Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.493
      1 /*	$NetBSD: kern_exec.c,v 1.493 2020/02/23 22:14:03 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     34  * Copyright (C) 1992 Wolfgang Solfrank.
     35  * Copyright (C) 1992 TooLs GmbH.
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *	This product includes software developed by TooLs GmbH.
     49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.493 2020/02/23 22:14:03 ad Exp $");
     66 
     67 #include "opt_exec.h"
     68 #include "opt_execfmt.h"
     69 #include "opt_ktrace.h"
     70 #include "opt_modular.h"
     71 #include "opt_syscall_debug.h"
     72 #include "veriexec.h"
     73 #include "opt_pax.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/ptrace.h>
     81 #include <sys/mount.h>
     82 #include <sys/kmem.h>
     83 #include <sys/namei.h>
     84 #include <sys/vnode.h>
     85 #include <sys/file.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/acct.h>
     88 #include <sys/atomic.h>
     89 #include <sys/exec.h>
     90 #include <sys/ktrace.h>
     91 #include <sys/uidinfo.h>
     92 #include <sys/wait.h>
     93 #include <sys/mman.h>
     94 #include <sys/ras.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/stat.h>
     97 #include <sys/syscall.h>
     98 #include <sys/kauth.h>
     99 #include <sys/lwpctl.h>
    100 #include <sys/pax.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/syscallvar.h>
    104 #include <sys/syscallargs.h>
    105 #if NVERIEXEC > 0
    106 #include <sys/verified_exec.h>
    107 #endif /* NVERIEXEC > 0 */
    108 #include <sys/sdt.h>
    109 #include <sys/spawn.h>
    110 #include <sys/prot.h>
    111 #include <sys/cprng.h>
    112 
    113 #include <uvm/uvm_extern.h>
    114 
    115 #include <machine/reg.h>
    116 
    117 #include <compat/common/compat_util.h>
    118 
    119 #ifndef MD_TOPDOWN_INIT
    120 #ifdef __USE_TOPDOWN_VM
    121 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    122 #else
    123 #define	MD_TOPDOWN_INIT(epp)
    124 #endif
    125 #endif
    126 
    127 struct execve_data;
    128 
    129 extern int user_va0_disable;
    130 
    131 static size_t calcargs(struct execve_data * restrict, const size_t);
    132 static size_t calcstack(struct execve_data * restrict, const size_t);
    133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    134     char * const);
    135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    136 static int copyinargs(struct execve_data * restrict, char * const *,
    137     char * const *, execve_fetch_element_t, char **);
    138 static int copyinargstrs(struct execve_data * restrict, char * const *,
    139     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    140 static int exec_sigcode_map(struct proc *, const struct emul *);
    141 
    142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    143 #define DEBUG_EXEC
    144 #endif
    145 #ifdef DEBUG_EXEC
    146 #define DPRINTF(a) printf a
    147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    148     __LINE__, (s), (a), (b))
    149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    151 #else
    152 #define DPRINTF(a)
    153 #define COPYPRINTF(s, a, b)
    154 #define DUMPVMCMDS(p, x, e) do {} while (0)
    155 #endif /* DEBUG_EXEC */
    156 
    157 /*
    158  * DTrace SDT provider definitions
    159  */
    160 SDT_PROVIDER_DECLARE(proc);
    161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    164 
    165 /*
    166  * Exec function switch:
    167  *
    168  * Note that each makecmds function is responsible for loading the
    169  * exec package with the necessary functions for any exec-type-specific
    170  * handling.
    171  *
    172  * Functions for specific exec types should be defined in their own
    173  * header file.
    174  */
    175 static const struct execsw	**execsw = NULL;
    176 static int			nexecs;
    177 
    178 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    179 
    180 /* list of dynamically loaded execsw entries */
    181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    182     LIST_HEAD_INITIALIZER(ex_head);
    183 struct exec_entry {
    184 	LIST_ENTRY(exec_entry)	ex_list;
    185 	SLIST_ENTRY(exec_entry)	ex_slist;
    186 	const struct execsw	*ex_sw;
    187 };
    188 
    189 #ifndef __HAVE_SYSCALL_INTERN
    190 void	syscall(void);
    191 #endif
    192 
    193 /* NetBSD autoloadable syscalls */
    194 #ifdef MODULAR
    195 #include <kern/syscalls_autoload.c>
    196 #endif
    197 
    198 /* NetBSD emul struct */
    199 struct emul emul_netbsd = {
    200 	.e_name =		"netbsd",
    201 #ifdef EMUL_NATIVEROOT
    202 	.e_path =		EMUL_NATIVEROOT,
    203 #else
    204 	.e_path =		NULL,
    205 #endif
    206 #ifndef __HAVE_MINIMAL_EMUL
    207 	.e_flags =		EMUL_HAS_SYS___syscall,
    208 	.e_errno =		NULL,
    209 	.e_nosys =		SYS_syscall,
    210 	.e_nsysent =		SYS_NSYSENT,
    211 #endif
    212 #ifdef MODULAR
    213 	.e_sc_autoload =	netbsd_syscalls_autoload,
    214 #endif
    215 	.e_sysent =		sysent,
    216 	.e_nomodbits =		sysent_nomodbits,
    217 #ifdef SYSCALL_DEBUG
    218 	.e_syscallnames =	syscallnames,
    219 #else
    220 	.e_syscallnames =	NULL,
    221 #endif
    222 	.e_sendsig =		sendsig,
    223 	.e_trapsignal =		trapsignal,
    224 	.e_sigcode =		NULL,
    225 	.e_esigcode =		NULL,
    226 	.e_sigobject =		NULL,
    227 	.e_setregs =		setregs,
    228 	.e_proc_exec =		NULL,
    229 	.e_proc_fork =		NULL,
    230 	.e_proc_exit =		NULL,
    231 	.e_lwp_fork =		NULL,
    232 	.e_lwp_exit =		NULL,
    233 #ifdef __HAVE_SYSCALL_INTERN
    234 	.e_syscall_intern =	syscall_intern,
    235 #else
    236 	.e_syscall =		syscall,
    237 #endif
    238 	.e_sysctlovly =		NULL,
    239 	.e_vm_default_addr =	uvm_default_mapaddr,
    240 	.e_usertrap =		NULL,
    241 	.e_ucsize =		sizeof(ucontext_t),
    242 	.e_startlwp =		startlwp
    243 };
    244 
    245 /*
    246  * Exec lock. Used to control access to execsw[] structures.
    247  * This must not be static so that netbsd32 can access it, too.
    248  */
    249 krwlock_t exec_lock __cacheline_aligned;
    250 
    251 static kmutex_t sigobject_lock __cacheline_aligned;
    252 
    253 /*
    254  * Data used between a loadvm and execve part of an "exec" operation
    255  */
    256 struct execve_data {
    257 	struct exec_package	ed_pack;
    258 	struct pathbuf		*ed_pathbuf;
    259 	struct vattr		ed_attr;
    260 	struct ps_strings	ed_arginfo;
    261 	char			*ed_argp;
    262 	const char		*ed_pathstring;
    263 	char			*ed_resolvedname;
    264 	size_t			ed_ps_strings_sz;
    265 	int			ed_szsigcode;
    266 	size_t			ed_argslen;
    267 	long			ed_argc;
    268 	long			ed_envc;
    269 };
    270 
    271 /*
    272  * data passed from parent lwp to child during a posix_spawn()
    273  */
    274 struct spawn_exec_data {
    275 	struct execve_data	sed_exec;
    276 	struct posix_spawn_file_actions
    277 				*sed_actions;
    278 	struct posix_spawnattr	*sed_attrs;
    279 	struct proc		*sed_parent;
    280 	kcondvar_t		sed_cv_child_ready;
    281 	kmutex_t		sed_mtx_child;
    282 	int			sed_error;
    283 	volatile uint32_t	sed_refcnt;
    284 };
    285 
    286 static struct vm_map *exec_map;
    287 static struct pool exec_pool;
    288 
    289 static void *
    290 exec_pool_alloc(struct pool *pp, int flags)
    291 {
    292 
    293 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    294 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    295 }
    296 
    297 static void
    298 exec_pool_free(struct pool *pp, void *addr)
    299 {
    300 
    301 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    302 }
    303 
    304 static struct pool_allocator exec_palloc = {
    305 	.pa_alloc = exec_pool_alloc,
    306 	.pa_free = exec_pool_free,
    307 	.pa_pagesz = NCARGS
    308 };
    309 
    310 static void
    311 exec_path_free(struct execve_data *data)
    312 {
    313 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    314 	pathbuf_destroy(data->ed_pathbuf);
    315 	if (data->ed_resolvedname)
    316 		PNBUF_PUT(data->ed_resolvedname);
    317 }
    318 
    319 static int
    320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
    321     char **rpath)
    322 {
    323 	int error;
    324 	char *p;
    325 
    326 	KASSERT(rpath != NULL);
    327 
    328 	*rpath = PNBUF_GET();
    329 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
    330 	if (error) {
    331 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
    332 		    __func__, epp->ep_kname, error));
    333 		PNBUF_PUT(*rpath);
    334 		*rpath = NULL;
    335 		return error;
    336 	}
    337 	epp->ep_resolvedname = *rpath;
    338 	if ((p = strrchr(*rpath, '/')) != NULL)
    339 		epp->ep_kname = p + 1;
    340 	return 0;
    341 }
    342 
    343 
    344 /*
    345  * check exec:
    346  * given an "executable" described in the exec package's namei info,
    347  * see what we can do with it.
