kern_exec.c revision 1.493 1 /* $NetBSD: kern_exec.c,v 1.493 2020/02/23 22:14:03 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.493 2020/02/23 22:14:03 ad Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <machine/reg.h>
116
117 #include <compat/common/compat_util.h>
118
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126
127 struct execve_data;
128
129 extern int user_va0_disable;
130
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134 char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137 char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148 __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156
157 /*
158 * DTrace SDT provider definitions
159 */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164
165 /*
166 * Exec function switch:
167 *
168 * Note that each makecmds function is responsible for loading the
169 * exec package with the necessary functions for any exec-type-specific
170 * handling.
171 *
172 * Functions for specific exec types should be defined in their own
173 * header file.
174 */
175 static const struct execsw **execsw = NULL;
176 static int nexecs;
177
178 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
179
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182 LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 LIST_ENTRY(exec_entry) ex_list;
185 SLIST_ENTRY(exec_entry) ex_slist;
186 const struct execsw *ex_sw;
187 };
188
189 #ifndef __HAVE_SYSCALL_INTERN
190 void syscall(void);
191 #endif
192
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 .e_name = "netbsd",
201 #ifdef EMUL_NATIVEROOT
202 .e_path = EMUL_NATIVEROOT,
203 #else
204 .e_path = NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 .e_flags = EMUL_HAS_SYS___syscall,
208 .e_errno = NULL,
209 .e_nosys = SYS_syscall,
210 .e_nsysent = SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 .e_sc_autoload = netbsd_syscalls_autoload,
214 #endif
215 .e_sysent = sysent,
216 .e_nomodbits = sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 .e_syscallnames = syscallnames,
219 #else
220 .e_syscallnames = NULL,
221 #endif
222 .e_sendsig = sendsig,
223 .e_trapsignal = trapsignal,
224 .e_sigcode = NULL,
225 .e_esigcode = NULL,
226 .e_sigobject = NULL,
227 .e_setregs = setregs,
228 .e_proc_exec = NULL,
229 .e_proc_fork = NULL,
230 .e_proc_exit = NULL,
231 .e_lwp_fork = NULL,
232 .e_lwp_exit = NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 .e_syscall_intern = syscall_intern,
235 #else
236 .e_syscall = syscall,
237 #endif
238 .e_sysctlovly = NULL,
239 .e_vm_default_addr = uvm_default_mapaddr,
240 .e_usertrap = NULL,
241 .e_ucsize = sizeof(ucontext_t),
242 .e_startlwp = startlwp
243 };
244
245 /*
246 * Exec lock. Used to control access to execsw[] structures.
247 * This must not be static so that netbsd32 can access it, too.
248 */
249 krwlock_t exec_lock __cacheline_aligned;
250
251 static kmutex_t sigobject_lock __cacheline_aligned;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 __func__, epp->ep_kname, error));
333 PNBUF_PUT(*rpath);
334 *rpath = NULL;
335 return error;
336 }
337 epp->ep_resolvedname = *rpath;
338 if ((p = strrchr(*rpath, '/')) != NULL)
339 epp->ep_kname = p + 1;
340 return 0;
341 }
342
343
344 /*
345 * check exec:
346 * given an "executable" described in the exec package's namei info,
347 * see what we can do with it.
348 *
349 * ON ENTRY:
350 * exec package with appropriate namei info
351 * lwp pointer of exec'ing lwp
352 * NO SELF-LOCKED VNODES
353 *
354 * ON EXIT:
355 * error: nothing held, etc. exec header still allocated.
356 * ok: filled exec package, executable's vnode (unlocked).
357 *
358 * EXEC SWITCH ENTRY:
359 * Locked vnode to check, exec package, proc.
360 *
361 * EXEC SWITCH EXIT:
362 * ok: return 0, filled exec package, executable's vnode (unlocked).
363 * error: destructive:
364 * everything deallocated execept exec header.
365 * non-destructive:
366 * error code, executable's vnode (unlocked),
367 * exec header unmodified.
368 */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372 char **rpath)
373 {
374 int error, i;
375 struct vnode *vp;
376 size_t resid;
377
378 if (epp->ep_resolvedname) {
379 struct nameidata nd;
380
381 // grab the absolute pathbuf here before namei() trashes it.
382 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384
385 /* first get the vnode */
386 if ((error = namei(&nd)) != 0)
387 return error;
388
389 epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 /* paranoia (take this out once namei stuff stabilizes) */
392 memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 } else {
395 struct file *fp;
396
397 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 return error;
399 epp->ep_vp = vp = fp->f_vnode;
400 vref(vp);
401 fd_putfile(epp->ep_xfd);
402 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 return error;
404 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 }
406
407 /* check access and type */
408 if (vp->v_type != VREG) {
409 error = EACCES;
410 goto bad1;
411 }
412 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 goto bad1;
414
415 /* get attributes */
416 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 goto bad1;
419
420 /* Check mount point */
421 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 error = EACCES;
423 goto bad1;
424 }
425 if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427
428 /* try to open it */
429 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 goto bad1;
431
432 /* now we have the file, get the exec header */
433 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 if (error)
436 goto bad1;
437
438 /* unlock vp, since we need it unlocked from here on out. */
439 VOP_UNLOCK(vp);
440
441 #if NVERIEXEC > 0
442 error = veriexec_verify(l, vp,
443 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 NULL);
446 if (error)
447 goto bad2;
448 #endif /* NVERIEXEC > 0 */
449
450 #ifdef PAX_SEGVGUARD
451 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 if (error)
453 goto bad2;
454 #endif /* PAX_SEGVGUARD */
455
456 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457
458 /*
459 * Set up default address space limits. Can be overridden
460 * by individual exec packages.
461 */
462 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464
465 /*
466 * set up the vmcmds for creation of the process
467 * address space
468 */
469 error = ENOEXEC;
470 for (i = 0; i < nexecs; i++) {
471 int newerror;
472
473 epp->ep_esch = execsw[i];
474 newerror = (*execsw[i]->es_makecmds)(l, epp);
475
476 if (!newerror) {
477 /* Seems ok: check that entry point is not too high */
478 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 printf("%s: rejecting %p due to "
481 "too high entry address (>= %p)\n",
482 __func__, (void *)epp->ep_entry,
483 (void *)epp->ep_vm_maxaddr);
484 #endif
485 error = ENOEXEC;
486 break;
487 }
488 /* Seems ok: check that entry point is not too low */
489 if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 printf("%s: rejecting %p due to "
492 "too low entry address (< %p)\n",
493 __func__, (void *)epp->ep_entry,
494 (void *)epp->ep_vm_minaddr);
495 #endif
496 error = ENOEXEC;
497 break;
498 }
499
500 /* check limits */
501 if ((epp->ep_tsize > MAXTSIZ) ||
502 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
503 [RLIMIT_DATA].rlim_cur)) {
504 #ifdef DIAGNOSTIC
505 printf("%s: rejecting due to "
506 "limits (t=%llu > %llu || d=%llu > %llu)\n",
507 __func__,
508 (unsigned long long)epp->ep_tsize,
509 (unsigned long long)MAXTSIZ,
510 (unsigned long long)epp->ep_dsize,
511 (unsigned long long)
512 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
513 #endif
514 error = ENOMEM;
515 break;
516 }
517 return 0;
518 }
519
520 /*
521 * Reset all the fields that may have been modified by the
522 * loader.
523 */
524 KASSERT(epp->ep_emul_arg == NULL);
525 if (epp->ep_emul_root != NULL) {
526 vrele(epp->ep_emul_root);
527 epp->ep_emul_root = NULL;
528 }
529 if (epp->ep_interp != NULL) {
530 vrele(epp->ep_interp);
531 epp->ep_interp = NULL;
532 }
533 epp->ep_pax_flags = 0;
534
535 /* make sure the first "interesting" error code is saved. */
536 if (error == ENOEXEC)
537 error = newerror;
538
539 if (epp->ep_flags & EXEC_DESTR)
540 /* Error from "#!" code, tidied up by recursive call */
541 return error;
542 }
543
544 /* not found, error */
545
546 /*
547 * free any vmspace-creation commands,
548 * and release their references
549 */
550 kill_vmcmds(&epp->ep_vmcmds);
551
552 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
553 bad2:
554 #endif
555 /*
556 * close and release the vnode, restore the old one, free the
557 * pathname buf, and punt.
558 */
559 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
560 VOP_CLOSE(vp, FREAD, l->l_cred);
561 vput(vp);
562 return error;
563
564 bad1:
565 /*
566 * free the namei pathname buffer, and put the vnode
567 * (which we don't yet have open).
568 */
569 vput(vp); /* was still locked */
570 return error;
571 }
572
573 #ifdef __MACHINE_STACK_GROWS_UP
574 #define STACK_PTHREADSPACE NBPG
575 #else
576 #define STACK_PTHREADSPACE 0
577 #endif
578
579 static int
580 execve_fetch_element(char * const *array, size_t index, char **value)
581 {
582 return copyin(array + index, value, sizeof(*value));
583 }
584
585 /*
586 * exec system call
587 */
588 int
589 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
590 {
591 /* {
592 syscallarg(const char *) path;
593 syscallarg(char * const *) argp;
594 syscallarg(char * const *) envp;
595 } */
596
597 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
598 SCARG(uap, envp), execve_fetch_element);
599 }
600
601 int
602 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
603 register_t *retval)
604 {
605 /* {
606 syscallarg(int) fd;
607 syscallarg(char * const *) argp;
608 syscallarg(char * const *) envp;
609 } */
610
611 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
612 SCARG(uap, envp), execve_fetch_element);
613 }
614
615 /*
616 * Load modules to try and execute an image that we do not understand.
