 #endif
1168 ktremul();
1169 }
1170
1171 static int
1172 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1173 bool no_local_exec_lock, bool is_spawn)
1174 {
1175 struct exec_package * const epp = &data->ed_pack;
1176 int error = 0;
1177 struct proc *p;
1178 struct vmspace *vm;
1179
1180 /*
1181 * In case of a posix_spawn operation, the child doing the exec
1182 * might not hold the reader lock on exec_lock, but the parent
1183 * will do this instead.
1184 */
1185 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1186 KASSERT(!no_local_exec_lock || is_spawn);
1187 KASSERT(data != NULL);
1188
1189 p = l->l_proc;
1190
1191 /* Get rid of other LWPs. */
1192 if (p->p_nlwps > 1) {
1193 mutex_enter(p->p_lock);
1194 exit_lwps(l);
1195 mutex_exit(p->p_lock);
1196 }
1197 KDASSERT(p->p_nlwps == 1);
1198
1199 /* Destroy any lwpctl info. */
1200 if (p->p_lwpctl != NULL)
1201 lwp_ctl_exit();
1202
1203 /* Remove POSIX timers */
1204 timers_free(p, TIMERS_POSIX);
1205
1206 /* Set the PaX flags. */
1207 pax_set_flags(epp, p);
1208
1209 /*
1210 * Do whatever is necessary to prepare the address space
1211 * for remapping. Note that this might replace the current
1212 * vmspace with another!
1213 *
1214 * vfork(): do not touch any user space data in the new child
1215 * until we have awoken the parent below, or it will defeat
1216 * lazy pmap switching (on x86).
1217 */
1218 if (is_spawn)
1219 uvmspace_spawn(l, epp->ep_vm_minaddr,
1220 epp->ep_vm_maxaddr,
1221 epp->ep_flags & EXEC_TOPDOWN_VM);
1222 else
1223 uvmspace_exec(l, epp->ep_vm_minaddr,
1224 epp->ep_vm_maxaddr,
1225 epp->ep_flags & EXEC_TOPDOWN_VM);
1226 vm = p->p_vmspace;
1227
1228 vm->vm_taddr = (void *)epp->ep_taddr;
1229 vm->vm_tsize = btoc(epp->ep_tsize);
1230 vm->vm_daddr = (void*)epp->ep_daddr;
1231 vm->vm_dsize = btoc(epp->ep_dsize);
1232 vm->vm_ssize = btoc(epp->ep_ssize);
1233 vm->vm_issize = 0;
1234 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1235 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1236
1237 pax_aslr_init_vm(l, vm, epp);
1238
1239 cwdexec(p);
1240 fd_closeexec(); /* handle close on exec */
1241
1242 if (__predict_false(ktrace_on))
1243 fd_ktrexecfd();
1244
1245 execsigs(p); /* reset caught signals */
1246
1247 mutex_enter(p->p_lock);
1248 l->l_ctxlink = NULL; /* reset ucontext link */
1249 p->p_acflag &= ~AFORK;
1250 p->p_flag |= PK_EXEC;
1251 mutex_exit(p->p_lock);
1252
1253 error = credexec(l, &data->ed_attr);
1254 if (error)
1255 goto exec_abort;
1256
1257 #if defined(__HAVE_RAS)
1258 /*
1259 * Remove all RASs from the address space.
1260 */
1261 ras_purgeall();
1262 #endif
1263
1264 /*
1265 * Stop profiling.
1266 */
1267 if ((p->p_stflag & PST_PROFIL) != 0) {
1268 mutex_spin_enter(&p->p_stmutex);
1269 stopprofclock(p);
1270 mutex_spin_exit(&p->p_stmutex);
1271 }
1272
1273 /*
1274 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1275 * exited and exec()/exit() are the only places it will be cleared.
1276 *
1277 * Once the parent has been awoken, curlwp may teleport to a new CPU
1278 * in sched_vforkexec(), and it's then OK to start messing with user
1279 * data. See comment above.
1280 */
1281 if ((p->p_lflag & PL_PPWAIT) != 0) {
1282 bool samecpu;
1283 lwp_t *lp;
1284
1285 mutex_enter(proc_lock);
1286 lp = p->p_vforklwp;
1287 p->p_vforklwp = NULL;
1288 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1289 cv_broadcast(&lp->l_waitcv);
1290
1291 /* Clear flags after cv_broadcast() (scheduler needs them). */
1292 p->p_lflag &= ~PL_PPWAIT;
1293 lp->l_vforkwaiting = false;
1294
1295 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1296 samecpu = (lp->l_cpu == curlwp->l_cpu);
1297 mutex_exit(proc_lock);
1298
1299 /* Give the parent its CPU back - find a new home. */
1300 KASSERT(!is_spawn);
1301 sched_vforkexec(l, samecpu);
1302 }
1303
1304 /* Now map address space. */
1305 error = execve_dovmcmds(l, data);
1306 if (error != 0)
1307 goto exec_abort;
1308
1309 pathexec(p, epp->ep_resolvedname);
1310
1311 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1312
1313 error = copyoutargs(data, l, newstack);
1314 if (error != 0)
1315 goto exec_abort;
1316
1317 doexechooks(p);
1318
1319 /*
1320 * Set initial SP at the top of the stack.
1321 *
1322 * Note that on machines where stack grows up (e.g. hppa), SP points to
1323 * the end of arg/env strings. Userland guesses the address of argc
1324 * via ps_strings::ps_argvstr.