    348  *
    349  * ON ENTRY:
    350  *	exec package with appropriate namei info
    351  *	lwp pointer of exec'ing lwp
    352  *	NO SELF-LOCKED VNODES
    353  *
    354  * ON EXIT:
    355  *	error:	nothing held, etc.  exec header still allocated.
    356  *	ok:	filled exec package, executable's vnode (unlocked).
    357  *
    358  * EXEC SWITCH ENTRY:
    359  * 	Locked vnode to check, exec package, proc.
    360  *
    361  * EXEC SWITCH EXIT:
    362  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    363  *	error:	destructive:
    364  *			everything deallocated execept exec header.
    365  *		non-destructive:
    366  *			error code, executable's vnode (unlocked),
    367  *			exec header unmodified.
    368  */
    369 int
    370 /*ARGSUSED*/
    371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
    372     char **rpath)
    373 {
    374 	int		error, i;
    375 	struct vnode	*vp;
    376 	size_t		resid;
    377 
    378 	if (epp->ep_resolvedname) {
    379 		struct nameidata nd;
    380 
    381 		// grab the absolute pathbuf here before namei() trashes it.
    382 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    383 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    384 
    385 		/* first get the vnode */
    386 		if ((error = namei(&nd)) != 0)
    387 			return error;
    388 
    389 		epp->ep_vp = vp = nd.ni_vp;
    390 #ifdef DIAGNOSTIC
    391 		/* paranoia (take this out once namei stuff stabilizes) */
    392 		memset(nd.ni_pnbuf, '~', PATH_MAX);
    393 #endif
    394 	} else {
    395 		struct file *fp;
    396 
    397 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
    398 			return error;
    399 		epp->ep_vp = vp = fp->f_vnode;
    400 		vref(vp);
    401 		fd_putfile(epp->ep_xfd);
    402 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
    403 			return error;
    404 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    405 	}
    406 
    407 	/* check access and type */
    408 	if (vp->v_type != VREG) {
    409 		error = EACCES;
    410 		goto bad1;
    411 	}
    412 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    413 		goto bad1;
    414 
    415 	/* get attributes */
    416 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
    417 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    418 		goto bad1;
    419 
    420 	/* Check mount point */
    421 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    422 		error = EACCES;
    423 		goto bad1;
    424 	}
    425 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    426 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    427 
    428 	/* try to open it */
    429 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    430 		goto bad1;
    431 
    432 	/* now we have the file, get the exec header */
    433 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    434 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
    435 	if (error)
    436 		goto bad1;
    437 
    438 	/* unlock vp, since we need it unlocked from here on out. */
    439 	VOP_UNLOCK(vp);
    440 
    441 #if NVERIEXEC > 0
    442 	error = veriexec_verify(l, vp,
    443 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
    444 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    445 	    NULL);
    446 	if (error)
    447 		goto bad2;
    448 #endif /* NVERIEXEC > 0 */
    449 
    450 #ifdef PAX_SEGVGUARD
    451 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    452 	if (error)
    453 		goto bad2;
    454 #endif /* PAX_SEGVGUARD */
    455 
    456 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    457 
    458 	/*
    459 	 * Set up default address space limits.  Can be overridden
    460 	 * by individual exec packages.
    461 	 */
    462 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    463 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    464 
    465 	/*
    466 	 * set up the vmcmds for creation of the process
    467 	 * address space
    468 	 */
    469 	error = ENOEXEC;
    470 	for (i = 0; i < nexecs; i++) {
    471 		int newerror;
    472 
    473 		epp->ep_esch = execsw[i];
    474 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    475 
    476 		if (!newerror) {
    477 			/* Seems ok: check that entry point is not too high */
    478 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    479 #ifdef DIAGNOSTIC
    480 				printf("%s: rejecting %p due to "
    481 				    "too high entry address (>= %p)\n",
    482 					 __func__, (void *)epp->ep_entry,
    483 					 (void *)epp->ep_vm_maxaddr);
    484 #endif
    485 				error = ENOEXEC;
    486 				break;
    487 			}
    488 			/* Seems ok: check that entry point is not too low */
    489 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    490 #ifdef DIAGNOSTIC
    491 				printf("%s: rejecting %p due to "
    492 				    "too low entry address (< %p)\n",
    493 				     __func__, (void *)epp->ep_entry,
    494 				     (void *)epp->ep_vm_minaddr);
    495 #endif
    496 				error = ENOEXEC;
    497 				break;
    498 			}
    499 
    500 			/* check limits */
    501 			if ((epp->ep_tsize > MAXTSIZ) ||
    502 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    503 						    [RLIMIT_DATA].rlim_cur)) {
    504 #ifdef DIAGNOSTIC
    505 				printf("%s: rejecting due to "
    506 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    507 				    __func__,
    508 				    (unsigned long long)epp->ep_tsize,
    509 				    (unsigned long long)MAXTSIZ,
    510 				    (unsigned long long)epp->ep_dsize,
    511 				    (unsigned long long)
    512 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    513 #endif
    514 				error = ENOMEM;
    515 				break;
    516 			}
    517 			return 0;
    518 		}
    519 
    520 		/*
    521 		 * Reset all the fields that may have been modified by the
    522 		 * loader.
    523 		 */
    524 		KASSERT(epp->ep_emul_arg == NULL);
    525 		if (epp->ep_emul_root != NULL) {
    526 			vrele(epp->ep_emul_root);
    527 			epp->ep_emul_root = NULL;
    528 		}
    529 		if (epp->ep_interp != NULL) {
    530 			vrele(epp->ep_interp);
    531 			epp->ep_interp = NULL;
    532 		}
    533 		epp->ep_pax_flags = 0;
    534 
    535 		/* make sure the first "interesting" error code is saved. */
    536 		if (error == ENOEXEC)
    537 			error = newerror;
    538 
    539 		if (epp->ep_flags & EXEC_DESTR)
    540 			/* Error from "#!" code, tidied up by recursive call */
    541 			return error;
    542 	}
    543 
    544 	/* not found, error */
    545 
    546 	/*
    547 	 * free any vmspace-creation commands,
    548 	 * and release their references
    549 	 */
    550 	kill_vmcmds(&epp->ep_vmcmds);
    551 
    552 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
    553 bad2:
    554 #endif
    555 	/*
    556 	 * close and release the vnode, restore the old one, free the
    557 	 * pathname buf, and punt.
    558 	 */
    559 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    560 	VOP_CLOSE(vp, FREAD, l->l_cred);
    561 	vput(vp);
    562 	return error;
    563 
    564 bad1:
    565 	/*
    566 	 * free the namei pathname buffer, and put the vnode
    567 	 * (which we don't yet have open).
    568 	 */
    569 	vput(vp);				/* was still locked */
    570 	return error;
    571 }
    572 
    573 #ifdef __MACHINE_STACK_GROWS_UP
    574 #define STACK_PTHREADSPACE NBPG
    575 #else
    576 #define STACK_PTHREADSPACE 0
    577 #endif
    578 
    579 static int
    580 execve_fetch_element(char * const *array, size_t index, char **value)
    581 {
    582 	return copyin(array + index, value, sizeof(*value));
    583 }
    584 
    585 /*
    586  * exec system call
    587  */
    588 int
    589 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    590 {
    591 	/* {
    592 		syscallarg(const char *)	path;
    593 		syscallarg(char * const *)	argp;
    594 		syscallarg(char * const *)	envp;
    595 	} */
    596 
    597 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
    598 	    SCARG(uap, envp), execve_fetch_element);
    599 }
    600 
    601 int
    602 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    603     register_t *retval)
    604 {
    605 	/* {
    606 		syscallarg(int)			fd;
    607 		syscallarg(char * const *)	argp;
    608 		syscallarg(char * const *)	envp;
    609 	} */
    610 
    611 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
    612 	    SCARG(uap, envp), execve_fetch_element);
    613 }
    614 
    615 /*
    616  * Load modules to try and execute an image that we do not understand.