617 * If no execsw entries are present, we load those likely to be needed
618 * in order to run native images only. Otherwise, we autoload all
619 * possible modules that could let us run the binary. XXX lame
620 */
621 static void
622 exec_autoload(void)
623 {
624 #ifdef MODULAR
625 static const char * const native[] = {
626 "exec_elf32",
627 "exec_elf64",
628 "exec_script",
629 NULL
630 };
631 static const char * const compat[] = {
632 "exec_elf32",
633 "exec_elf64",
634 "exec_script",
635 "exec_aout",
636 "exec_coff",
637 "exec_ecoff",
638 "compat_aoutm68k",
639 "compat_netbsd32",
640 #if 0
641 "compat_linux",
642 "compat_linux32",
643 #endif
644 "compat_sunos",
645 "compat_sunos32",
646 "compat_ultrix",
647 NULL
648 };
649 char const * const *list;
650 int i;
651
652 list = nexecs == 0 ? native : compat;
653 for (i = 0; list[i] != NULL; i++) {
654 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
655 continue;
656 }
657 yield();
658 }
659 #endif
660 }
661
662 /*
663 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
664 * making it absolute in the process, by prepending the current working
665 * directory if it is not. If offs is supplied it will contain the offset
666 * where the original supplied copy of upath starts.
667 */
668 int
669 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
670 struct pathbuf **pbp, size_t *offs)
671 {
672 char *path, *bp;
673 size_t len, tlen;
674 int error;
675 struct vnode *dvp;
676
677 path = PNBUF_GET();
678 if (seg == UIO_SYSSPACE) {
679 error = copystr(upath, path, MAXPATHLEN, &len);
680 } else {
681 error = copyinstr(upath, path, MAXPATHLEN, &len);
682 }
683 if (error)
684 goto err;
685
686 if (path[0] == '/') {
687 if (offs)
688 *offs = 0;
689 goto out;
690 }
691
692 len++;
693 if (len + 1 >= MAXPATHLEN) {
694 error = ENAMETOOLONG;
695 goto err;
696 }
697 bp = path + MAXPATHLEN - len;
698 memmove(bp, path, len);
699 *(--bp) = '/';
700
701 dvp = cwdcdir();
702 error = getcwd_common(dvp, NULL, &bp, path, MAXPATHLEN / 2,
703 GETCWD_CHECK_ACCESS, l);
704 vrele(dvp);
705
706 if (error)
707 goto err;
708 tlen = path + MAXPATHLEN - bp;
709
710 memmove(path, bp, tlen);
711 path[tlen - 1] = '\0';
712 if (offs)
713 *offs = tlen - len;
714 out:
715 *pbp = pathbuf_assimilate(path);
716 return 0;
717 err:
718 PNBUF_PUT(path);
719 return error;
720 }
721
722 vaddr_t
723 exec_vm_minaddr(vaddr_t va_min)
724 {
725 /*
726 * Increase va_min if we don't want NULL to be mappable by the
727 * process.
728 */
729 #define VM_MIN_GUARD PAGE_SIZE
730 if (user_va0_disable && (va_min < VM_MIN_GUARD))
731 return VM_MIN_GUARD;
732 return va_min;
733 }
734
735 static int
736 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
737 char * const *args, char * const *envs,
738 execve_fetch_element_t fetch_element,
739 struct execve_data * restrict data)
740 {
741 struct exec_package * const epp = &data->ed_pack;
742 int error;
743 struct proc *p;
744 char *dp;
745 u_int modgen;
746
747 KASSERT(data != NULL);
748
749 p = l->l_proc;
750 modgen = 0;
751
752 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
753
754 /*
755 * Check if we have exceeded our number of processes limit.
756 * This is so that we handle the case where a root daemon
757 * forked, ran setuid to become the desired user and is trying
758 * to exec. The obvious place to do the reference counting check
759 * is setuid(), but we don't do the reference counting check there
760 * like other OS's do because then all the programs that use setuid()
761 * must be modified to check the return code of setuid() and exit().
762 * It is dangerous to make setuid() fail, because it fails open and
763 * the program will continue to run as root. If we make it succeed
764 * and return an error code, again we are not enforcing the limit.
765 * The best place to enforce the limit is here, when the process tries
766 * to execute a new image, because eventually the process will need
767 * to call exec in order to do something useful.
768 */
769 retry:
770 if (p->p_flag & PK_SUGID) {
771 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
772 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
773 &p->p_rlimit[RLIMIT_NPROC],
774 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
775 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
776 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
777 return EAGAIN;
778 }
779
780 /*
781 * Drain existing references and forbid new ones. The process
782 * should be left alone until we're done here. This is necessary
783 * to avoid race conditions - e.g. in ptrace() - that might allow
784 * a local user to illicitly obtain elevated privileges.
785 */
786 rw_enter(&p->p_reflock, RW_WRITER);
787
788 if (has_path) {
789 size_t offs;
790 /*
791 * Init the namei data to point the file user's program name.
792 * This is done here rather than in check_exec(), so that it's
793 * possible to override this settings if any of makecmd/probe
794 * functions call check_exec() recursively - for example,
795 * see exec_script_makecmds().
796 */
797 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
798 &data->ed_pathbuf, &offs)) != 0)
799 goto clrflg;
800 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
801 epp->ep_kname = data->ed_pathstring + offs;
802 data->ed_resolvedname = PNBUF_GET();
803 epp->ep_resolvedname = data->ed_resolvedname;
804 epp->ep_xfd = -1;
805 } else {
806 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
807 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
808 epp->ep_kname = "*fexecve*";
809 data->ed_resolvedname = NULL;
810 epp->ep_resolvedname = NULL;
811 epp->ep_xfd = fd;
812 }
813
814
815 /*
816 * initialize the fields of the exec package.
817 */
818 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
819 epp->ep_hdrlen = exec_maxhdrsz;
820 epp->ep_hdrvalid = 0;
821 epp->ep_emul_arg = NULL;
822 epp->ep_emul_arg_free = NULL;
823 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
824 epp->ep_vap = &data->ed_attr;
825 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
826 MD_TOPDOWN_INIT(epp);
827 epp->ep_emul_root = NULL;
828 epp->ep_interp = NULL;
829 epp->ep_esch = NULL;
830 epp->ep_pax_flags = 0;
831 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
832
833 rw_enter(&exec_lock, RW_READER);
834
835 /* see if we can run it. */
836 if ((error = check_exec(l, epp, data->ed_pathbuf,
837 &data->ed_resolvedname)) != 0) {
838 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
839 DPRINTF(("%s: check exec failed for %s, error %d\n",
840 __func__, epp->ep_kname, error));
841 }
842 goto freehdr;
843 }
844
845 /* allocate an argument buffer */
846 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
847 KASSERT(data->ed_argp != NULL);
848 dp = data->ed_argp;
849
850 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
851 goto bad;
852 }
853
854 /*
855 * Calculate the new stack size.
856 */
857
858 #ifdef __MACHINE_STACK_GROWS_UP
859 /*
860 * copyargs() fills argc/argv/envp from the lower address even on
861 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
862 * so that _rtld() use it.
863 */
864 #define RTLD_GAP 32
865 #else
866 #define RTLD_GAP 0
867 #endif
868
869 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
870
871 data->ed_argslen = calcargs(data, argenvstrlen);
872
873 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
874
875 if (len > epp->ep_ssize) {
876 /* in effect, compare to initial limit */
877 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
878 error = ENOMEM;
879 goto bad;
880 }
881 /* adjust "active stack depth" for process VSZ */
882 epp->ep_ssize = len;
883
884 return 0;
885
886 bad:
887 /* free the vmspace-creation commands, and release their references */
888 kill_vmcmds(&epp->ep_vmcmds);
889 /* kill any opened file descriptor, if necessary */
890 if (epp->ep_flags & EXEC_HASFD) {
891 epp->ep_flags &= ~EXEC_HASFD;
892 fd_close(epp->ep_fd);
893 }
894 /* close and put the exec'd file */
895 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
896 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
897 vput(epp->ep_vp);
898 pool_put(&exec_pool, data->ed_argp);
899
900 freehdr:
901 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
902 if (epp->ep_emul_root != NULL)
903 vrele(epp->ep_emul_root);
904 if (epp->ep_interp != NULL)
905 vrele(epp->ep_interp);
906
907 rw_exit(&exec_lock);
908
909 exec_path_free(data);
910
911 clrflg:
912 rw_exit(&p->p_reflock);
913
914 if (modgen != module_gen && error == ENOEXEC) {
915 modgen = module_gen;
916 exec_autoload();
917 goto retry;
918 }
919
920 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
921 return error;
922 }
923
924 static int
925 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
926 {
927 struct exec_package * const epp = &data->ed_pack;
928 struct proc *p = l->l_proc;
929 struct exec_vmcmd *base_vcp;
930 int error = 0;
931 size_t i;
932
933 /* record proc's vnode, for use by procfs and others */
934 if (p->p_textvp)
935 vrele(p->p_textvp);
936 vref(epp->ep_vp);
937 p->p_textvp = epp->ep_vp;
938
939 /* create the new process's VM space by running the vmcmds */
940 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
941
942 #ifdef TRACE_EXEC
943 DUMPVMCMDS(epp, 0, 0);
944 #endif
945
946 base_vcp = NULL;
947
948 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
949 struct exec_vmcmd *vcp;
950
951 vcp = &epp->ep_vmcmds.evs_cmds[i];
952 if (vcp->ev_flags & VMCMD_RELATIVE) {
953 KASSERTMSG(base_vcp != NULL,
954 "%s: relative vmcmd with no base", __func__);
955 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
956 "%s: illegal base & relative vmcmd", __func__);
957 vcp->ev_addr += base_vcp->ev_addr;
958 }
959 error = (*vcp->ev_proc)(l, vcp);
960 if (error)
961 DUMPVMCMDS(epp, i, error);
962 if (vcp->ev_flags & VMCMD_BASE)
963 base_vcp = vcp;
964 }
965
966 /* free the vmspace-creation commands, and release their references */
967 kill_vmcmds(&epp->ep_vmcmds);
968
969 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
970 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
971 vput(epp->ep_vp);
972
973 /* if an error happened, deallocate and punt */
974 if (error != 0) {
975 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
976 }
977 return error;
978 }
979
980 static void
981 execve_free_data(struct execve_data *data)
982 {
983 struct exec_package * const epp = &data->ed_pack;
984
985 /* free the vmspace-creation commands, and release their references */
986 kill_vmcmds(&epp->ep_vmcmds);
987 /* kill any opened file descriptor, if necessary */
988 if (epp->ep_flags & EXEC_HASFD) {
989 epp->ep_flags &= ~EXEC_HASFD;
990 fd_close(epp->ep_fd);
991 }
992
993 /* close and put the exec'd file */
994 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
995 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
996 vput(epp->ep_vp);
997 pool_put(&exec_pool, data->ed_argp);
998
999 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1000 if (epp->ep_emul_root != NULL)
1001 vrele(epp->ep_emul_root);
1002 if (epp->ep_interp != NULL)
1003 vrele(epp->ep_interp);
1004
1005 exec_path_free(data);
1006 }
1007
1008 static void
1009 pathexec(struct proc *p, const char *resolvedname)
1010 {
1011 /* set command name & other accounting info */
1012 const char *cmdname;
1013
1014 if (resolvedname == NULL) {
1015 cmdname = "*fexecve*";
1016 resolvedname = "/";
1017 } else {
1018 cmdname = strrchr(resolvedname, '/') + 1;
1019 }
1020 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1021 resolvedname);
1022
1023 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1024
1025 kmem_strfree(p->p_path);
1026 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1027 }
1028
1029 /* XXX elsewhere */
1030 static int
1031 credexec(struct lwp *l, struct vattr *attr)
1032 {
1033 struct proc *p = l->l_proc;
1034 int error;
1035
1036 /*
1037 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1038 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1039 * out additional references on the process for the moment.