1325 */
1326
1327 /* Setup new registers and do misc. setup. */
1328 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1329 if (epp->ep_esch->es_setregs)
1330 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1331
1332 /* Provide a consistent LWP private setting */
1333 (void)lwp_setprivate(l, NULL);
1334
1335 /* Discard all PCU state; need to start fresh */
1336 pcu_discard_all(l);
1337
1338 /* map the process's signal trampoline code */
1339 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1340 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1341 goto exec_abort;
1342 }
1343
1344 pool_put(&exec_pool, data->ed_argp);
1345
1346 /* notify others that we exec'd */
1347 KNOTE(&p->p_klist, NOTE_EXEC);
1348
1349 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1350
1351 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1352
1353 emulexec(l, epp);
1354
1355 /* Allow new references from the debugger/procfs. */
1356 rw_exit(&p->p_reflock);
1357 if (!no_local_exec_lock)
1358 rw_exit(&exec_lock);
1359
1360 mutex_enter(proc_lock);
1361
1362 /* posix_spawn(3) reports a single event with implied exec(3) */
1363 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1364 mutex_enter(p->p_lock);
1365 eventswitch(TRAP_EXEC, 0, 0);
1366 mutex_enter(proc_lock);
1367 }
1368
1369 if (p->p_sflag & PS_STOPEXEC) {
1370 ksiginfoq_t kq;
1371
1372 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1373 p->p_pptr->p_nstopchild++;
1374 p->p_waited = 0;
1375 mutex_enter(p->p_lock);
1376 ksiginfo_queue_init(&kq);
1377 sigclearall(p, &contsigmask, &kq);
1378 lwp_lock(l);
1379 l->l_stat = LSSTOP;
1380 p->p_stat = SSTOP;
1381 p->p_nrlwps--;
1382 lwp_unlock(l);
1383 mutex_exit(p->p_lock);
1384 mutex_exit(proc_lock);
1385 lwp_lock(l);
1386 spc_lock(l->l_cpu);
1387 mi_switch(l);
1388 ksiginfo_queue_drain(&kq);
1389 } else {
1390 mutex_exit(proc_lock);
1391 }
1392
1393 exec_path_free(data);
1394 #ifdef TRACE_EXEC
1395 DPRINTF(("%s finished\n", __func__));
1396 #endif
1397 return EJUSTRETURN;
1398
1399 exec_abort:
1400 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1401 rw_exit(&p->p_reflock);
1402 if (!no_local_exec_lock)
1403 rw_exit(&exec_lock);
1404
1405 exec_path_free(data);
1406
1407 /*
1408 * the old process doesn't exist anymore. exit gracefully.
1409 * get rid of the (new) address space we have created, if any, get rid
1410 * of our namei data and vnode, and exit noting failure
1411 */
1412 if (vm != NULL) {
1413 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1414 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1415 }
1416
1417 exec_free_emul_arg(epp);
1418 pool_put(&exec_pool, data->ed_argp);
1419 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1420 if (epp->ep_emul_root != NULL)
1421 vrele(epp->ep_emul_root);
1422 if (epp->ep_interp != NULL)
1423 vrele(epp->ep_interp);
1424
1425 /* Acquire the sched-state mutex (exit1() will release it). */
1426 if (!is_spawn) {
1427 mutex_enter(p->p_lock);
1428 exit1(l, error, SIGABRT);
1429 }
1430
1431 return error;
1432 }
1433
1434 int
1435 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1436 char * const *args, char * const *envs,
1437 execve_fetch_element_t fetch_element)
1438 {
1439 struct execve_data data;
1440 int error;
1441
1442 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1443 &data);
1444 if (error)
1445 return error;
1446 error = execve_runproc(l, &data, false, false);
1447 return error;
1448 }
1449
1450 static size_t
1451 fromptrsz(const struct exec_package *epp)
1452 {
1453 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1454 }
1455
1456 static size_t
1457 ptrsz(const struct exec_package *epp)
1458 {
1459 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1460 }
1461
1462 static size_t
1463 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1464 {
1465 struct exec_package * const epp = &data->ed_pack;
1466
1467 const size_t nargenvptrs =
1468 1 + /* long argc */
1469 data->ed_argc + /* char *argv[] */
1470 1 + /* \0 */
1471 data->ed_envc + /* char *env[] */
1472 1; /* \0 */
1473
1474 return (nargenvptrs * ptrsz(epp)) /* pointers */
1475 + argenvstrlen /* strings */
1476 + epp->ep_esch->es_arglen; /* auxinfo */
1477 }
1478
1479 static size_t
1480 calcstack(struct execve_data * restrict data, const size_t gaplen)
1481 {
1482 struct exec_package * const epp = &data->ed_pack;
1483
1484 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1485 epp->ep_esch->es_emul->e_sigcode;
1486
1487 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1488 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1489
1490 const size_t sigcode_psstr_sz =
1491 data->ed_szsigcode + /* sigcode */
1492 data->ed_ps_strings_sz + /* ps_strings */
1493 STACK_PTHREADSPACE; /* pthread space */
1494
1495 const size_t stacklen =
1496 data->ed_argslen +
1497 gaplen +
1498 sigcode_psstr_sz;
1499
1500 /* make the stack "safely" aligned */
1501 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1502 }
1503
1504 static int
1505 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1506 char * const newstack)
1507 {
1508 struct exec_package * const epp = &data->ed_pack;
1509 struct proc *p = l->l_proc;
1510 int error;
1511
1512 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1513
1514 /* remember information about the process */
1515 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1516 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1517
1518 /*
1519 * Allocate the stack address passed to the newly execve()'ed process.
1520 *
1521 * The new stack address will be set to the SP (stack pointer) register
1522 * in setregs().
1523 */
1524
1525 char *newargs = STACK_ALLOC(
1526 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1527
1528 error = (*epp->ep_esch->es_copyargs)(l, epp,
1529 &data->ed_arginfo, &newargs, data->ed_argp);
1530
1531 if (error) {
1532 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1533 return error;
1534 }
1535
1536 error = copyoutpsstrs(data, p);
1537 if (error != 0)
1538 return error;
1539
1540 return 0;
1541 }
1542
1543 static int
1544 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1545 {
1546 struct exec_package * const epp = &data->ed_pack;
1547 struct ps_strings32 arginfo32;
1548 void *aip;
1549 int error;
1550
1551 /* fill process ps_strings info */
1552 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1553 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1554
1555 if (epp->ep_flags & EXEC_32) {
1556 aip = &arginfo32;
1557 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1558 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1559 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1560 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1561 } else
1562 aip = &data->ed_arginfo;
1563
1564 /* copy out the process's ps_strings structure */
1565 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1566 != 0) {
1567 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1568 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1569 return error;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int
1576 copyinargs(struct execve_data * restrict data, char * const *args,
1577 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1578 {
1579 struct exec_package * const epp = &data->ed_pack;
1580 char *dp;
1581 size_t i;
1582 int error;
1583
1584 dp = *dpp;
1585
1586 data->ed_argc = 0;
1587
1588 /* copy the fake args list, if there's one, freeing it as we go */
1589 if (epp->ep_flags & EXEC_HASARGL) {
1590 struct exec_fakearg *fa = epp->ep_fa;
1591
1592 while (fa->fa_arg != NULL) {
1593 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1594 size_t len;
1595
1596 len = strlcpy(dp, fa->fa_arg, maxlen);
1597 /* Count NUL into len. */
1598 if (len < maxlen)
1599 len++;
1600 else {
1601 while (fa->fa_arg != NULL) {
1602 kmem_free(fa->fa_arg, fa->fa_len);
1603 fa++;
1604 }
1605 kmem_free(epp->ep_fa, epp->ep_fa_len);
1606 epp->ep_flags &= ~EXEC_HASARGL;
1607 return E2BIG;
1608 }
1609 ktrexecarg(fa->fa_arg, len - 1);
1610 dp += len;
1611
1612 kmem_free(fa->fa_arg, fa->fa_len);
1613 fa++;
1614 data->ed_argc++;
1615 }
1616 kmem_free(epp->ep_fa, epp->ep_fa_len);
1617 epp->ep_flags &= ~EXEC_HASARGL;
1618 }
1619
1620 /*
1621 * Read and count argument strings from user.