    617  * If no execsw entries are present, we load those likely to be needed
    618  * in order to run native images only.  Otherwise, we autoload all
    619  * possible modules that could let us run the binary.  XXX lame
    620  */
    621 static void
    622 exec_autoload(void)
    623 {
    624 #ifdef MODULAR
    625 	static const char * const native[] = {
    626 		"exec_elf32",
    627 		"exec_elf64",
    628 		"exec_script",
    629 		NULL
    630 	};
    631 	static const char * const compat[] = {
    632 		"exec_elf32",
    633 		"exec_elf64",
    634 		"exec_script",
    635 		"exec_aout",
    636 		"exec_coff",
    637 		"exec_ecoff",
    638 		"compat_aoutm68k",
    639 		"compat_netbsd32",
    640 #if 0
    641 		"compat_linux",
    642 		"compat_linux32",
    643 #endif
    644 		"compat_sunos",
    645 		"compat_sunos32",
    646 		"compat_ultrix",
    647 		NULL
    648 	};
    649 	char const * const *list;
    650 	int i;
    651 
    652 	list = nexecs == 0 ? native : compat;
    653 	for (i = 0; list[i] != NULL; i++) {
    654 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    655 			continue;
    656 		}
    657 		yield();
    658 	}
    659 #endif
    660 }
    661 
    662 /*
    663  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
    664  * making it absolute in the process, by prepending the current working
    665  * directory if it is not. If offs is supplied it will contain the offset
    666  * where the original supplied copy of upath starts.
    667  */
    668 int
    669 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    670     struct pathbuf **pbp, size_t *offs)
    671 {
    672 	char *path, *bp;
    673 	size_t len, tlen;
    674 	int error;
    675 	struct vnode *dvp;
    676 
    677 	path = PNBUF_GET();
    678 	if (seg == UIO_SYSSPACE) {
    679 		error = copystr(upath, path, MAXPATHLEN, &len);
    680 	} else {
    681 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    682 	}
    683 	if (error)
    684 		goto err;
    685 
    686 	if (path[0] == '/') {
    687 		if (offs)
    688 			*offs = 0;
    689 		goto out;
    690 	}
    691 
    692 	len++;
    693 	if (len + 1 >= MAXPATHLEN) {
    694 		error = ENAMETOOLONG;
    695 		goto err;
    696 	}
    697 	bp = path + MAXPATHLEN - len;
    698 	memmove(bp, path, len);
    699 	*(--bp) = '/';
    700 
    701 	dvp = cwdcdir();
    702 	error = getcwd_common(dvp, NULL, &bp, path, MAXPATHLEN / 2,
    703 	    GETCWD_CHECK_ACCESS, l);
    704 	vrele(dvp);
    705 
    706 	if (error)
    707 		goto err;
    708 	tlen = path + MAXPATHLEN - bp;
    709 
    710 	memmove(path, bp, tlen);
    711 	path[tlen - 1] = '\0';
    712 	if (offs)
    713 		*offs = tlen - len;
    714 out:
    715 	*pbp = pathbuf_assimilate(path);
    716 	return 0;
    717 err:
    718 	PNBUF_PUT(path);
    719 	return error;
    720 }
    721 
    722 vaddr_t
    723 exec_vm_minaddr(vaddr_t va_min)
    724 {
    725 	/*
    726 	 * Increase va_min if we don't want NULL to be mappable by the
    727 	 * process.
    728 	 */
    729 #define VM_MIN_GUARD	PAGE_SIZE
    730 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    731 		return VM_MIN_GUARD;
    732 	return va_min;
    733 }
    734 
    735 static int
    736 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
    737 	char * const *args, char * const *envs,
    738 	execve_fetch_element_t fetch_element,
    739 	struct execve_data * restrict data)
    740 {
    741 	struct exec_package	* const epp = &data->ed_pack;
    742 	int			error;
    743 	struct proc		*p;
    744 	char			*dp;
    745 	u_int			modgen;
    746 
    747 	KASSERT(data != NULL);
    748 
    749 	p = l->l_proc;
    750 	modgen = 0;
    751 
    752 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    753 
    754 	/*
    755 	 * Check if we have exceeded our number of processes limit.
    756 	 * This is so that we handle the case where a root daemon
    757 	 * forked, ran setuid to become the desired user and is trying
    758 	 * to exec. The obvious place to do the reference counting check
    759 	 * is setuid(), but we don't do the reference counting check there
    760 	 * like other OS's do because then all the programs that use setuid()
    761 	 * must be modified to check the return code of setuid() and exit().
    762 	 * It is dangerous to make setuid() fail, because it fails open and
    763 	 * the program will continue to run as root. If we make it succeed
    764 	 * and return an error code, again we are not enforcing the limit.
    765 	 * The best place to enforce the limit is here, when the process tries
    766 	 * to execute a new image, because eventually the process will need
    767 	 * to call exec in order to do something useful.
    768 	 */
    769  retry:
    770 	if (p->p_flag & PK_SUGID) {
    771 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    772 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    773 		     &p->p_rlimit[RLIMIT_NPROC],
    774 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    775 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    776 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    777 		return EAGAIN;
    778 	}
    779 
    780 	/*
    781 	 * Drain existing references and forbid new ones.  The process
    782 	 * should be left alone until we're done here.  This is necessary
    783 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    784 	 * a local user to illicitly obtain elevated privileges.
    785 	 */
    786 	rw_enter(&p->p_reflock, RW_WRITER);
    787 
    788 	if (has_path) {
    789 		size_t	offs;
    790 		/*
    791 		 * Init the namei data to point the file user's program name.
    792 		 * This is done here rather than in check_exec(), so that it's
    793 		 * possible to override this settings if any of makecmd/probe
    794 		 * functions call check_exec() recursively - for example,
    795 		 * see exec_script_makecmds().
    796 		 */
    797 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    798 		    &data->ed_pathbuf, &offs)) != 0)
    799 			goto clrflg;
    800 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    801 		epp->ep_kname = data->ed_pathstring + offs;
    802 		data->ed_resolvedname = PNBUF_GET();
    803 		epp->ep_resolvedname = data->ed_resolvedname;
    804 		epp->ep_xfd = -1;
    805 	} else {
    806 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
    807 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    808 		epp->ep_kname = "*fexecve*";
    809 		data->ed_resolvedname = NULL;
    810 		epp->ep_resolvedname = NULL;
    811 		epp->ep_xfd = fd;
    812 	}
    813 
    814 
    815 	/*
    816 	 * initialize the fields of the exec package.
    817 	 */
    818 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    819 	epp->ep_hdrlen = exec_maxhdrsz;
    820 	epp->ep_hdrvalid = 0;
    821 	epp->ep_emul_arg = NULL;
    822 	epp->ep_emul_arg_free = NULL;
    823 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    824 	epp->ep_vap = &data->ed_attr;
    825 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    826 	MD_TOPDOWN_INIT(epp);
    827 	epp->ep_emul_root = NULL;
    828 	epp->ep_interp = NULL;
    829 	epp->ep_esch = NULL;
    830 	epp->ep_pax_flags = 0;
    831 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    832 
    833 	rw_enter(&exec_lock, RW_READER);
    834 
    835 	/* see if we can run it. */
    836 	if ((error = check_exec(l, epp, data->ed_pathbuf,
    837 	    &data->ed_resolvedname)) != 0) {
    838 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    839 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    840 			    __func__, epp->ep_kname, error));
    841 		}
    842 		goto freehdr;
    843 	}
    844 
    845 	/* allocate an argument buffer */
    846 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    847 	KASSERT(data->ed_argp != NULL);
    848 	dp = data->ed_argp;
    849 
    850 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    851 		goto bad;
    852 	}
    853 
    854 	/*
    855 	 * Calculate the new stack size.