1040 */
1041 if ((p->p_slflag & PSL_TRACED) == 0 &&
1042
1043 (((attr->va_mode & S_ISUID) != 0 &&
1044 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1045
1046 ((attr->va_mode & S_ISGID) != 0 &&
1047 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1048 /*
1049 * Mark the process as SUGID before we do
1050 * anything that might block.
1051 */
1052 proc_crmod_enter();
1053 proc_crmod_leave(NULL, NULL, true);
1054
1055 /* Make sure file descriptors 0..2 are in use. */
1056 if ((error = fd_checkstd()) != 0) {
1057 DPRINTF(("%s: fdcheckstd failed %d\n",
1058 __func__, error));
1059 return error;
1060 }
1061
1062 /*
1063 * Copy the credential so other references don't see our
1064 * changes.
1065 */
1066 l->l_cred = kauth_cred_copy(l->l_cred);
1067 #ifdef KTRACE
1068 /*
1069 * If the persistent trace flag isn't set, turn off.
1070 */
1071 if (p->p_tracep) {
1072 mutex_enter(&ktrace_lock);
1073 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1074 ktrderef(p);
1075 mutex_exit(&ktrace_lock);
1076 }
1077 #endif
1078 if (attr->va_mode & S_ISUID)
1079 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1080 if (attr->va_mode & S_ISGID)
1081 kauth_cred_setegid(l->l_cred, attr->va_gid);
1082 } else {
1083 if (kauth_cred_geteuid(l->l_cred) ==
1084 kauth_cred_getuid(l->l_cred) &&
1085 kauth_cred_getegid(l->l_cred) ==
1086 kauth_cred_getgid(l->l_cred))
1087 p->p_flag &= ~PK_SUGID;
1088 }
1089
1090 /*
1091 * Copy the credential so other references don't see our changes.
1092 * Test to see if this is necessary first, since in the common case
1093 * we won't need a private reference.
1094 */
1095 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1096 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1097 l->l_cred = kauth_cred_copy(l->l_cred);
1098 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1099 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1100 }
1101
1102 /* Update the master credentials. */
1103 if (l->l_cred != p->p_cred) {
1104 kauth_cred_t ocred;
1105
1106 kauth_cred_hold(l->l_cred);
1107 mutex_enter(p->p_lock);
1108 ocred = p->p_cred;
1109 p->p_cred = l->l_cred;
1110 mutex_exit(p->p_lock);
1111 kauth_cred_free(ocred);
1112 }
1113
1114 return 0;
1115 }
1116
1117 static void
1118 emulexec(struct lwp *l, struct exec_package *epp)
1119 {
1120 struct proc *p = l->l_proc;
1121 struct cwdinfo *cwdi;
1122
1123 /* The emulation root will usually have been found when we looked
1124 * for the elf interpreter (or similar), if not look now. */
1125 if (epp->ep_esch->es_emul->e_path != NULL &&
1126 epp->ep_emul_root == NULL)
1127 emul_find_root(l, epp);
1128
1129 /* Any old emulation root got removed by fdcloseexec */
1130 KASSERT(p == curproc);
1131 cwdi = cwdenter(RW_WRITER);
1132 cwdi->cwdi_edir = epp->ep_emul_root;
1133 cwdexit(cwdi);
1134 epp->ep_emul_root = NULL;
1135 if (epp->ep_interp != NULL)
1136 vrele(epp->ep_interp);
1137
1138 /*
1139 * Call emulation specific exec hook. This can setup per-process
1140 * p->p_emuldata or do any other per-process stuff an emulation needs.
1141 *
1142 * If we are executing process of different emulation than the
1143 * original forked process, call e_proc_exit() of the old emulation
1144 * first, then e_proc_exec() of new emulation. If the emulation is
1145 * same, the exec hook code should deallocate any old emulation
1146 * resources held previously by this process.
1147 */
1148 if (p->p_emul && p->p_emul->e_proc_exit
1149 && p->p_emul != epp->ep_esch->es_emul)
1150 (*p->p_emul->e_proc_exit)(p);
1151
1152 /* This is now LWP 1. Re-number the LWP if needed. */
1153 if (l->l_lid != 1)
1154 lwp_renumber(l, 1);
1155
1156 /*
1157 * Call exec hook. Emulation code may NOT store reference to anything
1158 * from &pack.
1159 */
1160 if (epp->ep_esch->es_emul->e_proc_exec)
1161 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1162
1163 /* update p_emul, the old value is no longer needed */
1164 p->p_emul = epp->ep_esch->es_emul;
1165
1166 /* ...and the same for p_execsw */
1167 p->p_execsw = epp->ep_esch;
1168
1169 #ifdef __HAVE_SYSCALL_INTERN
1170 (*p->p_emul->e_syscall_intern)(p);
1171 #endif
1172 ktremul();
1173 }
1174
1175 static int
1176 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1177 bool no_local_exec_lock, bool is_spawn)
1178 {
1179 struct exec_package * const epp = &data->ed_pack;
1180 int error = 0;
1181 struct proc *p;
1182 struct vmspace *vm;
1183
1184 /*
1185 * In case of a posix_spawn operation, the child doing the exec
1186 * might not hold the reader lock on exec_lock, but the parent
1187 * will do this instead.
1188 */
1189 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1190 KASSERT(!no_local_exec_lock || is_spawn);
1191 KASSERT(data != NULL);
1192
1193 p = l->l_proc;
1194
1195 /* Get rid of other LWPs. */
1196 if (p->p_nlwps > 1) {
1197 mutex_enter(p->p_lock);
1198 exit_lwps(l);
1199 mutex_exit(p->p_lock);
1200 }
1201 KDASSERT(p->p_nlwps == 1);
1202
1203 /* Destroy any lwpctl info. */
1204 if (p->p_lwpctl != NULL)
1205 lwp_ctl_exit();
1206
1207 /* Remove POSIX timers */
1208 timers_free(p, TIMERS_POSIX);
1209
1210 /* Set the PaX flags. */
1211 pax_set_flags(epp, p);
1212
1213 /*
1214 * Do whatever is necessary to prepare the address space
1215 * for remapping. Note that this might replace the current
1216 * vmspace with another!
1217 *
1218 * vfork(): do not touch any user space data in the new child
1219 * until we have awoken the parent below, or it will defeat
1220 * lazy pmap switching (on x86).
1221 */
1222 if (is_spawn)
1223 uvmspace_spawn(l, epp->ep_vm_minaddr,
1224 epp->ep_vm_maxaddr,
1225 epp->ep_flags & EXEC_TOPDOWN_VM);
1226 else
1227 uvmspace_exec(l, epp->ep_vm_minaddr,
1228 epp->ep_vm_maxaddr,
1229 epp->ep_flags & EXEC_TOPDOWN_VM);
1230 vm = p->p_vmspace;
1231
1232 vm->vm_taddr = (void *)epp->ep_taddr;
1233 vm->vm_tsize = btoc(epp->ep_tsize);
1234 vm->vm_daddr = (void*)epp->ep_daddr;
1235 vm->vm_dsize = btoc(epp->ep_dsize);
1236 vm->vm_ssize = btoc(epp->ep_ssize);
1237 vm->vm_issize = 0;
1238 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1239 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1240
1241 pax_aslr_init_vm(l, vm, epp);
1242
1243 cwdexec(p);
1244 fd_closeexec(); /* handle close on exec */
1245
1246 if (__predict_false(ktrace_on))
1247 fd_ktrexecfd();
1248
1249 execsigs(p); /* reset caught signals */
1250
1251 mutex_enter(p->p_lock);
1252 l->l_ctxlink = NULL; /* reset ucontext link */
1253 p->p_acflag &= ~AFORK;
1254 p->p_flag |= PK_EXEC;
1255 mutex_exit(p->p_lock);
1256
1257 error = credexec(l, &data->ed_attr);
1258 if (error)
1259 goto exec_abort;
1260
1261 #if defined(__HAVE_RAS)
1262 /*
1263 * Remove all RASs from the address space.