1622 */
1623
1624 if (args == NULL) {
1625 DPRINTF(("%s: null args\n", __func__));
1626 return EINVAL;
1627 }
1628 if (epp->ep_flags & EXEC_SKIPARG)
1629 args = (const void *)((const char *)args + fromptrsz(epp));
1630 i = 0;
1631 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1632 if (error != 0) {
1633 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1634 return error;
1635 }
1636 data->ed_argc += i;
1637
1638 /*
1639 * Read and count environment strings from user.
1640 */
1641
1642 data->ed_envc = 0;
1643 /* environment need not be there */
1644 if (envs == NULL)
1645 goto done;
1646 i = 0;
1647 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1648 if (error != 0) {
1649 DPRINTF(("%s: copyin env %d\n", __func__, error));
1650 return error;
1651 }
1652 data->ed_envc += i;
1653
1654 done:
1655 *dpp = dp;
1656
1657 return 0;
1658 }
1659
1660 static int
1661 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1662 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1663 void (*ktr)(const void *, size_t))
1664 {
1665 char *dp, *sp;
1666 size_t i;
1667 int error;
1668
1669 dp = *dpp;
1670
1671 i = 0;
1672 while (1) {
1673 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1674 size_t len;
1675
1676 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1677 return error;
1678 }
1679 if (!sp)
1680 break;
1681 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1682 if (error == ENAMETOOLONG)
1683 error = E2BIG;
1684 return error;
1685 }
1686 if (__predict_false(ktrace_on))
1687 (*ktr)(dp, len - 1);
1688 dp += len;
1689 i++;
1690 }
1691
1692 *dpp = dp;
1693 *ip = i;
1694
1695 return 0;
1696 }
1697
1698 /*
1699 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1700 * Those strings are located just after auxinfo.
1701 */
1702 int
1703 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1704 char **stackp, void *argp)
1705 {
1706 char **cpp, *dp, *sp;
1707 size_t len;
1708 void *nullp;
1709 long argc, envc;
1710 int error;
1711
1712 cpp = (char **)*stackp;
1713 nullp = NULL;
1714 argc = arginfo->ps_nargvstr;
1715 envc = arginfo->ps_nenvstr;
1716
1717 /* argc on stack is long */
1718 CTASSERT(sizeof(*cpp) == sizeof(argc));
1719
1720 dp = (char *)(cpp +
1721 1 + /* long argc */
1722 argc + /* char *argv[] */
1723 1 + /* \0 */
1724 envc + /* char *env[] */
1725 1) + /* \0 */
1726 pack->ep_esch->es_arglen; /* auxinfo */
1727 sp = argp;
1728
1729 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1730 COPYPRINTF("", cpp - 1, sizeof(argc));
1731 return error;
1732 }
1733
1734 /* XXX don't copy them out, remap them! */
1735 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1736
1737 for (; --argc >= 0; sp += len, dp += len) {
1738 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1739 COPYPRINTF("", cpp - 1, sizeof(dp));
1740 return error;
1741 }
1742 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1743 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1744 return error;
1745 }
1746 }
1747
1748 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1749 COPYPRINTF("", cpp - 1, sizeof(nullp));
1750 return error;
1751 }
1752
1753 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1754
1755 for (; --envc >= 0; sp += len, dp += len) {
1756 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1757 COPYPRINTF("", cpp - 1, sizeof(dp));
1758 return error;
1759 }
1760 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1761 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1762 return error;
1763 }
1764
1765 }
1766
1767 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1768 COPYPRINTF("", cpp - 1, sizeof(nullp));
1769 return error;
1770 }
1771
1772 *stackp = (char *)cpp;
1773 return 0;
1774 }
1775
1776
1777 /*
1778 * Add execsw[] entries.
1779 */
1780 int
1781 exec_add(struct execsw *esp, int count)
1782 {
1783 struct exec_entry *it;
1784 int i;
1785
1786 if (count == 0) {
1787 return 0;
1788 }
1789
1790 /* Check for duplicates. */
1791 rw_enter(&exec_lock, RW_WRITER);
1792 for (i = 0; i < count; i++) {
1793 LIST_FOREACH(it, &ex_head, ex_list) {
1794 /* assume unique (makecmds, probe_func, emulation) */
1795 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1796 it->ex_sw->u.elf_probe_func ==
1797 esp[i].u.elf_probe_func &&
1798 it->ex_sw->es_emul == esp[i].es_emul) {
1799 rw_exit(&exec_lock);
1800 return EEXIST;
1801 }
1802 }
1803 }
1804
1805 /* Allocate new entries. */
1806 for (i = 0; i < count; i++) {
1807 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1808 it->ex_sw = &esp[i];
1809 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1810 }
1811
1812 /* update execsw[] */
1813 exec_init(0);
1814 rw_exit(&exec_lock);
1815 return 0;
1816 }
1817
1818 /*
1819 * Remove execsw[] entry.