    856 	 */
    857 
    858 #ifdef __MACHINE_STACK_GROWS_UP
    859 /*
    860  * copyargs() fills argc/argv/envp from the lower address even on
    861  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    862  * so that _rtld() use it.
    863  */
    864 #define	RTLD_GAP	32
    865 #else
    866 #define	RTLD_GAP	0
    867 #endif
    868 
    869 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    870 
    871 	data->ed_argslen = calcargs(data, argenvstrlen);
    872 
    873 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    874 
    875 	if (len > epp->ep_ssize) {
    876 		/* in effect, compare to initial limit */
    877 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    878 		error = ENOMEM;
    879 		goto bad;
    880 	}
    881 	/* adjust "active stack depth" for process VSZ */
    882 	epp->ep_ssize = len;
    883 
    884 	return 0;
    885 
    886  bad:
    887 	/* free the vmspace-creation commands, and release their references */
    888 	kill_vmcmds(&epp->ep_vmcmds);
    889 	/* kill any opened file descriptor, if necessary */
    890 	if (epp->ep_flags & EXEC_HASFD) {
    891 		epp->ep_flags &= ~EXEC_HASFD;
    892 		fd_close(epp->ep_fd);
    893 	}
    894 	/* close and put the exec'd file */
    895 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    896 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    897 	vput(epp->ep_vp);
    898 	pool_put(&exec_pool, data->ed_argp);
    899 
    900  freehdr:
    901 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    902 	if (epp->ep_emul_root != NULL)
    903 		vrele(epp->ep_emul_root);
    904 	if (epp->ep_interp != NULL)
    905 		vrele(epp->ep_interp);
    906 
    907 	rw_exit(&exec_lock);
    908 
    909 	exec_path_free(data);
    910 
    911  clrflg:
    912 	rw_exit(&p->p_reflock);
    913 
    914 	if (modgen != module_gen && error == ENOEXEC) {
    915 		modgen = module_gen;
    916 		exec_autoload();
    917 		goto retry;
    918 	}
    919 
    920 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    921 	return error;
    922 }
    923 
    924 static int
    925 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    926 {
    927 	struct exec_package	* const epp = &data->ed_pack;
    928 	struct proc		*p = l->l_proc;
    929 	struct exec_vmcmd	*base_vcp;
    930 	int			error = 0;
    931 	size_t			i;
    932 
    933 	/* record proc's vnode, for use by procfs and others */
    934 	if (p->p_textvp)
    935 		vrele(p->p_textvp);
    936 	vref(epp->ep_vp);
    937 	p->p_textvp = epp->ep_vp;
    938 
    939 	/* create the new process's VM space by running the vmcmds */
    940 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    941 
    942 #ifdef TRACE_EXEC
    943 	DUMPVMCMDS(epp, 0, 0);
    944 #endif
    945 
    946 	base_vcp = NULL;
    947 
    948 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    949 		struct exec_vmcmd *vcp;
    950 
    951 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    952 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    953 			KASSERTMSG(base_vcp != NULL,
    954 			    "%s: relative vmcmd with no base", __func__);
    955 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    956 			    "%s: illegal base & relative vmcmd", __func__);
    957 			vcp->ev_addr += base_vcp->ev_addr;
    958 		}
    959 		error = (*vcp->ev_proc)(l, vcp);
    960 		if (error)
    961 			DUMPVMCMDS(epp, i, error);
    962 		if (vcp->ev_flags & VMCMD_BASE)
    963 			base_vcp = vcp;
    964 	}
    965 
    966 	/* free the vmspace-creation commands, and release their references */
    967 	kill_vmcmds(&epp->ep_vmcmds);
    968 
    969 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    970 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    971 	vput(epp->ep_vp);
    972 
    973 	/* if an error happened, deallocate and punt */
    974 	if (error != 0) {
    975 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    976 	}
    977 	return error;
    978 }
    979 
    980 static void
    981 execve_free_data(struct execve_data *data)
    982 {
    983 	struct exec_package	* const epp = &data->ed_pack;
    984 
    985 	/* free the vmspace-creation commands, and release their references */
    986 	kill_vmcmds(&epp->ep_vmcmds);
    987 	/* kill any opened file descriptor, if necessary */
    988 	if (epp->ep_flags & EXEC_HASFD) {
    989 		epp->ep_flags &= ~EXEC_HASFD;
    990 		fd_close(epp->ep_fd);
    991 	}
    992 
    993 	/* close and put the exec'd file */
    994 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    995 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    996 	vput(epp->ep_vp);
    997 	pool_put(&exec_pool, data->ed_argp);
    998 
    999 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1000 	if (epp->ep_emul_root != NULL)
   1001 		vrele(epp->ep_emul_root);
   1002 	if (epp->ep_interp != NULL)
   1003 		vrele(epp->ep_interp);
   1004 
   1005 	exec_path_free(data);
   1006 }
   1007 
   1008 static void
   1009 pathexec(struct proc *p, const char *resolvedname)
   1010 {
   1011 	/* set command name & other accounting info */
   1012 	const char *cmdname;
   1013 
   1014 	if (resolvedname == NULL) {
   1015 		cmdname = "*fexecve*";
   1016 		resolvedname = "/";
   1017 	} else {
   1018 		cmdname = strrchr(resolvedname, '/') + 1;
   1019 	}
   1020 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
   1021 	    resolvedname);
   1022 
   1023 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
   1024 
   1025 	kmem_strfree(p->p_path);
   1026 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
   1027 }
   1028 
   1029 /* XXX elsewhere */
   1030 static int
   1031 credexec(struct lwp *l, struct vattr *attr)
   1032 {
   1033 	struct proc *p = l->l_proc;
   1034 	int error;
   1035 
   1036 	/*
   1037 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1038 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1039 	 * out additional references on the process for the moment.
   1040 	 */
   1041 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1042 
   1043 	    (((attr->va_mode & S_ISUID) != 0 &&
   1044 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
   1045 
   1046 	     ((attr->va_mode & S_ISGID) != 0 &&
   1047 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
   1048 		/*
   1049 		 * Mark the process as SUGID before we do
   1050 		 * anything that might block.
   1051 		 */
   1052 		proc_crmod_enter();
   1053 		proc_crmod_leave(NULL, NULL, true);
   1054 
   1055 		/* Make sure file descriptors 0..2 are in use. */
   1056 		if ((error = fd_checkstd()) != 0) {
   1057 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1058 			    __func__, error));
   1059 			return error;
   1060 		}
   1061 
   1062 		/*
   1063 		 * Copy the credential so other references don't see our
   1064 		 * changes.
   1065 		 */
   1066 		l->l_cred = kauth_cred_copy(l->l_cred);
   1067 #ifdef KTRACE
   1068 		/*
   1069 		 * If the persistent trace flag isn't set, turn off.
   1070 		 */
   1071 		if (p->p_tracep) {
   1072 			mutex_enter(&ktrace_lock);
   1073 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1074 				ktrderef(p);
   1075 			mutex_exit(&ktrace_lock);
   1076 		}
   1077 #endif
   1078 		if (attr->va_mode & S_ISUID)
   1079 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1080 		if (attr->va_mode & S_ISGID)
   1081 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1082 	} else {
   1083 		if (kauth_cred_geteuid(l->l_cred) ==
   1084 		    kauth_cred_getuid(l->l_cred) &&
   1085 		    kauth_cred_getegid(l->l_cred) ==
   1086 		    kauth_cred_getgid(l->l_cred))
   1087 			p->p_flag &= ~PK_SUGID;
   1088 	}
   1089 
   1090 	/*
   1091 	 * Copy the credential so other references don't see our changes.
   1092 	 * Test to see if this is necessary first, since in the common case
   1093 	 * we won't need a private reference.