1264 */
1265 ras_purgeall();
1266 #endif
1267
1268 /*
1269 * Stop profiling.
1270 */
1271 if ((p->p_stflag & PST_PROFIL) != 0) {
1272 mutex_spin_enter(&p->p_stmutex);
1273 stopprofclock(p);
1274 mutex_spin_exit(&p->p_stmutex);
1275 }
1276
1277 /*
1278 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1279 * exited and exec()/exit() are the only places it will be cleared.
1280 *
1281 * Once the parent has been awoken, curlwp may teleport to a new CPU
1282 * in sched_vforkexec(), and it's then OK to start messing with user
1283 * data. See comment above.
1284 */
1285 if ((p->p_lflag & PL_PPWAIT) != 0) {
1286 bool samecpu;
1287 lwp_t *lp;
1288
1289 mutex_enter(proc_lock);
1290 lp = p->p_vforklwp;
1291 p->p_vforklwp = NULL;
1292 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1293 cv_broadcast(&lp->l_waitcv);
1294
1295 /* Clear flags after cv_broadcast() (scheduler needs them). */
1296 p->p_lflag &= ~PL_PPWAIT;
1297 lp->l_vforkwaiting = false;
1298
1299 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1300 samecpu = (lp->l_cpu == curlwp->l_cpu);
1301 mutex_exit(proc_lock);
1302
1303 /* Give the parent its CPU back - find a new home. */
1304 KASSERT(!is_spawn);
1305 sched_vforkexec(l, samecpu);
1306 }
1307
1308 /* Now map address space. */
1309 error = execve_dovmcmds(l, data);
1310 if (error != 0)
1311 goto exec_abort;
1312
1313 pathexec(p, epp->ep_resolvedname);
1314
1315 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1316
1317 error = copyoutargs(data, l, newstack);
1318 if (error != 0)
1319 goto exec_abort;
1320
1321 doexechooks(p);
1322
1323 /*
1324 * Set initial SP at the top of the stack.
1325 *
1326 * Note that on machines where stack grows up (e.g. hppa), SP points to
1327 * the end of arg/env strings. Userland guesses the address of argc
1328 * via ps_strings::ps_argvstr.
1329 */
1330
1331 /* Setup new registers and do misc. setup. */
1332 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1333 if (epp->ep_esch->es_setregs)
1334 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1335
1336 /* Provide a consistent LWP private setting */
1337 (void)lwp_setprivate(l, NULL);
1338
1339 /* Discard all PCU state; need to start fresh */
1340 pcu_discard_all(l);
1341
1342 /* map the process's signal trampoline code */
1343 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1344 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1345 goto exec_abort;
1346 }
1347
1348 pool_put(&exec_pool, data->ed_argp);
1349
1350 /* notify others that we exec'd */
1351 KNOTE(&p->p_klist, NOTE_EXEC);
1352
1353 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1354
1355 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1356
1357 emulexec(l, epp);
1358
1359 /* Allow new references from the debugger/procfs. */
1360 rw_exit(&p->p_reflock);
1361 if (!no_local_exec_lock)
1362 rw_exit(&exec_lock);
1363
1364 mutex_enter(proc_lock);
1365
1366 /* posix_spawn(3) reports a single event with implied exec(3) */
1367 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1368 mutex_enter(p->p_lock);
1369 eventswitch(TRAP_EXEC, 0, 0);
1370 mutex_enter(proc_lock);
1371 }
1372
1373 if (p->p_sflag & PS_STOPEXEC) {
1374 ksiginfoq_t kq;
1375
1376 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1377 p->p_pptr->p_nstopchild++;
1378 p->p_waited = 0;
1379 mutex_enter(p->p_lock);
1380 ksiginfo_queue_init(&kq);
1381 sigclearall(p, &contsigmask, &kq);
1382 lwp_lock(l);
1383 l->l_stat = LSSTOP;
1384 p->p_stat = SSTOP;
1385 p->p_nrlwps--;
1386 lwp_unlock(l);
1387 mutex_exit(p->p_lock);
1388 mutex_exit(proc_lock);
1389 lwp_lock(l);
1390 spc_lock(l->l_cpu);
1391 mi_switch(l);
1392 ksiginfo_queue_drain(&kq);
1393 } else {
1394 mutex_exit(proc_lock);
1395 }
1396
1397 exec_path_free(data);
1398 #ifdef TRACE_EXEC
1399 DPRINTF(("%s finished\n", __func__));
1400 #endif
1401 return EJUSTRETURN;
1402
1403 exec_abort:
1404 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1405 rw_exit(&p->p_reflock);
1406 if (!no_local_exec_lock)
1407 rw_exit(&exec_lock);
1408
1409 exec_path_free(data);
1410
1411 /*
1412 * the old process doesn't exist anymore. exit gracefully.
1413 * get rid of the (new) address space we have created, if any, get rid
1414 * of our namei data and vnode, and exit noting failure
1415 */
1416 if (vm != NULL) {
1417 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1418 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1419 }
1420
1421 exec_free_emul_arg(epp);
1422 pool_put(&exec_pool, data->ed_argp);
1423 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1424 if (epp->ep_emul_root != NULL)
1425 vrele(epp->ep_emul_root);
1426 if (epp->ep_interp != NULL)
1427 vrele(epp->ep_interp);
1428
1429 /* Acquire the sched-state mutex (exit1() will release it). */
1430 if (!is_spawn) {
1431 mutex_enter(p->p_lock);
1432 exit1(l, error, SIGABRT);
1433 }
1434
1435 return error;
1436 }
1437
1438 int
1439 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1440 char * const *args, char * const *envs,
1441 execve_fetch_element_t fetch_element)
1442 {
1443 struct execve_data data;
1444 int error;
1445
1446 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1447 &data);
1448 if (error)
1449 return error;
1450 error = execve_runproc(l, &data, false, false);
1451 return error;
1452 }
1453
1454 static size_t
1455 fromptrsz(const struct exec_package *epp)
1456 {
1457 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1458 }
1459
1460 static size_t
1461 ptrsz(const struct exec_package *epp)
1462 {
1463 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1464 }
1465
1466 static size_t
1467 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1468 {
1469 struct exec_package * const epp = &data->ed_pack;
1470
1471 const size_t nargenvptrs =
1472 1 + /* long argc */
1473 data->ed_argc + /* char *argv[] */
1474 1 + /* \0 */
1475 data->ed_envc + /* char *env[] */
1476 1; /* \0 */
1477
1478 return (nargenvptrs * ptrsz(epp)) /* pointers */
1479 + argenvstrlen /* strings */
1480 + epp->ep_esch->es_arglen; /* auxinfo */
1481 }
1482
1483 static size_t
1484 calcstack(struct execve_data * restrict data, const size_t gaplen)
1485 {
1486 struct exec_package * const epp = &data->ed_pack;
1487
1488 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1489 epp->ep_esch->es_emul->e_sigcode;
1490
1491 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1492 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1493
1494 const size_t sigcode_psstr_sz =
1495 data->ed_szsigcode + /* sigcode */
1496 data->ed_ps_strings_sz + /* ps_strings */
1497 STACK_PTHREADSPACE; /* pthread space */
1498
1499 const size_t stacklen =
1500 data->ed_argslen +
1501 gaplen +
1502 sigcode_psstr_sz;
1503
1504 /* make the stack "safely" aligned */
1505 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1506 }
1507
1508 static int
1509 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1510 char * const newstack)
1511 {
1512 struct exec_package * const epp = &data->ed_pack;
1513 struct proc *p = l->l_proc;
1514 int error;
1515
1516 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1517
1518 /* remember information about the process */
1519 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1520 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1521
1522 /*
1523 * Allocate the stack address passed to the newly execve()'ed process.
1524 *
1525 * The new stack address will be set to the SP (stack pointer) register
1526 * in setregs().
1527 */
1528
1529 char *newargs = STACK_ALLOC(
1530 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1531
1532 error = (*epp->ep_esch->es_copyargs)(l, epp,
1533 &data->ed_arginfo, &newargs, data->ed_argp);
1534
1535 if (error) {
1536 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1537 return error;
1538 }
1539
1540 error = copyoutpsstrs(data, p);
1541 if (error != 0)
1542 return error;
1543
1544 return 0;
1545 }
1546
1547 static int
1548 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1549 {
1550 struct exec_package * const epp = &data->ed_pack;
1551 struct ps_strings32 arginfo32;
1552 void *aip;
1553 int error;
1554
1555 /* fill process ps_strings info */
1556 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1557 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1558
1559 if (epp->ep_flags & EXEC_32) {
1560 aip = &arginfo32;
1561 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1562 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1563 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1564 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1565 } else
1566 aip = &data->ed_arginfo;
1567
1568 /* copy out the process's ps_strings structure */
1569 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1570 != 0) {
1571 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1572 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1573 return error;
1574 }
1575
1576 return 0;
1577 }
1578
1579 static int
1580 copyinargs(struct execve_data * restrict data, char * const *args,
1581 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1582 {
1583 struct exec_package * const epp = &data->ed_pack;
1584 char *dp;
1585 size_t i;
1586 int error;
1587
1588 dp = *dpp;
1589
1590 data->ed_argc = 0;
1591
1592 /* copy the fake args list, if there's one, freeing it as we go */
1593 if (epp->ep_flags & EXEC_HASARGL) {
1594 struct exec_fakearg *fa = epp->ep_fa;
1595
1596 while (fa->fa_arg != NULL) {
1597 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1598 size_t len;
1599
1600 len = strlcpy(dp, fa->fa_arg, maxlen);
1601 /* Count NUL into len. */
1602 if (len < maxlen)
1603 len++;
1604 else {
1605 while (fa->fa_arg != NULL) {
1606 kmem_free(fa->fa_arg, fa->fa_len);
1607 fa++;
1608 }
1609 kmem_free(epp->ep_fa, epp->ep_fa_len);
1610 epp->ep_flags &= ~EXEC_HASARGL;
1611 return E2BIG;
1612 }
1613 ktrexecarg(fa->fa_arg, len - 1);
1614 dp += len;
1615
1616 kmem_free(fa->fa_arg, fa->fa_len);
1617 fa++;
1618 data->ed_argc++;
1619 }
1620 kmem_free(epp->ep_fa, epp->ep_fa_len);
1621 epp->ep_flags &= ~EXEC_HASARGL;
1622 }
1623
1624 /*
1625 * Read and count argument strings from user.