1820 */
1821 int
1822 exec_remove(struct execsw *esp, int count)
1823 {
1824 struct exec_entry *it, *next;
1825 int i;
1826 const struct proclist_desc *pd;
1827 proc_t *p;
1828
1829 if (count == 0) {
1830 return 0;
1831 }
1832
1833 /* Abort if any are busy. */
1834 rw_enter(&exec_lock, RW_WRITER);
1835 for (i = 0; i < count; i++) {
1836 mutex_enter(proc_lock);
1837 for (pd = proclists; pd->pd_list != NULL; pd++) {
1838 PROCLIST_FOREACH(p, pd->pd_list) {
1839 if (p->p_execsw == &esp[i]) {
1840 mutex_exit(proc_lock);
1841 rw_exit(&exec_lock);
1842 return EBUSY;
1843 }
1844 }
1845 }
1846 mutex_exit(proc_lock);
1847 }
1848
1849 /* None are busy, so remove them all. */
1850 for (i = 0; i < count; i++) {
1851 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1852 next = LIST_NEXT(it, ex_list);
1853 if (it->ex_sw == &esp[i]) {
1854 LIST_REMOVE(it, ex_list);
1855 kmem_free(it, sizeof(*it));
1856 break;
1857 }
1858 }
1859 }
1860
1861 /* update execsw[] */
1862 exec_init(0);
1863 rw_exit(&exec_lock);
1864 return 0;
1865 }
1866
1867 /*
1868 * Initialize exec structures. If init_boot is true, also does necessary
1869 * one-time initialization (it's called from main() that way).
1870 * Once system is multiuser, this should be called with exec_lock held,
1871 * i.e. via exec_{add|remove}().
1872 */
1873 int
1874 exec_init(int init_boot)
1875 {
1876 const struct execsw **sw;
1877 struct exec_entry *ex;
1878 SLIST_HEAD(,exec_entry) first;
1879 SLIST_HEAD(,exec_entry) any;
1880 SLIST_HEAD(,exec_entry) last;
1881 int i, sz;
1882
1883 if (init_boot) {
1884 /* do one-time initializations */
1885 vaddr_t vmin = 0, vmax;
1886
1887 rw_init(&exec_lock);
1888 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1889 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1890 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1891 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1892 "execargs", &exec_palloc, IPL_NONE);
1893 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1894 } else {
1895 KASSERT(rw_write_held(&exec_lock));
1896 }
1897
1898 /* Sort each entry onto the appropriate queue. */
1899 SLIST_INIT(&first);
1900 SLIST_INIT(&any);
1901 SLIST_INIT(&last);
1902 sz = 0;
1903 LIST_FOREACH(ex, &ex_head, ex_list) {
1904 switch(ex->ex_sw->es_prio) {
1905 case EXECSW_PRIO_FIRST:
1906 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1907 break;
1908 case EXECSW_PRIO_ANY:
1909 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1910 break;
1911 case EXECSW_PRIO_LAST:
1912 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1913 break;
1914 default:
1915 panic("%s", __func__);
1916 break;
1917 }
1918 sz++;
1919 }
1920
1921 /*
1922 * Create new execsw[]. Ensure we do not try a zero-sized
1923 * allocation.
1924 */
1925 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1926 i = 0;
1927 SLIST_FOREACH(ex, &first, ex_slist) {
1928 sw[i++] = ex->ex_sw;
1929 }
1930 SLIST_FOREACH(ex, &any, ex_slist) {
1931 sw[i++] = ex->ex_sw;
1932 }
1933 SLIST_FOREACH(ex, &last, ex_slist) {
1934 sw[i++] = ex->ex_sw;
1935 }
1936
1937 /* Replace old execsw[] and free used memory. */
1938 if (execsw != NULL) {
1939 kmem_free(__UNCONST(execsw),
1940 nexecs * sizeof(struct execsw *) + 1);
1941 }
1942 execsw = sw;
1943 nexecs = sz;
1944
1945 /* Figure out the maximum size of an exec header. */
1946 exec_maxhdrsz = sizeof(int);
1947 for (i = 0; i < nexecs; i++) {
1948 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1949 exec_maxhdrsz = execsw[i]->es_hdrsz;
1950 }
1951
1952 return 0;
1953 }
1954
1955 static int
1956 exec_sigcode_map(struct proc *p, const struct emul *e)
1957 {
1958 vaddr_t va;
1959 vsize_t sz;
1960 int error;
1961 struct uvm_object *uobj;
1962
1963 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1964
1965 if (e->e_sigobject == NULL || sz == 0) {
1966 return 0;
1967 }
1968
1969 /*
1970 * If we don't have a sigobject for this emulation, create one.
1971 *
1972 * sigobject is an anonymous memory object (just like SYSV shared
1973 * memory) that we keep a permanent reference to and that we map
1974 * in all processes that need this sigcode. The creation is simple,
1975 * we create an object, add a permanent reference to it, map it in
1976 * kernel space, copy out the sigcode to it and unmap it.
1977 * We map it with PROT_READ|PROT_EXEC into the process just
1978 * the way sys_mmap() would map it.
1979 */
1980
1981 uobj = *e->e_sigobject;
1982 if (uobj == NULL) {
1983 mutex_enter(&sigobject_lock);
1984 if ((uobj = *e->e_sigobject) == NULL) {
1985 uobj = uao_create(sz, 0);
1986 (*uobj->pgops->pgo_reference)(uobj);
1987 va = vm_map_min(kernel_map);
1988 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1989 uobj, 0, 0,
1990 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1991 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1992 printf("kernel mapping failed %d\n", error);
1993 (*uobj->pgops->pgo_detach)(uobj);
1994 mutex_exit(&sigobject_lock);
1995 return error;
1996 }
1997 memcpy((void *)va, e->e_sigcode, sz);
1998 #ifdef PMAP_NEED_PROCWR
1999 pmap_procwr(&proc0, va, sz);
2000 #endif
2001 uvm_unmap(kernel_map, va, va + round_page(sz));
2002 *e->e_sigobject = uobj;
2003 }
2004 mutex_exit(&sigobject_lock);
2005 }
2006
2007 /* Just a hint to uvm_map where to put it. */
2008 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2009 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2010
2011 #ifdef __alpha__
2012 /*
2013 * Tru64 puts /sbin/loader at the end of user virtual memory,
2014 * which causes the above calculation to put the sigcode at
2015 * an invalid address. Put it just below the text instead.
2016 */
2017 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2018 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2019 }
2020 #endif
2021
2022 (*uobj->pgops->pgo_reference)(uobj);
2023 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2024 uobj, 0, 0,
2025 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2026 UVM_ADV_RANDOM, 0));
2027 if (error) {
2028 DPRINTF(("%s, %d: map %p "
2029 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2030 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2031 va, error));
2032 (*uobj->pgops->pgo_detach)(uobj);
2033 return error;
2034 }
2035 p->p_sigctx.ps_sigcode = (void *)va;
2036 return 0;
2037 }
2038
2039 /*
2040 * Release a refcount on spawn_exec_data and destroy memory, if this
2041 * was the last one.