   1094 	 */
   1095 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1096 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1097 		l->l_cred = kauth_cred_copy(l->l_cred);
   1098 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1099 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1100 	}
   1101 
   1102 	/* Update the master credentials. */
   1103 	if (l->l_cred != p->p_cred) {
   1104 		kauth_cred_t ocred;
   1105 
   1106 		kauth_cred_hold(l->l_cred);
   1107 		mutex_enter(p->p_lock);
   1108 		ocred = p->p_cred;
   1109 		p->p_cred = l->l_cred;
   1110 		mutex_exit(p->p_lock);
   1111 		kauth_cred_free(ocred);
   1112 	}
   1113 
   1114 	return 0;
   1115 }
   1116 
   1117 static void
   1118 emulexec(struct lwp *l, struct exec_package *epp)
   1119 {
   1120 	struct proc		*p = l->l_proc;
   1121 	struct cwdinfo		*cwdi;
   1122 
   1123 	/* The emulation root will usually have been found when we looked
   1124 	 * for the elf interpreter (or similar), if not look now. */
   1125 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1126 	    epp->ep_emul_root == NULL)
   1127 		emul_find_root(l, epp);
   1128 
   1129 	/* Any old emulation root got removed by fdcloseexec */
   1130 	KASSERT(p == curproc);
   1131 	cwdi = cwdenter(RW_WRITER);
   1132 	cwdi->cwdi_edir = epp->ep_emul_root;
   1133 	cwdexit(cwdi);
   1134 	epp->ep_emul_root = NULL;
   1135 	if (epp->ep_interp != NULL)
   1136 		vrele(epp->ep_interp);
   1137 
   1138 	/*
   1139 	 * Call emulation specific exec hook. This can setup per-process
   1140 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1141 	 *
   1142 	 * If we are executing process of different emulation than the
   1143 	 * original forked process, call e_proc_exit() of the old emulation
   1144 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1145 	 * same, the exec hook code should deallocate any old emulation
   1146 	 * resources held previously by this process.
   1147 	 */
   1148 	if (p->p_emul && p->p_emul->e_proc_exit
   1149 	    && p->p_emul != epp->ep_esch->es_emul)
   1150 		(*p->p_emul->e_proc_exit)(p);
   1151 
   1152 	/* This is now LWP 1.  Re-number the LWP if needed. */
   1153 	if (l->l_lid != 1)
   1154 		lwp_renumber(l, 1);
   1155 
   1156 	/*
   1157 	 * Call exec hook. Emulation code may NOT store reference to anything
   1158 	 * from &pack.
   1159 	 */
   1160 	if (epp->ep_esch->es_emul->e_proc_exec)
   1161 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1162 
   1163 	/* update p_emul, the old value is no longer needed */
   1164 	p->p_emul = epp->ep_esch->es_emul;
   1165 
   1166 	/* ...and the same for p_execsw */
   1167 	p->p_execsw = epp->ep_esch;
   1168 
   1169 #ifdef __HAVE_SYSCALL_INTERN
   1170 	(*p->p_emul->e_syscall_intern)(p);
   1171 #endif
   1172 	ktremul();
   1173 }
   1174 
   1175 static int
   1176 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1177 	bool no_local_exec_lock, bool is_spawn)
   1178 {
   1179 	struct exec_package	* const epp = &data->ed_pack;
   1180 	int error = 0;
   1181 	struct proc		*p;
   1182 	struct vmspace		*vm;
   1183 
   1184 	/*
   1185 	 * In case of a posix_spawn operation, the child doing the exec
   1186 	 * might not hold the reader lock on exec_lock, but the parent
   1187 	 * will do this instead.
   1188 	 */
   1189 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1190 	KASSERT(!no_local_exec_lock || is_spawn);
   1191 	KASSERT(data != NULL);
   1192 
   1193 	p = l->l_proc;
   1194 
   1195 	/* Get rid of other LWPs. */
   1196 	if (p->p_nlwps > 1) {
   1197 		mutex_enter(p->p_lock);
   1198 		exit_lwps(l);
   1199 		mutex_exit(p->p_lock);
   1200 	}
   1201 	KDASSERT(p->p_nlwps == 1);
   1202 
   1203 	/* Destroy any lwpctl info. */
   1204 	if (p->p_lwpctl != NULL)
   1205 		lwp_ctl_exit();
   1206 
   1207 	/* Remove POSIX timers */
   1208 	timers_free(p, TIMERS_POSIX);
   1209 
   1210 	/* Set the PaX flags. */
   1211 	pax_set_flags(epp, p);
   1212 
   1213 	/*
   1214 	 * Do whatever is necessary to prepare the address space
   1215 	 * for remapping.  Note that this might replace the current
   1216 	 * vmspace with another!
   1217 	 *
   1218 	 * vfork(): do not touch any user space data in the new child
   1219 	 * until we have awoken the parent below, or it will defeat
   1220 	 * lazy pmap switching (on x86).
   1221 	 */
   1222 	if (is_spawn)
   1223 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1224 		    epp->ep_vm_maxaddr,
   1225 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1226 	else
   1227 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1228 		    epp->ep_vm_maxaddr,
   1229 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1230 	vm = p->p_vmspace;
   1231 
   1232 	vm->vm_taddr = (void *)epp->ep_taddr;
   1233 	vm->vm_tsize = btoc(epp->ep_tsize);
   1234 	vm->vm_daddr = (void*)epp->ep_daddr;
   1235 	vm->vm_dsize = btoc(epp->ep_dsize);
   1236 	vm->vm_ssize = btoc(epp->ep_ssize);
   1237 	vm->vm_issize = 0;
   1238 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1239 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1240 
   1241 	pax_aslr_init_vm(l, vm, epp);
   1242 
   1243 	cwdexec(p);
   1244 	fd_closeexec();		/* handle close on exec */
   1245 
   1246 	if (__predict_false(ktrace_on))
   1247 		fd_ktrexecfd();
   1248 
   1249 	execsigs(p);		/* reset caught signals */
   1250 
   1251 	mutex_enter(p->p_lock);
   1252 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1253 	p->p_acflag &= ~AFORK;
   1254 	p->p_flag |= PK_EXEC;
   1255 	mutex_exit(p->p_lock);
   1256 
   1257 	error = credexec(l, &data->ed_attr);
   1258 	if (error)
   1259 		goto exec_abort;
   1260 
   1261 #if defined(__HAVE_RAS)
   1262 	/*
   1263 	 * Remove all RASs from the address space.
   1264 	 */
   1265 	ras_purgeall();
   1266 #endif
   1267 
   1268 	/*
   1269 	 * Stop profiling.
   1270 	 */
   1271 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1272 		mutex_spin_enter(&p->p_stmutex);
   1273 		stopprofclock(p);
   1274 		mutex_spin_exit(&p->p_stmutex);
   1275 	}
   1276 
   1277 	/*
   1278 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1279 	 * exited and exec()/exit() are the only places it will be cleared.
   1280 	 *
   1281 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
   1282 	 * in sched_vforkexec(), and it's then OK to start messing with user
   1283 	 * data.  See comment above.
   1284 	 */
   1285 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1286 		bool samecpu;
   1287 		lwp_t *lp;
   1288 
   1289 		mutex_enter(proc_lock);
   1290 		lp = p->p_vforklwp;
   1291 		p->p_vforklwp = NULL;
   1292 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1293 		cv_broadcast(&lp->l_waitcv);
   1294 
   1295 		/* Clear flags after cv_broadcast() (scheduler needs them). */
   1296 		p->p_lflag &= ~PL_PPWAIT;
   1297 		lp->l_vforkwaiting = false;
   1298 
   1299 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
   1300 		samecpu = (lp->l_cpu == curlwp->l_cpu);
   1301 		mutex_exit(proc_lock);
   1302 
   1303 		/* Give the parent its CPU back - find a new home. */
   1304 		KASSERT(!is_spawn);
   1305 		sched_vforkexec(l, samecpu);
   1306 	}
   1307 
   1308 	/* Now map address space. */
   1309 	error = execve_dovmcmds(l, data);
   1310 	if (error != 0)
   1311 		goto exec_abort;
   1312 
   1313 	pathexec(p, epp->ep_resolvedname);
   1314 
   1315 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1316 
   1317 	error = copyoutargs(data, l, newstack);
   1318 	if (error != 0)
   1319 		goto exec_abort;
   1320 
   1321 	doexechooks(p);
   1322 
   1323 	/*
   1324 	 * Set initial SP at the top of the stack.
   1325 	 *
   1326 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1327 	 * the end of arg/env strings.  Userland guesses the address of argc
   1328 	 * via ps_strings::ps_argvstr.