1626 */
1627
1628 if (args == NULL) {
1629 DPRINTF(("%s: null args\n", __func__));
1630 return EINVAL;
1631 }
1632 if (epp->ep_flags & EXEC_SKIPARG)
1633 args = (const void *)((const char *)args + fromptrsz(epp));
1634 i = 0;
1635 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1636 if (error != 0) {
1637 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1638 return error;
1639 }
1640 data->ed_argc += i;
1641
1642 /*
1643 * Read and count environment strings from user.
1644 */
1645
1646 data->ed_envc = 0;
1647 /* environment need not be there */
1648 if (envs == NULL)
1649 goto done;
1650 i = 0;
1651 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1652 if (error != 0) {
1653 DPRINTF(("%s: copyin env %d\n", __func__, error));
1654 return error;
1655 }
1656 data->ed_envc += i;
1657
1658 done:
1659 *dpp = dp;
1660
1661 return 0;
1662 }
1663
1664 static int
1665 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1666 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1667 void (*ktr)(const void *, size_t))
1668 {
1669 char *dp, *sp;
1670 size_t i;
1671 int error;
1672
1673 dp = *dpp;
1674
1675 i = 0;
1676 while (1) {
1677 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1678 size_t len;
1679
1680 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1681 return error;
1682 }
1683 if (!sp)
1684 break;
1685 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1686 if (error == ENAMETOOLONG)
1687 error = E2BIG;
1688 return error;
1689 }
1690 if (__predict_false(ktrace_on))
1691 (*ktr)(dp, len - 1);
1692 dp += len;
1693 i++;
1694 }
1695
1696 *dpp = dp;
1697 *ip = i;
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1704 * Those strings are located just after auxinfo.
1705 */
1706 int
1707 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1708 char **stackp, void *argp)
1709 {
1710 char **cpp, *dp, *sp;
1711 size_t len;
1712 void *nullp;
1713 long argc, envc;
1714 int error;
1715
1716 cpp = (char **)*stackp;
1717 nullp = NULL;
1718 argc = arginfo->ps_nargvstr;
1719 envc = arginfo->ps_nenvstr;
1720
1721 /* argc on stack is long */
1722 CTASSERT(sizeof(*cpp) == sizeof(argc));
1723
1724 dp = (char *)(cpp +
1725 1 + /* long argc */
1726 argc + /* char *argv[] */
1727 1 + /* \0 */
1728 envc + /* char *env[] */
1729 1) + /* \0 */
1730 pack->ep_esch->es_arglen; /* auxinfo */
1731 sp = argp;
1732
1733 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1734 COPYPRINTF("", cpp - 1, sizeof(argc));
1735 return error;
1736 }
1737
1738 /* XXX don't copy them out, remap them! */
1739 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1740
1741 for (; --argc >= 0; sp += len, dp += len) {
1742 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1743 COPYPRINTF("", cpp - 1, sizeof(dp));
1744 return error;
1745 }
1746 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1747 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1748 return error;
1749 }
1750 }
1751
1752 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1753 COPYPRINTF("", cpp - 1, sizeof(nullp));
1754 return error;
1755 }
1756
1757 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1758
1759 for (; --envc >= 0; sp += len, dp += len) {
1760 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1761 COPYPRINTF("", cpp - 1, sizeof(dp));
1762 return error;
1763 }
1764 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1765 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1766 return error;
1767 }
1768
1769 }
1770
1771 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1772 COPYPRINTF("", cpp - 1, sizeof(nullp));
1773 return error;
1774 }
1775
1776 *stackp = (char *)cpp;
1777 return 0;
1778 }
1779
1780
1781 /*
1782 * Add execsw[] entries.
1783 */
1784 int
1785 exec_add(struct execsw *esp, int count)
1786 {
1787 struct exec_entry *it;
1788 int i;
1789
1790 if (count == 0) {
1791 return 0;
1792 }
1793
1794 /* Check for duplicates. */
1795 rw_enter(&exec_lock, RW_WRITER);
1796 for (i = 0; i < count; i++) {
1797 LIST_FOREACH(it, &ex_head, ex_list) {
1798 /* assume unique (makecmds, probe_func, emulation) */
1799 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1800 it->ex_sw->u.elf_probe_func ==
1801 esp[i].u.elf_probe_func &&
1802 it->ex_sw->es_emul == esp[i].es_emul) {
1803 rw_exit(&exec_lock);
1804 return EEXIST;
1805 }
1806 }
1807 }
1808
1809 /* Allocate new entries. */
1810 for (i = 0; i < count; i++) {
1811 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1812 it->ex_sw = &esp[i];
1813 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1814 }
1815
1816 /* update execsw[] */
1817 exec_init(0);
1818 rw_exit(&exec_lock);
1819 return 0;
1820 }
1821
1822 /*
1823 * Remove execsw[] entry.
1824 */
1825 int
1826 exec_remove(struct execsw *esp, int count)
1827 {
1828 struct exec_entry *it, *next;
1829 int i;
1830 const struct proclist_desc *pd;
1831 proc_t *p;
1832
1833 if (count == 0) {
1834 return 0;
1835 }
1836
1837 /* Abort if any are busy. */
1838 rw_enter(&exec_lock, RW_WRITER);
1839 for (i = 0; i < count; i++) {
1840 mutex_enter(proc_lock);
1841 for (pd = proclists; pd->pd_list != NULL; pd++) {
1842 PROCLIST_FOREACH(p, pd->pd_list) {
1843 if (p->p_execsw == &esp[i]) {
1844 mutex_exit(proc_lock);
1845 rw_exit(&exec_lock);
1846 return EBUSY;
1847 }
1848 }
1849 }
1850 mutex_exit(proc_lock);
1851 }
1852
1853 /* None are busy, so remove them all. */
1854 for (i = 0; i < count; i++) {
1855 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1856 next = LIST_NEXT(it, ex_list);
1857 if (it->ex_sw == &esp[i]) {
1858 LIST_REMOVE(it, ex_list);
1859 kmem_free(it, sizeof(*it));
1860 break;
1861 }
1862 }
1863 }
1864
1865 /* update execsw[] */
1866 exec_init(0);
1867 rw_exit(&exec_lock);
1868 return 0;
1869 }
1870
1871 /*
1872 * Initialize exec structures. If init_boot is true, also does necessary
1873 * one-time initialization (it's called from main() that way).
1874 * Once system is multiuser, this should be called with exec_lock held,
1875 * i.e. via exec_{add|remove}().
1876 */
1877 int
1878 exec_init(int init_boot)
1879 {
1880 const struct execsw **sw;
1881 struct exec_entry *ex;
1882 SLIST_HEAD(,exec_entry) first;
1883 SLIST_HEAD(,exec_entry) any;
1884 SLIST_HEAD(,exec_entry) last;
1885 int i, sz;
1886
1887 if (init_boot) {
1888 /* do one-time initializations */
1889 vaddr_t vmin = 0, vmax;
1890
1891 rw_init(&exec_lock);
1892 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1893 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1894 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1895 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1896 "execargs", &exec_palloc, IPL_NONE);
1897 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1898 } else {
1899 KASSERT(rw_write_held(&exec_lock));
1900 }
1901
1902 /* Sort each entry onto the appropriate queue. */
1903 SLIST_INIT(&first);
1904 SLIST_INIT(&any);
1905 SLIST_INIT(&last);
1906 sz = 0;
1907 LIST_FOREACH(ex, &ex_head, ex_list) {
1908 switch(ex->ex_sw->es_prio) {
1909 case EXECSW_PRIO_FIRST:
1910 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1911 break;
1912 case EXECSW_PRIO_ANY:
1913 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1914 break;
1915 case EXECSW_PRIO_LAST:
1916 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1917 break;
1918 default:
1919 panic("%s", __func__);
1920 break;
1921 }
1922 sz++;
1923 }
1924
1925 /*
1926 * Create new execsw[]. Ensure we do not try a zero-sized
1927 * allocation.