2042 */
2043 static void
2044 spawn_exec_data_release(struct spawn_exec_data *data)
2045 {
2046 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2047 return;
2048
2049 cv_destroy(&data->sed_cv_child_ready);
2050 mutex_destroy(&data->sed_mtx_child);
2051
2052 if (data->sed_actions)
2053 posix_spawn_fa_free(data->sed_actions,
2054 data->sed_actions->len);
2055 if (data->sed_attrs)
2056 kmem_free(data->sed_attrs,
2057 sizeof(*data->sed_attrs));
2058 kmem_free(data, sizeof(*data));
2059 }
2060
2061 /*
2062 * A child lwp of a posix_spawn operation starts here and ends up in
2063 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2064 * manipulations in between.
2065 * The parent waits for the child, as it is not clear whether the child
2066 * will be able to acquire its own exec_lock. If it can, the parent can
2067 * be released early and continue running in parallel. If not (or if the
2068 * magic debug flag is passed in the scheduler attribute struct), the
2069 * child rides on the parent's exec lock until it is ready to return to
2070 * to userland - and only then releases the parent. This method loses
2071 * concurrency, but improves error reporting.
2072 */
2073 static void
2074 spawn_return(void *arg)
2075 {
2076 struct spawn_exec_data *spawn_data = arg;
2077 struct lwp *l = curlwp;
2078 struct proc *p = l->l_proc;
2079 int error, newfd;
2080 int ostat;
2081 size_t i;
2082 const struct posix_spawn_file_actions_entry *fae;
2083 pid_t ppid;
2084 register_t retval;
2085 bool have_reflock;
2086 bool parent_is_waiting = true;
2087
2088 /*
2089 * Check if we can release parent early.
2090 * We either need to have no sed_attrs, or sed_attrs does not
2091 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2092 * safe access to the parent proc (passed in sed_parent).
2093 * We then try to get the exec_lock, and only if that works, we can
2094 * release the parent here already.
2095 */
2096 ppid = spawn_data->sed_parent->p_pid;
2097 if ((!spawn_data->sed_attrs
2098 || (spawn_data->sed_attrs->sa_flags
2099 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2100 && rw_tryenter(&exec_lock, RW_READER)) {
2101 parent_is_waiting = false;
2102 mutex_enter(&spawn_data->sed_mtx_child);
2103 cv_signal(&spawn_data->sed_cv_child_ready);
2104 mutex_exit(&spawn_data->sed_mtx_child);
2105 }
2106
2107 /* don't allow debugger access yet */
2108 rw_enter(&p->p_reflock, RW_WRITER);
2109 have_reflock = true;
2110
2111 error = 0;
2112 /* handle posix_spawn_file_actions */
2113 if (spawn_data->sed_actions != NULL) {
2114 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2115 fae = &spawn_data->sed_actions->fae[i];
2116 switch (fae->fae_action) {
2117 case FAE_OPEN:
2118 if (fd_getfile(fae->fae_fildes) != NULL) {
2119 error = fd_close(fae->fae_fildes);
2120 if (error)
2121 break;
2122 }
2123 error = fd_open(fae->fae_path, fae->fae_oflag,
2124 fae->fae_mode, &newfd);
2125 if (error)
2126 break;
2127 if (newfd != fae->fae_fildes) {
2128 error = dodup(l, newfd,
2129 fae->fae_fildes, 0, &retval);
2130 if (fd_getfile(newfd) != NULL)
2131 fd_close(newfd);
2132 }
2133 break;
2134 case FAE_DUP2:
2135 error = dodup(l, fae->fae_fildes,
2136 fae->fae_newfildes, 0, &retval);
2137 break;
2138 case FAE_CLOSE:
2139 if (fd_getfile(fae->fae_fildes) == NULL) {
2140 error = EBADF;
2141 break;
2142 }
2143 error = fd_close(fae->fae_fildes);
2144 break;
2145 }
2146 if (error)
2147 goto report_error;
2148 }
2149 }
2150
2151 /* handle posix_spawnattr */
2152 if (spawn_data->sed_attrs != NULL) {
2153 struct sigaction sigact;
2154 memset(&sigact, 0, sizeof(sigact));
2155 sigact._sa_u._sa_handler = SIG_DFL;
2156 sigact.sa_flags = 0;
2157
2158 /*
2159 * set state to SSTOP so that this proc can be found by pid.
2160 * see proc_enterprp, do_sched_setparam below
2161 */
2162 mutex_enter(proc_lock);
2163 /*
2164 * p_stat should be SACTIVE, so we need to adjust the
2165 * parent's p_nstopchild here. For safety, just make
2166 * we're on the good side of SDEAD before we adjust.
2167 */
2168 ostat = p->p_stat;
2169 KASSERT(ostat < SSTOP);
2170 p->p_stat = SSTOP;
2171 p->p_waited = 0;
2172 p->p_pptr->p_nstopchild++;
2173 mutex_exit(proc_lock);
2174
2175 /* Set process group */
2176 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2177 pid_t mypid = p->p_pid,
2178 pgrp = spawn_data->sed_attrs->sa_pgroup;
2179
2180 if (pgrp == 0)
2181 pgrp = mypid;
2182
2183 error = proc_enterpgrp(spawn_data->sed_parent,
2184 mypid, pgrp, false);
2185 if (error)
2186 goto report_error_stopped;
2187 }
2188
2189 /* Set scheduler policy */
2190 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2191 error = do_sched_setparam(p->p_pid, 0,
2192 spawn_data->sed_attrs->sa_schedpolicy,
2193 &spawn_data->sed_attrs->sa_schedparam);
2194 else if (spawn_data->sed_attrs->sa_flags
2195 & POSIX_SPAWN_SETSCHEDPARAM) {
2196 error = do_sched_setparam(ppid, 0,
2197 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2198 }
2199 if (error)
2200 goto report_error_stopped;
2201
2202 /* Reset user ID's */
2203 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2204 error = do_setresuid(l, -1,
2205 kauth_cred_getgid(l->l_cred), -1,
2206 ID_E_EQ_R | ID_E_EQ_S);
2207 if (error)
2208 goto report_error_stopped;
2209 error = do_setresuid(l, -1,
2210 kauth_cred_getuid(l->l_cred), -1,
2211 ID_E_EQ_R | ID_E_EQ_S);
2212 if (error)
2213 goto report_error_stopped;
2214 }
2215
2216 /* Set signal masks/defaults */
2217 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2218 mutex_enter(p->p_lock);
2219 error = sigprocmask1(l, SIG_SETMASK,
2220 &spawn_data->sed_attrs->sa_sigmask, NULL);
2221 mutex_exit(p->p_lock);
2222 if (error)
2223 goto report_error_stopped;
2224 }
2225
2226 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2227 /*
2228 * The following sigaction call is using a sigaction
2229 * version 0 trampoline which is in the compatibility
2230 * code only. This is not a problem because for SIG_DFL
2231 * and SIG_IGN, the trampolines are now ignored. If they
2232 * were not, this would be a problem because we are
2233 * holding the exec_lock, and the compat code needs
2234 * to do the same in order to replace the trampoline
2235 * code of the process.