   1329 	 */
   1330 
   1331 	/* Setup new registers and do misc. setup. */
   1332 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1333 	if (epp->ep_esch->es_setregs)
   1334 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1335 
   1336 	/* Provide a consistent LWP private setting */
   1337 	(void)lwp_setprivate(l, NULL);
   1338 
   1339 	/* Discard all PCU state; need to start fresh */
   1340 	pcu_discard_all(l);
   1341 
   1342 	/* map the process's signal trampoline code */
   1343 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1344 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1345 		goto exec_abort;
   1346 	}
   1347 
   1348 	pool_put(&exec_pool, data->ed_argp);
   1349 
   1350 	/* notify others that we exec'd */
   1351 	KNOTE(&p->p_klist, NOTE_EXEC);
   1352 
   1353 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1354 
   1355 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1356 
   1357 	emulexec(l, epp);
   1358 
   1359 	/* Allow new references from the debugger/procfs. */
   1360 	rw_exit(&p->p_reflock);
   1361 	if (!no_local_exec_lock)
   1362 		rw_exit(&exec_lock);
   1363 
   1364 	mutex_enter(proc_lock);
   1365 
   1366 	/* posix_spawn(3) reports a single event with implied exec(3) */
   1367 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
   1368 		mutex_enter(p->p_lock);
   1369 		eventswitch(TRAP_EXEC, 0, 0);
   1370 		mutex_enter(proc_lock);
   1371 	}
   1372 
   1373 	if (p->p_sflag & PS_STOPEXEC) {
   1374 		ksiginfoq_t kq;
   1375 
   1376 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1377 		p->p_pptr->p_nstopchild++;
   1378 		p->p_waited = 0;
   1379 		mutex_enter(p->p_lock);
   1380 		ksiginfo_queue_init(&kq);
   1381 		sigclearall(p, &contsigmask, &kq);
   1382 		lwp_lock(l);
   1383 		l->l_stat = LSSTOP;
   1384 		p->p_stat = SSTOP;
   1385 		p->p_nrlwps--;
   1386 		lwp_unlock(l);
   1387 		mutex_exit(p->p_lock);
   1388 		mutex_exit(proc_lock);
   1389 		lwp_lock(l);
   1390 		spc_lock(l->l_cpu);
   1391 		mi_switch(l);
   1392 		ksiginfo_queue_drain(&kq);
   1393 	} else {
   1394 		mutex_exit(proc_lock);
   1395 	}
   1396 
   1397 	exec_path_free(data);
   1398 #ifdef TRACE_EXEC
   1399 	DPRINTF(("%s finished\n", __func__));
   1400 #endif
   1401 	return EJUSTRETURN;
   1402 
   1403  exec_abort:
   1404 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1405 	rw_exit(&p->p_reflock);
   1406 	if (!no_local_exec_lock)
   1407 		rw_exit(&exec_lock);
   1408 
   1409 	exec_path_free(data);
   1410 
   1411 	/*
   1412 	 * the old process doesn't exist anymore.  exit gracefully.
   1413 	 * get rid of the (new) address space we have created, if any, get rid
   1414 	 * of our namei data and vnode, and exit noting failure
   1415 	 */
   1416 	if (vm != NULL) {
   1417 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1418 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1419 	}
   1420 
   1421 	exec_free_emul_arg(epp);
   1422 	pool_put(&exec_pool, data->ed_argp);
   1423 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1424 	if (epp->ep_emul_root != NULL)
   1425 		vrele(epp->ep_emul_root);
   1426 	if (epp->ep_interp != NULL)
   1427 		vrele(epp->ep_interp);
   1428 
   1429 	/* Acquire the sched-state mutex (exit1() will release it). */
   1430 	if (!is_spawn) {
   1431 		mutex_enter(p->p_lock);
   1432 		exit1(l, error, SIGABRT);
   1433 	}
   1434 
   1435 	return error;
   1436 }
   1437 
   1438 int
   1439 execve1(struct lwp *l, bool has_path, const char *path, int fd,
   1440     char * const *args, char * const *envs,
   1441     execve_fetch_element_t fetch_element)
   1442 {
   1443 	struct execve_data data;
   1444 	int error;
   1445 
   1446 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
   1447 	    &data);
   1448 	if (error)
   1449 		return error;
   1450 	error = execve_runproc(l, &data, false, false);
   1451 	return error;
   1452 }
   1453 
   1454 static size_t
   1455 fromptrsz(const struct exec_package *epp)
   1456 {
   1457 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1458 }
   1459 
   1460 static size_t
   1461 ptrsz(const struct exec_package *epp)
   1462 {
   1463 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1464 }
   1465 
   1466 static size_t
   1467 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1468 {
   1469 	struct exec_package	* const epp = &data->ed_pack;
   1470 
   1471 	const size_t nargenvptrs =
   1472 	    1 +				/* long argc */
   1473 	    data->ed_argc +		/* char *argv[] */
   1474 	    1 +				/* \0 */
   1475 	    data->ed_envc +		/* char *env[] */
   1476 	    1;				/* \0 */
   1477 
   1478 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1479 	    + argenvstrlen			/* strings */
   1480 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1481 }
   1482 
   1483 static size_t
   1484 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1485 {
   1486 	struct exec_package	* const epp = &data->ed_pack;
   1487 
   1488 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1489 	    epp->ep_esch->es_emul->e_sigcode;
   1490 
   1491 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1492 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1493 
   1494 	const size_t sigcode_psstr_sz =
   1495 	    data->ed_szsigcode +	/* sigcode */
   1496 	    data->ed_ps_strings_sz +	/* ps_strings */
   1497 	    STACK_PTHREADSPACE;		/* pthread space */
   1498 
   1499 	const size_t stacklen =
   1500 	    data->ed_argslen +
   1501 	    gaplen +
   1502 	    sigcode_psstr_sz;
   1503 
   1504 	/* make the stack "safely" aligned */
   1505 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1506 }
   1507 
   1508 static int
   1509 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1510     char * const newstack)
   1511 {
   1512 	struct exec_package	* const epp = &data->ed_pack;
   1513 	struct proc		*p = l->l_proc;
   1514 	int			error;
   1515 
   1516 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1517 
   1518 	/* remember information about the process */
   1519 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1520 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1521 
   1522 	/*
   1523 	 * Allocate the stack address passed to the newly execve()'ed process.
   1524 	 *
   1525 	 * The new stack address will be set to the SP (stack pointer) register
   1526 	 * in setregs().
   1527 	 */
   1528 
   1529 	char *newargs = STACK_ALLOC(
   1530 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1531 
   1532 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1533 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1534 
   1535 	if (error) {
   1536 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1537 		return error;
   1538 	}
   1539 
   1540 	error = copyoutpsstrs(data, p);
   1541 	if (error != 0)
   1542 		return error;
   1543 
   1544 	return 0;
   1545 }
   1546 
   1547 static int
   1548 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1549 {
   1550 	struct exec_package	* const epp = &data->ed_pack;
   1551 	struct ps_strings32	arginfo32;
   1552 	void			*aip;
   1553 	int			error;
   1554 
   1555 	/* fill process ps_strings info */
   1556 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1557 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1558 
   1559 	if (epp->ep_flags & EXEC_32) {
   1560 		aip = &arginfo32;
   1561 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1562 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1563 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1564 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1565 	} else
   1566 		aip = &data->ed_arginfo;
   1567 
   1568 	/* copy out the process's ps_strings structure */
   1569 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1570 	    != 0) {
   1571 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1572 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1573 		return error;
   1574 	}
   1575 
   1576 	return 0;
   1577 }
   1578 
   1579 static int
   1580 copyinargs(struct execve_data * restrict data, char * const *args,
   1581     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1582 {
   1583 	struct exec_package	* const epp = &data->ed_pack;
   1584 	char			*dp;
   1585 	size_t			i;
   1586 	int			error;
   1587 
   1588 	dp = *dpp;
   1589 
   1590 	data->ed_argc = 0;
   1591 
   1592 	/* copy the fake args list, if there's one, freeing it as we go */
   1593 	if (epp->ep_flags & EXEC_HASARGL) {
   1594 		struct exec_fakearg	*fa = epp->ep_fa;
   1595 
   1596 		while (fa->fa_arg != NULL) {
   1597 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1598 			size_t len;
   1599 
   1600 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1601 			/* Count NUL into len. */
   1602 			if (len < maxlen)
   1603 				len++;
   1604 			else {
   1605 				while (fa->fa_arg != NULL) {
   1606 					kmem_free(fa->fa_arg, fa->fa_len);
   1607 					fa++;
   1608 				}
   1609 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1610 				epp->ep_flags &= ~EXEC_HASARGL;
   1611 				return E2BIG;
   1612 			}
   1613 			ktrexecarg(fa->fa_arg, len - 1);
   1614 			dp += len;
   1615 
   1616 			kmem_free(fa->fa_arg, fa->fa_len);
   1617 			fa++;
   1618 			data->ed_argc++;
   1619 		}
   1620 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1621 		epp->ep_flags &= ~EXEC_HASARGL;
   1622 	}
   1623 
   1624 	/*
   1625 	 * Read and count argument strings from user.