1928 */
1929 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1930 i = 0;
1931 SLIST_FOREACH(ex, &first, ex_slist) {
1932 sw[i++] = ex->ex_sw;
1933 }
1934 SLIST_FOREACH(ex, &any, ex_slist) {
1935 sw[i++] = ex->ex_sw;
1936 }
1937 SLIST_FOREACH(ex, &last, ex_slist) {
1938 sw[i++] = ex->ex_sw;
1939 }
1940
1941 /* Replace old execsw[] and free used memory. */
1942 if (execsw != NULL) {
1943 kmem_free(__UNCONST(execsw),
1944 nexecs * sizeof(struct execsw *) + 1);
1945 }
1946 execsw = sw;
1947 nexecs = sz;
1948
1949 /* Figure out the maximum size of an exec header. */
1950 exec_maxhdrsz = sizeof(int);
1951 for (i = 0; i < nexecs; i++) {
1952 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1953 exec_maxhdrsz = execsw[i]->es_hdrsz;
1954 }
1955
1956 return 0;
1957 }
1958
1959 static int
1960 exec_sigcode_map(struct proc *p, const struct emul *e)
1961 {
1962 vaddr_t va;
1963 vsize_t sz;
1964 int error;
1965 struct uvm_object *uobj;
1966
1967 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1968
1969 if (e->e_sigobject == NULL || sz == 0) {
1970 return 0;
1971 }
1972
1973 /*
1974 * If we don't have a sigobject for this emulation, create one.
1975 *
1976 * sigobject is an anonymous memory object (just like SYSV shared
1977 * memory) that we keep a permanent reference to and that we map
1978 * in all processes that need this sigcode. The creation is simple,
1979 * we create an object, add a permanent reference to it, map it in
1980 * kernel space, copy out the sigcode to it and unmap it.
1981 * We map it with PROT_READ|PROT_EXEC into the process just
1982 * the way sys_mmap() would map it.
1983 */
1984
1985 uobj = *e->e_sigobject;
1986 if (uobj == NULL) {
1987 mutex_enter(&sigobject_lock);
1988 if ((uobj = *e->e_sigobject) == NULL) {
1989 uobj = uao_create(sz, 0);
1990 (*uobj->pgops->pgo_reference)(uobj);
1991 va = vm_map_min(kernel_map);
1992 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1993 uobj, 0, 0,
1994 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1995 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1996 printf("kernel mapping failed %d\n", error);
1997 (*uobj->pgops->pgo_detach)(uobj);
1998 mutex_exit(&sigobject_lock);
1999 return error;
2000 }
2001 memcpy((void *)va, e->e_sigcode, sz);
2002 #ifdef PMAP_NEED_PROCWR
2003 pmap_procwr(&proc0, va, sz);
2004 #endif
2005 uvm_unmap(kernel_map, va, va + round_page(sz));
2006 *e->e_sigobject = uobj;
2007 }
2008 mutex_exit(&sigobject_lock);
2009 }
2010
2011 /* Just a hint to uvm_map where to put it. */
2012 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2013 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2014
2015 #ifdef __alpha__
2016 /*
2017 * Tru64 puts /sbin/loader at the end of user virtual memory,
2018 * which causes the above calculation to put the sigcode at
2019 * an invalid address. Put it just below the text instead.
2020 */
2021 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2022 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2023 }
2024 #endif
2025
2026 (*uobj->pgops->pgo_reference)(uobj);
2027 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2028 uobj, 0, 0,
2029 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2030 UVM_ADV_RANDOM, 0));
2031 if (error) {
2032 DPRINTF(("%s, %d: map %p "
2033 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2034 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2035 va, error));
2036 (*uobj->pgops->pgo_detach)(uobj);
2037 return error;
2038 }
2039 p->p_sigctx.ps_sigcode = (void *)va;
2040 return 0;
2041 }
2042
2043 /*
2044 * Release a refcount on spawn_exec_data and destroy memory, if this
2045 * was the last one.
2046 */
2047 static void
2048 spawn_exec_data_release(struct spawn_exec_data *data)
2049 {
2050 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2051 return;
2052
2053 cv_destroy(&data->sed_cv_child_ready);
2054 mutex_destroy(&data->sed_mtx_child);
2055
2056 if (data->sed_actions)
2057 posix_spawn_fa_free(data->sed_actions,
2058 data->sed_actions->len);
2059 if (data->sed_attrs)
2060 kmem_free(data->sed_attrs,
2061 sizeof(*data->sed_attrs));
2062 kmem_free(data, sizeof(*data));
2063 }
2064
2065 /*
2066 * A child lwp of a posix_spawn operation starts here and ends up in
2067 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2068 * manipulations in between.
2069 * The parent waits for the child, as it is not clear whether the child
2070 * will be able to acquire its own exec_lock. If it can, the parent can
2071 * be released early and continue running in parallel. If not (or if the
2072 * magic debug flag is passed in the scheduler attribute struct), the
2073 * child rides on the parent's exec lock until it is ready to return to
2074 * to userland - and only then releases the parent. This method loses
2075 * concurrency, but improves error reporting.
2076 */
2077 static void
2078 spawn_return(void *arg)
2079 {
2080 struct spawn_exec_data *spawn_data = arg;
2081 struct lwp *l = curlwp;
2082 struct proc *p = l->l_proc;
2083 int error, newfd;
2084 int ostat;
2085 size_t i;
2086 const struct posix_spawn_file_actions_entry *fae;
2087 pid_t ppid;
2088 register_t retval;
2089 bool have_reflock;
2090 bool parent_is_waiting = true;
2091
2092 /*
2093 * Check if we can release parent early.
2094 * We either need to have no sed_attrs, or sed_attrs does not
2095 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2096 * safe access to the parent proc (passed in sed_parent).
2097 * We then try to get the exec_lock, and only if that works, we can
2098 * release the parent here already.
2099 */
2100 ppid = spawn_data->sed_parent->p_pid;
2101 if ((!spawn_data->sed_attrs
2102 || (spawn_data->sed_attrs->sa_flags
2103 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2104 && rw_tryenter(&exec_lock, RW_READER)) {
2105 parent_is_waiting = false;
2106 mutex_enter(&spawn_data->sed_mtx_child);
2107 cv_signal(&spawn_data->sed_cv_child_ready);
2108 mutex_exit(&spawn_data->sed_mtx_child);
2109 }
2110
2111 /* don't allow debugger access yet */
2112 rw_enter(&p->p_reflock, RW_WRITER);
2113 have_reflock = true;
2114
2115 error = 0;
2116 /* handle posix_spawn_file_actions */
2117 if (spawn_data->sed_actions != NULL) {
2118 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2119 fae = &spawn_data->sed_actions->fae[i];
2120 switch (fae->fae_action) {
2121 case FAE_OPEN:
2122 if (fd_getfile(fae->fae_fildes) != NULL) {
2123 error = fd_close(fae->fae_fildes);
2124 if (error)
2125 break;
2126 }
2127 error = fd_open(fae->fae_path, fae->fae_oflag,
2128 fae->fae_mode, &newfd);
2129 if (error)
2130 break;
2131 if (newfd != fae->fae_fildes) {
2132 error = dodup(l, newfd,
2133 fae->fae_fildes, 0, &retval);
2134 if (fd_getfile(newfd) != NULL)
2135 fd_close(newfd);
2136 }
2137 break;
2138 case FAE_DUP2:
2139 error = dodup(l, fae->fae_fildes,
2140 fae->fae_newfildes, 0, &retval);
2141 break;
2142 case FAE_CLOSE:
2143 if (fd_getfile(fae->fae_fildes) == NULL) {
2144 error = EBADF;
2145 break;
2146 }
2147 error = fd_close(fae->fae_fildes);
2148 break;
2149 }
2150 if (error)
2151 goto report_error;
2152 }
2153 }
2154
2155 /* handle posix_spawnattr */
2156 if (spawn_data->sed_attrs != NULL) {
2157 struct sigaction sigact;
2158 memset(&sigact, 0, sizeof(sigact));
2159 sigact._sa_u._sa_handler = SIG_DFL;
2160 sigact.sa_flags = 0;
2161
2162 /*
2163 * set state to SSTOP so that this proc can be found by pid.
2164 * see proc_enterprp, do_sched_setparam below
2165 */
2166 mutex_enter(proc_lock);
2167 /*
2168 * p_stat should be SACTIVE, so we need to adjust the
2169 * parent's p_nstopchild here. For safety, just make
2170 * we're on the good side of SDEAD before we adjust.
2171 */
2172 ostat = p->p_stat;
2173 KASSERT(ostat < SSTOP);
2174 p->p_stat = SSTOP;
2175 p->p_waited = 0;
2176 p->p_pptr->p_nstopchild++;
2177 mutex_exit(proc_lock);
2178
2179 /* Set process group */
2180 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2181 pid_t mypid = p->p_pid,
2182 pgrp = spawn_data->sed_attrs->sa_pgroup;
2183
2184 if (pgrp == 0)
2185 pgrp = mypid;
2186
2187 error = proc_enterpgrp(spawn_data->sed_parent,
2188 mypid, pgrp, false);
2189 if (error)
2190 goto report_error_stopped;
2191 }
2192
2193 /* Set scheduler policy */
2194 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2195 error = do_sched_setparam(p->p_pid, 0,
2196 spawn_data->sed_attrs->sa_schedpolicy,
2197 &spawn_data->sed_attrs->sa_schedparam);
2198 else if (spawn_data->sed_attrs->sa_flags
2199 & POSIX_SPAWN_SETSCHEDPARAM) {
2200 error = do_sched_setparam(ppid, 0,
2201 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2202 }
2203 if (error)
2204 goto report_error_stopped;
2205
2206 /* Reset user ID's */
2207 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2208 error = do_setresuid(l, -1,
2209 kauth_cred_getgid(l->l_cred), -1,
2210 ID_E_EQ_R | ID_E_EQ_S);
2211 if (error)
2212 goto report_error_stopped;
2213 error = do_setresuid(l, -1,
2214 kauth_cred_getuid(l->l_cred), -1,
2215 ID_E_EQ_R | ID_E_EQ_S);
2216 if (error)
2217 goto report_error_stopped;
2218 }
2219
2220 /* Set signal masks/defaults */
2221 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2222 mutex_enter(p->p_lock);
2223 error = sigprocmask1(l, SIG_SETMASK,
2224 &spawn_data->sed_attrs->sa_sigmask, NULL);
2225 mutex_exit(p->p_lock);
2226 if (error)
2227 goto report_error_stopped;
2228 }
2229
2230 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2231 /*
2232 * The following sigaction call is using a sigaction
2233 * version 0 trampoline which is in the compatibility
2234 * code only. This is not a problem because for SIG_DFL
2235 * and SIG_IGN, the trampolines are now ignored. If they
2236 * were not, this would be a problem because we are
2237 * holding the exec_lock, and the compat code needs
2238 * to do the same in order to replace the trampoline
2239 * code of the process.