2236 */
2237 for (i = 1; i <= NSIG; i++) {
2238 if (sigismember(
2239 &spawn_data->sed_attrs->sa_sigdefault, i))
2240 sigaction1(l, i, &sigact, NULL, NULL,
2241 0);
2242 }
2243 }
2244 mutex_enter(proc_lock);
2245 p->p_stat = ostat;
2246 p->p_pptr->p_nstopchild--;
2247 mutex_exit(proc_lock);
2248 }
2249
2250 /* now do the real exec */
2251 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2252 true);
2253 have_reflock = false;
2254 if (error == EJUSTRETURN)
2255 error = 0;
2256 else if (error)
2257 goto report_error;
2258
2259 if (parent_is_waiting) {
2260 mutex_enter(&spawn_data->sed_mtx_child);
2261 cv_signal(&spawn_data->sed_cv_child_ready);
2262 mutex_exit(&spawn_data->sed_mtx_child);
2263 }
2264
2265 /* release our refcount on the data */
2266 spawn_exec_data_release(spawn_data);
2267
2268 if (p->p_slflag & PSL_TRACED) {
2269 /* Paranoid check */
2270 mutex_enter(proc_lock);
2271 if (!(p->p_slflag & PSL_TRACED)) {
2272 mutex_exit(proc_lock);
2273 goto cpu_return;
2274 }
2275
2276 mutex_enter(p->p_lock);
2277 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, p->p_opptr->p_pid);
2278 }
2279
2280 cpu_return:
2281 /* and finally: leave to userland for the first time */
2282 cpu_spawn_return(l);
2283
2284 /* NOTREACHED */
2285 return;
2286
2287 report_error_stopped:
2288 mutex_enter(proc_lock);
2289 p->p_stat = ostat;
2290 p->p_pptr->p_nstopchild--;
2291 mutex_exit(proc_lock);
2292 report_error:
2293 if (have_reflock) {
2294 /*
2295 * We have not passed through execve_runproc(),
2296 * which would have released the p_reflock and also
2297 * taken ownership of the sed_exec part of spawn_data,
2298 * so release/free both here.
2299 */
2300 rw_exit(&p->p_reflock);
2301 execve_free_data(&spawn_data->sed_exec);
2302 }
2303
2304 if (parent_is_waiting) {
2305 /* pass error to parent */
2306 mutex_enter(&spawn_data->sed_mtx_child);
2307 spawn_data->sed_error = error;
2308 cv_signal(&spawn_data->sed_cv_child_ready);
2309 mutex_exit(&spawn_data->sed_mtx_child);
2310 } else {
2311 rw_exit(&exec_lock);
2312 }
2313
2314 /* release our refcount on the data */
2315 spawn_exec_data_release(spawn_data);
2316
2317 /* done, exit */
2318 mutex_enter(p->p_lock);
2319 /*
2320 * Posix explicitly asks for an exit code of 127 if we report
2321 * errors from the child process - so, unfortunately, there
2322 * is no way to report a more exact error code.
2323 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2324 * flag bit in the attrp argument to posix_spawn(2), see above.
2325 */
2326 exit1(l, 127, 0);
2327 }
2328
2329 void
2330 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2331 {
2332
2333 for (size_t i = 0; i < len; i++) {
2334 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2335 if (fae->fae_action != FAE_OPEN)
2336 continue;
2337 kmem_strfree(fae->fae_path);
2338 }
2339 if (fa->len > 0)
2340 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2341 kmem_free(fa, sizeof(*fa));
2342 }
2343
2344 static int
2345 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2346 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2347 {
2348 struct posix_spawn_file_actions *fa;
2349 struct posix_spawn_file_actions_entry *fae;
2350 char *pbuf = NULL;
2351 int error;
2352 size_t i = 0;
2353
2354 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2355 error = copyin(ufa, fa, sizeof(*fa));
2356 if (error || fa->len == 0) {
2357 kmem_free(fa, sizeof(*fa));
2358 return error; /* 0 if not an error, and len == 0 */
2359 }
2360
2361 if (fa->len > lim) {
2362 kmem_free(fa, sizeof(*fa));
2363 return EINVAL;
2364 }
2365
2366 fa->size = fa->len;
2367 size_t fal = fa->len * sizeof(*fae);
2368 fae = fa->fae;
2369 fa->fae = kmem_alloc(fal, KM_SLEEP);
2370 error = copyin(fae, fa->fae, fal);
2371 if (error)
2372 goto out;
2373
2374 pbuf = PNBUF_GET();
2375 for (; i < fa->len; i++) {
2376 fae = &fa->fae[i];
2377 if (fae->fae_action != FAE_OPEN)
2378 continue;
2379 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2380 if (error)
2381 goto out;
2382 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2383 memcpy(fae->fae_path, pbuf, fal);
2384 }
2385 PNBUF_PUT(pbuf);
2386
2387 *fap = fa;
2388 return 0;
2389 out:
2390 if (pbuf)
2391 PNBUF_PUT(pbuf);
2392 posix_spawn_fa_free(fa, i);
2393 return error;
2394 }
2395
2396 int
2397 check_posix_spawn(struct lwp *l1)
2398 {
2399 int error, tnprocs, count;
2400 uid_t uid;
2401 struct proc *p1;
2402
2403 p1 = l1->l_proc;
2404 uid = kauth_cred_getuid(l1->l_cred);
2405 tnprocs = atomic_inc_uint_nv(&nprocs);
2406
2407 /*
2408 * Although process entries are dynamically created, we still keep
2409 * a global limit on the maximum number we will create.
2410 */
2411 if (__predict_false(tnprocs >= maxproc))
2412 error = -1;
2413 else
2414 error = kauth_authorize_process(l1->l_cred,
2415 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2416
2417 if (error) {
2418 atomic_dec_uint(&nprocs);
2419 return EAGAIN;
2420 }
2421
2422 /*
2423 * Enforce limits.