   1626 	 */
   1627 
   1628 	if (args == NULL) {
   1629 		DPRINTF(("%s: null args\n", __func__));
   1630 		return EINVAL;
   1631 	}
   1632 	if (epp->ep_flags & EXEC_SKIPARG)
   1633 		args = (const void *)((const char *)args + fromptrsz(epp));
   1634 	i = 0;
   1635 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1636 	if (error != 0) {
   1637 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1638 		return error;
   1639 	}
   1640 	data->ed_argc += i;
   1641 
   1642 	/*
   1643 	 * Read and count environment strings from user.
   1644 	 */
   1645 
   1646 	data->ed_envc = 0;
   1647 	/* environment need not be there */
   1648 	if (envs == NULL)
   1649 		goto done;
   1650 	i = 0;
   1651 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1652 	if (error != 0) {
   1653 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1654 		return error;
   1655 	}
   1656 	data->ed_envc += i;
   1657 
   1658 done:
   1659 	*dpp = dp;
   1660 
   1661 	return 0;
   1662 }
   1663 
   1664 static int
   1665 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1666     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1667     void (*ktr)(const void *, size_t))
   1668 {
   1669 	char			*dp, *sp;
   1670 	size_t			i;
   1671 	int			error;
   1672 
   1673 	dp = *dpp;
   1674 
   1675 	i = 0;
   1676 	while (1) {
   1677 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1678 		size_t len;
   1679 
   1680 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1681 			return error;
   1682 		}
   1683 		if (!sp)
   1684 			break;
   1685 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1686 			if (error == ENAMETOOLONG)
   1687 				error = E2BIG;
   1688 			return error;
   1689 		}
   1690 		if (__predict_false(ktrace_on))
   1691 			(*ktr)(dp, len - 1);
   1692 		dp += len;
   1693 		i++;
   1694 	}
   1695 
   1696 	*dpp = dp;
   1697 	*ip = i;
   1698 
   1699 	return 0;
   1700 }
   1701 
   1702 /*
   1703  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1704  * Those strings are located just after auxinfo.
   1705  */
   1706 int
   1707 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1708     char **stackp, void *argp)
   1709 {
   1710 	char	**cpp, *dp, *sp;
   1711 	size_t	len;
   1712 	void	*nullp;
   1713 	long	argc, envc;
   1714 	int	error;
   1715 
   1716 	cpp = (char **)*stackp;
   1717 	nullp = NULL;
   1718 	argc = arginfo->ps_nargvstr;
   1719 	envc = arginfo->ps_nenvstr;
   1720 
   1721 	/* argc on stack is long */
   1722 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1723 
   1724 	dp = (char *)(cpp +
   1725 	    1 +				/* long argc */
   1726 	    argc +			/* char *argv[] */
   1727 	    1 +				/* \0 */
   1728 	    envc +			/* char *env[] */
   1729 	    1) +			/* \0 */
   1730 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1731 	sp = argp;
   1732 
   1733 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1734 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1735 		return error;
   1736 	}
   1737 
   1738 	/* XXX don't copy them out, remap them! */
   1739 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1740 
   1741 	for (; --argc >= 0; sp += len, dp += len) {
   1742 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1743 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1744 			return error;
   1745 		}
   1746 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1747 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1748 			return error;
   1749 		}
   1750 	}
   1751 
   1752 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1753 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1754 		return error;
   1755 	}
   1756 
   1757 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1758 
   1759 	for (; --envc >= 0; sp += len, dp += len) {
   1760 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1761 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1762 			return error;
   1763 		}
   1764 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1765 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1766 			return error;
   1767 		}
   1768 
   1769 	}
   1770 
   1771 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1772 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1773 		return error;
   1774 	}
   1775 
   1776 	*stackp = (char *)cpp;
   1777 	return 0;
   1778 }
   1779 
   1780 
   1781 /*
   1782  * Add execsw[] entries.
   1783  */
   1784 int
   1785 exec_add(struct execsw *esp, int count)
   1786 {
   1787 	struct exec_entry	*it;
   1788 	int			i;
   1789 
   1790 	if (count == 0) {
   1791 		return 0;
   1792 	}
   1793 
   1794 	/* Check for duplicates. */
   1795 	rw_enter(&exec_lock, RW_WRITER);
   1796 	for (i = 0; i < count; i++) {
   1797 		LIST_FOREACH(it, &ex_head, ex_list) {
   1798 			/* assume unique (makecmds, probe_func, emulation) */
   1799 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1800 			    it->ex_sw->u.elf_probe_func ==
   1801 			    esp[i].u.elf_probe_func &&
   1802 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1803 				rw_exit(&exec_lock);
   1804 				return EEXIST;
   1805 			}
   1806 		}
   1807 	}
   1808 
   1809 	/* Allocate new entries. */
   1810 	for (i = 0; i < count; i++) {
   1811 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1812 		it->ex_sw = &esp[i];
   1813 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1814 	}
   1815 
   1816 	/* update execsw[] */
   1817 	exec_init(0);
   1818 	rw_exit(&exec_lock);
   1819 	return 0;
   1820 }
   1821 
   1822 /*
   1823  * Remove execsw[] entry.
   1824  */
   1825 int
   1826 exec_remove(struct execsw *esp, int count)
   1827 {
   1828 	struct exec_entry	*it, *next;
   1829 	int			i;
   1830 	const struct proclist_desc *pd;
   1831 	proc_t			*p;
   1832 
   1833 	if (count == 0) {
   1834 		return 0;
   1835 	}
   1836 
   1837 	/* Abort if any are busy. */
   1838 	rw_enter(&exec_lock, RW_WRITER);
   1839 	for (i = 0; i < count; i++) {
   1840 		mutex_enter(proc_lock);
   1841 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1842 			PROCLIST_FOREACH(p, pd->pd_list) {
   1843 				if (p->p_execsw == &esp[i]) {
   1844 					mutex_exit(proc_lock);
   1845 					rw_exit(&exec_lock);
   1846 					return EBUSY;
   1847 				}
   1848 			}
   1849 		}
   1850 		mutex_exit(proc_lock);
   1851 	}
   1852 
   1853 	/* None are busy, so remove them all. */
   1854 	for (i = 0; i < count; i++) {
   1855 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1856 			next = LIST_NEXT(it, ex_list);
   1857 			if (it->ex_sw == &esp[i]) {
   1858 				LIST_REMOVE(it, ex_list);
   1859 				kmem_free(it, sizeof(*it));
   1860 				break;
   1861 			}
   1862 		}
   1863 	}
   1864 
   1865 	/* update execsw[] */
   1866 	exec_init(0);
   1867 	rw_exit(&exec_lock);
   1868 	return 0;
   1869 }
   1870 
   1871 /*
   1872  * Initialize exec structures. If init_boot is true, also does necessary
   1873  * one-time initialization (it's called from main() that way).
   1874  * Once system is multiuser, this should be called with exec_lock held,
   1875  * i.e. via exec_{add|remove}().
   1876  */
   1877 int
   1878 exec_init(int init_boot)
   1879 {
   1880 	const struct execsw 	**sw;
   1881 	struct exec_entry	*ex;
   1882 	SLIST_HEAD(,exec_entry)	first;
   1883 	SLIST_HEAD(,exec_entry)	any;
   1884 	SLIST_HEAD(,exec_entry)	last;
   1885 	int			i, sz;
   1886 
   1887 	if (init_boot) {
   1888 		/* do one-time initializations */
   1889 		vaddr_t vmin = 0, vmax;
   1890 
   1891 		rw_init(&exec_lock);
   1892 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1893 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1894 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1895 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1896 		    "execargs", &exec_palloc, IPL_NONE);
   1897 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1898 	} else {
   1899 		KASSERT(rw_write_held(&exec_lock));
   1900 	}
   1901 
   1902 	/* Sort each entry onto the appropriate queue. */
   1903 	SLIST_INIT(&first);
   1904 	SLIST_INIT(&any);
   1905 	SLIST_INIT(&last);
   1906 	sz = 0;
   1907 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1908 		switch(ex->ex_sw->es_prio) {
   1909 		case EXECSW_PRIO_FIRST:
   1910 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1911 			break;
   1912 		case EXECSW_PRIO_ANY:
   1913 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1914 			break;
   1915 		case EXECSW_PRIO_LAST:
   1916 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1917 			break;
   1918 		default:
   1919 			panic("%s", __func__);
   1920 			break;
   1921 		}
   1922 		sz++;
   1923 	}
   1924 
   1925 	/*
   1926 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1927 	 * allocation.