2240 */
2241 for (i = 1; i <= NSIG; i++) {
2242 if (sigismember(
2243 &spawn_data->sed_attrs->sa_sigdefault, i))
2244 sigaction1(l, i, &sigact, NULL, NULL,
2245 0);
2246 }
2247 }
2248 mutex_enter(proc_lock);
2249 p->p_stat = ostat;
2250 p->p_pptr->p_nstopchild--;
2251 mutex_exit(proc_lock);
2252 }
2253
2254 /* now do the real exec */
2255 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2256 true);
2257 have_reflock = false;
2258 if (error == EJUSTRETURN)
2259 error = 0;
2260 else if (error)
2261 goto report_error;
2262
2263 if (parent_is_waiting) {
2264 mutex_enter(&spawn_data->sed_mtx_child);
2265 cv_signal(&spawn_data->sed_cv_child_ready);
2266 mutex_exit(&spawn_data->sed_mtx_child);
2267 }
2268
2269 /* release our refcount on the data */
2270 spawn_exec_data_release(spawn_data);
2271
2272 if (p->p_slflag & PSL_TRACED) {
2273 /* Paranoid check */
2274 mutex_enter(proc_lock);
2275 if (!(p->p_slflag & PSL_TRACED)) {
2276 mutex_exit(proc_lock);
2277 goto cpu_return;
2278 }
2279
2280 mutex_enter(p->p_lock);
2281 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, p->p_opptr->p_pid);
2282 }
2283
2284 cpu_return:
2285 /* and finally: leave to userland for the first time */
2286 cpu_spawn_return(l);
2287
2288 /* NOTREACHED */
2289 return;
2290
2291 report_error_stopped:
2292 mutex_enter(proc_lock);
2293 p->p_stat = ostat;
2294 p->p_pptr->p_nstopchild--;
2295 mutex_exit(proc_lock);
2296 report_error:
2297 if (have_reflock) {
2298 /*
2299 * We have not passed through execve_runproc(),
2300 * which would have released the p_reflock and also
2301 * taken ownership of the sed_exec part of spawn_data,
2302 * so release/free both here.
2303 */
2304 rw_exit(&p->p_reflock);
2305 execve_free_data(&spawn_data->sed_exec);
2306 }
2307
2308 if (parent_is_waiting) {
2309 /* pass error to parent */
2310 mutex_enter(&spawn_data->sed_mtx_child);
2311 spawn_data->sed_error = error;
2312 cv_signal(&spawn_data->sed_cv_child_ready);
2313 mutex_exit(&spawn_data->sed_mtx_child);
2314 } else {
2315 rw_exit(&exec_lock);
2316 }
2317
2318 /* release our refcount on the data */
2319 spawn_exec_data_release(spawn_data);
2320
2321 /* done, exit */
2322 mutex_enter(p->p_lock);
2323 /*
2324 * Posix explicitly asks for an exit code of 127 if we report
2325 * errors from the child process - so, unfortunately, there
2326 * is no way to report a more exact error code.
2327 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2328 * flag bit in the attrp argument to posix_spawn(2), see above.
2329 */
2330 exit1(l, 127, 0);
2331 }
2332
2333 void
2334 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2335 {
2336
2337 for (size_t i = 0; i < len; i++) {
2338 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2339 if (fae->fae_action != FAE_OPEN)
2340 continue;
2341 kmem_strfree(fae->fae_path);
2342 }
2343 if (fa->len > 0)
2344 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2345 kmem_free(fa, sizeof(*fa));
2346 }
2347
2348 static int
2349 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2350 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2351 {
2352 struct posix_spawn_file_actions *fa;
2353 struct posix_spawn_file_actions_entry *fae;
2354 char *pbuf = NULL;
2355 int error;
2356 size_t i = 0;
2357
2358 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2359 error = copyin(ufa, fa, sizeof(*fa));
2360 if (error || fa->len == 0) {
2361 kmem_free(fa, sizeof(*fa));
2362 return error; /* 0 if not an error, and len == 0 */
2363 }
2364
2365 if (fa->len > lim) {
2366 kmem_free(fa, sizeof(*fa));
2367 return EINVAL;
2368 }
2369
2370 fa->size = fa->len;
2371 size_t fal = fa->len * sizeof(*fae);
2372 fae = fa->fae;
2373 fa->fae = kmem_alloc(fal, KM_SLEEP);
2374 error = copyin(fae, fa->fae, fal);
2375 if (error)
2376 goto out;
2377
2378 pbuf = PNBUF_GET();
2379 for (; i < fa->len; i++) {
2380 fae = &fa->fae[i];
2381 if (fae->fae_action != FAE_OPEN)
2382 continue;
2383 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2384 if (error)
2385 goto out;
2386 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2387 memcpy(fae->fae_path, pbuf, fal);
2388 }
2389 PNBUF_PUT(pbuf);
2390
2391 *fap = fa;
2392 return 0;
2393 out:
2394 if (pbuf)
2395 PNBUF_PUT(pbuf);
2396 posix_spawn_fa_free(fa, i);
2397 return error;
2398 }
2399
2400 int
2401 check_posix_spawn(struct lwp *l1)
2402 {
2403 int error, tnprocs, count;
2404 uid_t uid;
2405 struct proc *p1;
2406
2407 p1 = l1->l_proc;
2408 uid = kauth_cred_getuid(l1->l_cred);
2409 tnprocs = atomic_inc_uint_nv(&nprocs);
2410
2411 /*
2412 * Although process entries are dynamically created, we still keep
2413 * a global limit on the maximum number we will create.
2414 */
2415 if (__predict_false(tnprocs >= maxproc))
2416 error = -1;
2417 else
2418 error = kauth_authorize_process(l1->l_cred,
2419 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2420
2421 if (error) {
2422 atomic_dec_uint(&nprocs);
2423 return EAGAIN;
2424 }
2425
2426 /*
2427 * Enforce limits.
2428 */
2429 count = chgproccnt(uid, 1);
2430 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2431 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2432 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2433 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2434 (void)chgproccnt(uid, -1);
2435 atomic_dec_uint(&nprocs);
2436 return EAGAIN;
2437 }
2438
2439 return 0;
2440 }
2441
2442 int
2443 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2444 struct posix_spawn_file_actions *fa,
2445 struct posix_spawnattr *sa,
2446 char *const *argv, char *const *envp,
2447 execve_fetch_element_t fetch)
2448 {
2449
2450 struct proc *p1, *p2;
2451 struct lwp *l2;
2452 int error;
2453 struct spawn_exec_data *spawn_data;
2454 vaddr_t uaddr;
2455 pid_t pid;
2456 bool have_exec_lock = false;
2457
2458 p1 = l1->l_proc;
2459
2460 /* Allocate and init spawn_data */
2461 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2462 spawn_data->sed_refcnt = 1; /* only parent so far */
2463 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2464 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2465 mutex_enter(&spawn_data->sed_mtx_child);
2466
2467 /*
2468 * Do the first part of the exec now, collect state
2469 * in spawn_data.
2470 */
2471 error = execve_loadvm(l1, true, path, -1, argv,
2472 envp, fetch, &spawn_data->sed_exec);
2473 if (error == EJUSTRETURN)
2474 error = 0;
2475 else if (error)
2476 goto error_exit;
2477
2478 have_exec_lock = true;
2479
2480 /*
2481 * Allocate virtual address space for the U-area now, while it
2482 * is still easy to abort the fork operation if we're out of
2483 * kernel virtual address space.
2484 */
2485 uaddr = uvm_uarea_alloc();
2486 if (__predict_false(uaddr == 0)) {
2487 error = ENOMEM;
2488 goto error_exit;
2489 }
2490
2491 /*
2492 * Allocate new proc. Borrow proc0 vmspace for it, we will
2493 * replace it with its own before returning to userland
2494 * in the child.
2495 * This is a point of no return, we will have to go through
2496 * the child proc to properly clean it up past this point.
2497 */
2498 p2 = proc_alloc();
2499 pid = p2->p_pid;
2500
2501 /*
2502 * Make a proc table entry for the new process.
2503 * Start by zeroing the section of proc that is zero-initialized,
2504 * then copy the section that is copied directly from the parent.
2505 */
2506 memset(&p2->p_startzero, 0,
2507 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2508 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2509 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2510 p2->p_vmspace = proc0.p_vmspace;
2511
2512 TAILQ_INIT(&p2->p_sigpend.sp_info);
2513
2514 LIST_INIT(&p2->p_lwps);
2515 LIST_INIT(&p2->p_sigwaiters);
2516
2517 /*
2518 * Duplicate sub-structures as needed.
2519 * Increase reference counts on shared objects.
2520 * Inherit flags we want to keep. The flags related to SIGCHLD
2521 * handling are important in order to keep a consistent behaviour
2522 * for the child after the fork. If we are a 32-bit process, the
2523 * child will be too.