2424 */
2425 count = chgproccnt(uid, 1);
2426 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2427 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2428 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2429 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2430 (void)chgproccnt(uid, -1);
2431 atomic_dec_uint(&nprocs);
2432 return EAGAIN;
2433 }
2434
2435 return 0;
2436 }
2437
2438 int
2439 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2440 struct posix_spawn_file_actions *fa,
2441 struct posix_spawnattr *sa,
2442 char *const *argv, char *const *envp,
2443 execve_fetch_element_t fetch)
2444 {
2445
2446 struct proc *p1, *p2;
2447 struct lwp *l2;
2448 int error;
2449 struct spawn_exec_data *spawn_data;
2450 vaddr_t uaddr;
2451 pid_t pid;
2452 bool have_exec_lock = false;
2453
2454 p1 = l1->l_proc;
2455
2456 /* Allocate and init spawn_data */
2457 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2458 spawn_data->sed_refcnt = 1; /* only parent so far */
2459 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2460 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2461 mutex_enter(&spawn_data->sed_mtx_child);
2462
2463 /*
2464 * Do the first part of the exec now, collect state
2465 * in spawn_data.
2466 */
2467 error = execve_loadvm(l1, true, path, -1, argv,
2468 envp, fetch, &spawn_data->sed_exec);
2469 if (error == EJUSTRETURN)
2470 error = 0;
2471 else if (error)
2472 goto error_exit;
2473
2474 have_exec_lock = true;
2475
2476 /*
2477 * Allocate virtual address space for the U-area now, while it
2478 * is still easy to abort the fork operation if we're out of
2479 * kernel virtual address space.
2480 */
2481 uaddr = uvm_uarea_alloc();
2482 if (__predict_false(uaddr == 0)) {
2483 error = ENOMEM;
2484 goto error_exit;
2485 }
2486
2487 /*
2488 * Allocate new proc. Borrow proc0 vmspace for it, we will
2489 * replace it with its own before returning to userland
2490 * in the child.
2491 * This is a point of no return, we will have to go through
2492 * the child proc to properly clean it up past this point.
2493 */
2494 p2 = proc_alloc();
2495 pid = p2->p_pid;
2496
2497 /*
2498 * Make a proc table entry for the new process.
2499 * Start by zeroing the section of proc that is zero-initialized,
2500 * then copy the section that is copied directly from the parent.
2501 */
2502 memset(&p2->p_startzero, 0,
2503 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2504 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2505 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2506 p2->p_vmspace = proc0.p_vmspace;
2507
2508 TAILQ_INIT(&p2->p_sigpend.sp_info);
2509
2510 LIST_INIT(&p2->p_lwps);
2511 LIST_INIT(&p2->p_sigwaiters);
2512
2513 /*
2514 * Duplicate sub-structures as needed.
2515 * Increase reference counts on shared objects.
2516 * Inherit flags we want to keep. The flags related to SIGCHLD
2517 * handling are important in order to keep a consistent behaviour
2518 * for the child after the fork. If we are a 32-bit process, the
2519 * child will be too.
2520 */
2521 p2->p_flag =
2522 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2523 p2->p_emul = p1->p_emul;
2524 p2->p_execsw = p1->p_execsw;
2525
2526 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2527 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2528 rw_init(&p2->p_reflock);
2529 cv_init(&p2->p_waitcv, "wait");
2530 cv_init(&p2->p_lwpcv, "lwpwait");
2531
2532 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2533
2534 kauth_proc_fork(p1, p2);
2535
2536 p2->p_raslist = NULL;
2537 p2->p_fd = fd_copy();
2538
2539 /* XXX racy */
2540 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2541
2542 p2->p_cwdi = cwdinit();
2543
2544 /*
2545 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2546 * we just need increase pl_refcnt.
2547 */
2548 if (!p1->p_limit->pl_writeable) {
2549 lim_addref(p1->p_limit);
2550 p2->p_limit = p1->p_limit;
2551 } else {
2552 p2->p_limit = lim_copy(p1->p_limit);
2553 }
2554
2555 p2->p_lflag = 0;
2556 l1->l_vforkwaiting = false;
2557 p2->p_sflag = 0;
2558 p2->p_slflag = 0;
2559 p2->p_pptr = p1;
2560 p2->p_ppid = p1->p_pid;
2561 LIST_INIT(&p2->p_children);
2562
2563 p2->p_aio = NULL;
2564
2565 #ifdef KTRACE
2566 /*
2567 * Copy traceflag and tracefile if enabled.
2568 * If not inherited, these were zeroed above.
2569 */
2570 if (p1->p_traceflag & KTRFAC_INHERIT) {
2571 mutex_enter(&ktrace_lock);
2572 p2->p_traceflag = p1->p_traceflag;
2573 if ((p2->p_tracep = p1->p_tracep) != NULL)
2574 ktradref(p2);
2575 mutex_exit(&ktrace_lock);
2576 }
2577 #endif
2578
2579 /*
2580 * Create signal actions for the child process.
2581 */
2582 p2->p_sigacts = sigactsinit(p1, 0);
2583 mutex_enter(p1->p_lock);
2584 p2->p_sflag |=
2585 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2586 sched_proc_fork(p1, p2);
2587 mutex_exit(p1->p_lock);
2588
2589 p2->p_stflag = p1->p_stflag;
2590
2591 /*
2592 * p_stats.
2593 * Copy parts of p_stats, and zero out the rest.
2594 */
2595 p2->p_stats = pstatscopy(p1->p_stats);
2596
2597 /* copy over machdep flags to the new proc */
2598 cpu_proc_fork(p1, p2);
2599
2600 /*
2601 * Prepare remaining parts of spawn data
2602 */
2603 spawn_data->sed_actions = fa;
2604 spawn_data->sed_attrs = sa;
2605
2606 spawn_data->sed_parent = p1;
2607
2608 /* create LWP */
2609 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2610 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2611 l2->l_ctxlink = NULL; /* reset ucontext link */
2612
2613 /*
2614 * Copy the credential so other references don't see our changes.
2615 * Test to see if this is necessary first, since in the common case
2616 * we won't need a private reference.