2524 */
2525 p2->p_flag =
2526 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2527 p2->p_emul = p1->p_emul;
2528 p2->p_execsw = p1->p_execsw;
2529
2530 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2531 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2532 rw_init(&p2->p_reflock);
2533 rw_init(&p2->p_treelock);
2534 cv_init(&p2->p_waitcv, "wait");
2535 cv_init(&p2->p_lwpcv, "lwpwait");
2536
2537 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2538
2539 kauth_proc_fork(p1, p2);
2540
2541 p2->p_raslist = NULL;
2542 p2->p_fd = fd_copy();
2543
2544 /* XXX racy */
2545 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2546
2547 p2->p_cwdi = cwdinit();
2548
2549 /*
2550 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2551 * we just need increase pl_refcnt.
2552 */
2553 if (!p1->p_limit->pl_writeable) {
2554 lim_addref(p1->p_limit);
2555 p2->p_limit = p1->p_limit;
2556 } else {
2557 p2->p_limit = lim_copy(p1->p_limit);
2558 }
2559
2560 p2->p_lflag = 0;
2561 l1->l_vforkwaiting = false;
2562 p2->p_sflag = 0;
2563 p2->p_slflag = 0;
2564 p2->p_pptr = p1;
2565 p2->p_ppid = p1->p_pid;
2566 LIST_INIT(&p2->p_children);
2567
2568 p2->p_aio = NULL;
2569
2570 #ifdef KTRACE
2571 /*
2572 * Copy traceflag and tracefile if enabled.
2573 * If not inherited, these were zeroed above.
2574 */
2575 if (p1->p_traceflag & KTRFAC_INHERIT) {
2576 mutex_enter(&ktrace_lock);
2577 p2->p_traceflag = p1->p_traceflag;
2578 if ((p2->p_tracep = p1->p_tracep) != NULL)
2579 ktradref(p2);
2580 mutex_exit(&ktrace_lock);
2581 }
2582 #endif
2583
2584 /*
2585 * Create signal actions for the child process.
2586 */
2587 p2->p_sigacts = sigactsinit(p1, 0);
2588 mutex_enter(p1->p_lock);
2589 p2->p_sflag |=
2590 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2591 sched_proc_fork(p1, p2);
2592 mutex_exit(p1->p_lock);
2593
2594 p2->p_stflag = p1->p_stflag;
2595
2596 /*
2597 * p_stats.
2598 * Copy parts of p_stats, and zero out the rest.
2599 */
2600 p2->p_stats = pstatscopy(p1->p_stats);
2601
2602 /* copy over machdep flags to the new proc */
2603 cpu_proc_fork(p1, p2);
2604
2605 /*
2606 * Prepare remaining parts of spawn data
2607 */
2608 spawn_data->sed_actions = fa;
2609 spawn_data->sed_attrs = sa;
2610
2611 spawn_data->sed_parent = p1;
2612
2613 /* create LWP */
2614 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2615 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2616 l2->l_ctxlink = NULL; /* reset ucontext link */
2617
2618 /*
2619 * Copy the credential so other references don't see our changes.
2620 * Test to see if this is necessary first, since in the common case
2621 * we won't need a private reference.
2622 */
2623 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2624 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2625 l2->l_cred = kauth_cred_copy(l2->l_cred);
2626 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2627 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2628 }
2629
2630 /* Update the master credentials. */
2631 if (l2->l_cred != p2->p_cred) {
2632 kauth_cred_t ocred;
2633
2634 kauth_cred_hold(l2->l_cred);
2635 mutex_enter(p2->p_lock);
2636 ocred = p2->p_cred;
2637 p2->p_cred = l2->l_cred;
2638 mutex_exit(p2->p_lock);
2639 kauth_cred_free(ocred);
2640 }
2641
2642 *child_ok = true;
2643 spawn_data->sed_refcnt = 2; /* child gets it as well */
2644 #if 0
2645 l2->l_nopreempt = 1; /* start it non-preemptable */
2646 #endif
2647
2648 /*
2649 * It's now safe for the scheduler and other processes to see the
2650 * child process.
2651 */
2652 mutex_enter(proc_lock);
2653
2654 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2655 p2->p_lflag |= PL_CONTROLT;
2656
2657 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2658 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2659
2660 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2661 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2662 proc_changeparent(p2, p1->p_pptr);
2663 }
2664
2665 LIST_INSERT_AFTER(p1, p2, p_pglist);
2666 LIST_INSERT_HEAD(&allproc, p2, p_list);
2667
2668 p2->p_trace_enabled = trace_is_enabled(p2);
2669 #ifdef __HAVE_SYSCALL_INTERN
2670 (*p2->p_emul->e_syscall_intern)(p2);
2671 #endif
2672
2673 /*
2674 * Make child runnable, set start time, and add to run queue except
2675 * if the parent requested the child to start in SSTOP state.
2676 */
2677 mutex_enter(p2->p_lock);
2678
2679 getmicrotime(&p2->p_stats->p_start);
2680
2681 lwp_lock(l2);
2682 KASSERT(p2->p_nrlwps == 1);
2683 KASSERT(l2->l_stat == LSIDL);
2684 p2->p_nrlwps = 1;
2685 p2->p_stat = SACTIVE;
2686 setrunnable(l2);
2687 /* LWP now unlocked */
2688
2689 mutex_exit(p2->p_lock);
2690 mutex_exit(proc_lock);
2691
2692 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2693 error = spawn_data->sed_error;
2694 mutex_exit(&spawn_data->sed_mtx_child);
2695 spawn_exec_data_release(spawn_data);
2696
2697 rw_exit(&p1->p_reflock);
2698 rw_exit(&exec_lock);
2699 have_exec_lock = false;
2700
2701 *pid_res = pid;
2702
2703 if (error)
2704 return error;
2705
2706 if (p1->p_slflag & PSL_TRACED) {
2707 /* Paranoid check */
2708 mutex_enter(proc_lock);
2709 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2710 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2711 mutex_exit(proc_lock);
2712 return 0;
2713 }
2714
2715 mutex_enter(p1->p_lock);
2716 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2717 }
2718 return 0;
2719
2720 error_exit:
2721 if (have_exec_lock) {
2722 execve_free_data(&spawn_data->sed_exec);
2723 rw_exit(&p1->p_reflock);
2724 rw_exit(&exec_lock);
2725 }
2726 mutex_exit(&spawn_data->sed_mtx_child);
2727 spawn_exec_data_release(spawn_data);
2728
2729 return error;
2730 }
2731
2732 int
2733 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2734 register_t *retval)
2735 {
2736 /* {
2737 syscallarg(pid_t *) pid;
2738 syscallarg(const char *) path;
2739 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2740 syscallarg(const struct posix_spawnattr *) attrp;
2741 syscallarg(char *const *) argv;
2742 syscallarg(char *const *) envp;
2743 } */
2744
2745 int error;
2746 struct posix_spawn_file_actions *fa = NULL;
2747 struct posix_spawnattr *sa = NULL;
2748 pid_t pid;
2749 bool child_ok = false;
2750 rlim_t max_fileactions;
2751 proc_t *p = l1->l_proc;
2752
2753 error = check_posix_spawn(l1);
2754 if (error) {
2755 *retval = error;
2756 return 0;
2757 }
2758
2759 /* copy in file_actions struct */
2760 if (SCARG(uap, file_actions) != NULL) {
2761 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2762 maxfiles);
2763 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2764 max_fileactions);
2765 if (error)
2766 goto error_exit;
2767 }
2768
2769 /* copyin posix_spawnattr struct */
2770 if (SCARG(uap, attrp) != NULL) {
2771 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2772 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2773 if (error)
2774 goto error_exit;
2775 }
2776
2777 /*
2778 * Do the spawn
2779 */
2780 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2781 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2782 if (error)
2783 goto error_exit;
2784
2785 if (error == 0 && SCARG(uap, pid) != NULL)
2786 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2787
2788 *retval = error;
2789 return 0;
2790
2791 error_exit:
2792 if (!child_ok) {
2793 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2794 atomic_dec_uint(&nprocs);
2795
2796 if (sa)
2797 kmem_free(sa, sizeof(*sa));
2798 if (fa)
2799 posix_spawn_fa_free(fa, fa->len);
2800 }
2801
2802 *retval = error;
2803 return 0;
2804 }
2805
2806 void
2807 exec_free_emul_arg(struct exec_package *epp)
2808 {
2809 if (epp->ep_emul_arg_free != NULL) {
2810 KASSERT(epp->ep_emul_arg != NULL);
2811 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2812 epp->ep_emul_arg_free = NULL;
2813 epp->ep_emul_arg = NULL;
2814 } else {
2815 KASSERT(epp->ep_emul_arg == NULL);
2816 }
2817 }
2818
2819 #ifdef DEBUG_EXEC
2820 static void
2821 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2822 {
2823 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2824 size_t j;
2825
2826 if (error == 0)
2827 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2828 else
2829 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2830 epp->ep_vmcmds.evs_used, error));
2831
2832 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2833 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2834 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2835 PRIxVSIZE" prot=0%o flags=%d\n", j,
2836 vp[j].ev_proc == vmcmd_map_pagedvn ?
2837 "pagedvn" :
2838 vp[j].ev_proc == vmcmd_map_readvn ?
2839 "readvn" :
2840 vp[j].ev_proc == vmcmd_map_zero ?
2841 "zero" : "*unknown*",
2842 vp[j].ev_addr, vp[j].ev_len,
2843 vp[j].ev_offset, vp[j].ev_prot,
2844 vp[j].ev_flags));
2845 if (error != 0 && j == x)
2846 DPRINTF((" ^--- failed\n"));
2847 }
2848 }
2849 #endif
2850