2617 */
2618 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2619 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2620 l2->l_cred = kauth_cred_copy(l2->l_cred);
2621 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2622 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2623 }
2624
2625 /* Update the master credentials. */
2626 if (l2->l_cred != p2->p_cred) {
2627 kauth_cred_t ocred;
2628
2629 kauth_cred_hold(l2->l_cred);
2630 mutex_enter(p2->p_lock);
2631 ocred = p2->p_cred;
2632 p2->p_cred = l2->l_cred;
2633 mutex_exit(p2->p_lock);
2634 kauth_cred_free(ocred);
2635 }
2636
2637 *child_ok = true;
2638 spawn_data->sed_refcnt = 2; /* child gets it as well */
2639 #if 0
2640 l2->l_nopreempt = 1; /* start it non-preemptable */
2641 #endif
2642
2643 /*
2644 * It's now safe for the scheduler and other processes to see the
2645 * child process.
2646 */
2647 mutex_enter(proc_lock);
2648
2649 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2650 p2->p_lflag |= PL_CONTROLT;
2651
2652 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2653 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2654
2655 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2656 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2657 proc_changeparent(p2, p1->p_pptr);
2658 }
2659
2660 LIST_INSERT_AFTER(p1, p2, p_pglist);
2661 LIST_INSERT_HEAD(&allproc, p2, p_list);
2662
2663 p2->p_trace_enabled = trace_is_enabled(p2);
2664 #ifdef __HAVE_SYSCALL_INTERN
2665 (*p2->p_emul->e_syscall_intern)(p2);
2666 #endif
2667
2668 /*
2669 * Make child runnable, set start time, and add to run queue except
2670 * if the parent requested the child to start in SSTOP state.
2671 */
2672 mutex_enter(p2->p_lock);
2673
2674 getmicrotime(&p2->p_stats->p_start);
2675
2676 lwp_lock(l2);
2677 KASSERT(p2->p_nrlwps == 1);
2678 KASSERT(l2->l_stat == LSIDL);
2679 p2->p_nrlwps = 1;
2680 p2->p_stat = SACTIVE;
2681 setrunnable(l2);
2682 /* LWP now unlocked */
2683
2684 mutex_exit(p2->p_lock);
2685 mutex_exit(proc_lock);
2686
2687 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2688 error = spawn_data->sed_error;
2689 mutex_exit(&spawn_data->sed_mtx_child);
2690 spawn_exec_data_release(spawn_data);
2691
2692 rw_exit(&p1->p_reflock);
2693 rw_exit(&exec_lock);
2694 have_exec_lock = false;
2695
2696 *pid_res = pid;
2697
2698 if (error)
2699 return error;
2700
2701 if (p1->p_slflag & PSL_TRACED) {
2702 /* Paranoid check */
2703 mutex_enter(proc_lock);
2704 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2705 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2706 mutex_exit(proc_lock);
2707 return 0;
2708 }
2709
2710 mutex_enter(p1->p_lock);
2711 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2712 }
2713 return 0;
2714
2715 error_exit:
2716 if (have_exec_lock) {
2717 execve_free_data(&spawn_data->sed_exec);
2718 rw_exit(&p1->p_reflock);
2719 rw_exit(&exec_lock);
2720 }
2721 mutex_exit(&spawn_data->sed_mtx_child);
2722 spawn_exec_data_release(spawn_data);
2723
2724 return error;
2725 }
2726
2727 int
2728 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2729 register_t *retval)
2730 {
2731 /* {
2732 syscallarg(pid_t *) pid;
2733 syscallarg(const char *) path;
2734 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2735 syscallarg(const struct posix_spawnattr *) attrp;
2736 syscallarg(char *const *) argv;
2737 syscallarg(char *const *) envp;
2738 } */
2739
2740 int error;
2741 struct posix_spawn_file_actions *fa = NULL;
2742 struct posix_spawnattr *sa = NULL;
2743 pid_t pid;
2744 bool child_ok = false;
2745 rlim_t max_fileactions;
2746 proc_t *p = l1->l_proc;
2747
2748 error = check_posix_spawn(l1);
2749 if (error) {
2750 *retval = error;
2751 return 0;
2752 }
2753
2754 /* copy in file_actions struct */
2755 if (SCARG(uap, file_actions) != NULL) {
2756 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2757 maxfiles);
2758 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2759 max_fileactions);
2760 if (error)
2761 goto error_exit;
2762 }
2763
2764 /* copyin posix_spawnattr struct */
2765 if (SCARG(uap, attrp) != NULL) {
2766 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2767 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2768 if (error)
2769 goto error_exit;
2770 }
2771
2772 /*
2773 * Do the spawn
2774 */
2775 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2776 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2777 if (error)
2778 goto error_exit;
2779
2780 if (error == 0 && SCARG(uap, pid) != NULL)
2781 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2782
2783 *retval = error;
2784 return 0;
2785
2786 error_exit:
2787 if (!child_ok) {
2788 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2789 atomic_dec_uint(&nprocs);
2790
2791 if (sa)
2792 kmem_free(sa, sizeof(*sa));
2793 if (fa)
2794 posix_spawn_fa_free(fa, fa->len);
2795 }
2796
2797 *retval = error;
2798 return 0;
2799 }
2800
2801 void
2802 exec_free_emul_arg(struct exec_package *epp)
2803 {
2804 if (epp->ep_emul_arg_free != NULL) {
2805 KASSERT(epp->ep_emul_arg != NULL);
2806 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2807 epp->ep_emul_arg_free = NULL;
2808 epp->ep_emul_arg = NULL;
2809 } else {
2810 KASSERT(epp->ep_emul_arg == NULL);
2811 }
2812 }
2813
2814 #ifdef DEBUG_EXEC
2815 static void
2816 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2817 {
2818 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2819 size_t j;
2820
2821 if (error == 0)
2822 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2823 else
2824 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2825 epp->ep_vmcmds.evs_used, error));
2826
2827 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2828 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2829 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2830 PRIxVSIZE" prot=0%o flags=%d\n", j,
2831 vp[j].ev_proc == vmcmd_map_pagedvn ?
2832 "pagedvn" :
2833 vp[j].ev_proc == vmcmd_map_readvn ?
2834 "readvn" :
2835 vp[j].ev_proc == vmcmd_map_zero ?
2836 "zero" : "*unknown*",
2837 vp[j].ev_addr, vp[j].ev_len,
2838 vp[j].ev_offset, vp[j].ev_prot,
2839 vp[j].ev_flags));
2840 if (error != 0 && j == x)
2841 DPRINTF((" ^--- failed\n"));
2842 }
2843 }
2844 #endif
2845