   1928 	 */
   1929 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1930 	i = 0;
   1931 	SLIST_FOREACH(ex, &first, ex_slist) {
   1932 		sw[i++] = ex->ex_sw;
   1933 	}
   1934 	SLIST_FOREACH(ex, &any, ex_slist) {
   1935 		sw[i++] = ex->ex_sw;
   1936 	}
   1937 	SLIST_FOREACH(ex, &last, ex_slist) {
   1938 		sw[i++] = ex->ex_sw;
   1939 	}
   1940 
   1941 	/* Replace old execsw[] and free used memory. */
   1942 	if (execsw != NULL) {
   1943 		kmem_free(__UNCONST(execsw),
   1944 		    nexecs * sizeof(struct execsw *) + 1);
   1945 	}
   1946 	execsw = sw;
   1947 	nexecs = sz;
   1948 
   1949 	/* Figure out the maximum size of an exec header. */
   1950 	exec_maxhdrsz = sizeof(int);
   1951 	for (i = 0; i < nexecs; i++) {
   1952 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1953 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1954 	}
   1955 
   1956 	return 0;
   1957 }
   1958 
   1959 static int
   1960 exec_sigcode_map(struct proc *p, const struct emul *e)
   1961 {
   1962 	vaddr_t va;
   1963 	vsize_t sz;
   1964 	int error;
   1965 	struct uvm_object *uobj;
   1966 
   1967 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1968 
   1969 	if (e->e_sigobject == NULL || sz == 0) {
   1970 		return 0;
   1971 	}
   1972 
   1973 	/*
   1974 	 * If we don't have a sigobject for this emulation, create one.
   1975 	 *
   1976 	 * sigobject is an anonymous memory object (just like SYSV shared
   1977 	 * memory) that we keep a permanent reference to and that we map
   1978 	 * in all processes that need this sigcode. The creation is simple,
   1979 	 * we create an object, add a permanent reference to it, map it in
   1980 	 * kernel space, copy out the sigcode to it and unmap it.
   1981 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1982 	 * the way sys_mmap() would map it.
   1983 	 */
   1984 
   1985 	uobj = *e->e_sigobject;
   1986 	if (uobj == NULL) {
   1987 		mutex_enter(&sigobject_lock);
   1988 		if ((uobj = *e->e_sigobject) == NULL) {
   1989 			uobj = uao_create(sz, 0);
   1990 			(*uobj->pgops->pgo_reference)(uobj);
   1991 			va = vm_map_min(kernel_map);
   1992 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1993 			    uobj, 0, 0,
   1994 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1995 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1996 				printf("kernel mapping failed %d\n", error);
   1997 				(*uobj->pgops->pgo_detach)(uobj);
   1998 				mutex_exit(&sigobject_lock);
   1999 				return error;
   2000 			}
   2001 			memcpy((void *)va, e->e_sigcode, sz);
   2002 #ifdef PMAP_NEED_PROCWR
   2003 			pmap_procwr(&proc0, va, sz);
   2004 #endif
   2005 			uvm_unmap(kernel_map, va, va + round_page(sz));
   2006 			*e->e_sigobject = uobj;
   2007 		}
   2008 		mutex_exit(&sigobject_lock);
   2009 	}
   2010 
   2011 	/* Just a hint to uvm_map where to put it. */
   2012 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   2013 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   2014 
   2015 #ifdef __alpha__
   2016 	/*
   2017 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   2018 	 * which causes the above calculation to put the sigcode at
   2019 	 * an invalid address.  Put it just below the text instead.
   2020 	 */
   2021 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   2022 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   2023 	}
   2024 #endif
   2025 
   2026 	(*uobj->pgops->pgo_reference)(uobj);
   2027 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   2028 			uobj, 0, 0,
   2029 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   2030 				    UVM_ADV_RANDOM, 0));
   2031 	if (error) {
   2032 		DPRINTF(("%s, %d: map %p "
   2033 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   2034 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   2035 		    va, error));
   2036 		(*uobj->pgops->pgo_detach)(uobj);
   2037 		return error;
   2038 	}
   2039 	p->p_sigctx.ps_sigcode = (void *)va;
   2040 	return 0;
   2041 }
   2042 
   2043 /*
   2044  * Release a refcount on spawn_exec_data and destroy memory, if this
   2045  * was the last one.
   2046  */
   2047 static void
   2048 spawn_exec_data_release(struct spawn_exec_data *data)
   2049 {
   2050 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   2051 		return;
   2052 
   2053 	cv_destroy(&data->sed_cv_child_ready);
   2054 	mutex_destroy(&data->sed_mtx_child);
   2055 
   2056 	if (data->sed_actions)
   2057 		posix_spawn_fa_free(data->sed_actions,
   2058 		    data->sed_actions->len);
   2059 	if (data->sed_attrs)
   2060 		kmem_free(data->sed_attrs,
   2061 		    sizeof(*data->sed_attrs));
   2062 	kmem_free(data, sizeof(*data));
   2063 }
   2064 
   2065 /*
   2066  * A child lwp of a posix_spawn operation starts here and ends up in
   2067  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   2068  * manipulations in between.
   2069  * The parent waits for the child, as it is not clear whether the child
   2070  * will be able to acquire its own exec_lock. If it can, the parent can
   2071  * be released early and continue running in parallel. If not (or if the
   2072  * magic debug flag is passed in the scheduler attribute struct), the
   2073  * child rides on the parent's exec lock until it is ready to return to
   2074  * to userland - and only then releases the parent. This method loses
   2075  * concurrency, but improves error reporting.
   2076  */
   2077 static void
   2078 spawn_return(void *arg)
   2079 {
   2080 	struct spawn_exec_data *spawn_data = arg;
   2081 	struct lwp *l = curlwp;
   2082 	struct proc *p = l->l_proc;
   2083 	int error, newfd;
   2084 	int ostat;
   2085 	size_t i;
   2086 	const struct posix_spawn_file_actions_entry *fae;
   2087 	pid_t ppid;
   2088 	register_t retval;
   2089 	bool have_reflock;
   2090 	bool parent_is_waiting = true;
   2091 
   2092 	/*
   2093 	 * Check if we can release parent early.
   2094 	 * We either need to have no sed_attrs, or sed_attrs does not
   2095 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2096 	 * safe access to the parent proc (passed in sed_parent).
   2097 	 * We then try to get the exec_lock, and only if that works, we can
   2098 	 * release the parent here already.
   2099 	 */
   2100 	ppid = spawn_data->sed_parent->p_pid;
   2101 	if ((!spawn_data->sed_attrs
   2102 	    || (spawn_data->sed_attrs->sa_flags
   2103 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2104 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2105 		parent_is_waiting = false;
   2106 		mutex_enter(&spawn_data->sed_mtx_child);
   2107 		cv_signal(&spawn_data->sed_cv_child_ready);
   2108 		mutex_exit(&spawn_data->sed_mtx_child);
   2109 	}
   2110 
   2111 	/* don't allow debugger access yet */
   2112 	rw_enter(&p->p_reflock, RW_WRITER);
   2113 	have_reflock = true;
   2114 
   2115 	error = 0;
   2116 	/* handle posix_spawn_file_actions */
   2117 	if (spawn_data->sed_actions != NULL) {
   2118 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2119 			fae = &spawn_data->sed_actions->fae[i];
   2120 			switch (fae->fae_action) {
   2121 			case FAE_OPEN:
   2122 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2123 					error = fd_close(fae->fae_fildes);
   2124 					if (error)
   2125 						break;
   2126 				}
   2127 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2128 				    fae->fae_mode, &newfd);
   2129 				if (error)
   2130 					break;
   2131 				if (newfd != fae->fae_fildes) {
   2132 					error = dodup(l, newfd,
   2133 					    fae->fae_fildes, 0, &retval);
   2134 					if (fd_getfile(newfd) != NULL)
   2135 						fd_close(newfd);
   2136 				}
   2137 				break;
   2138 			case FAE_DUP2:
   2139 				error = dodup(l, fae->fae_fildes,
   2140 				    fae->fae_newfildes, 0, &retval);
   2141 				break;
   2142 			case FAE_CLOSE:
   2143 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2144 					error = EBADF;
   2145 					break;
   2146 				}
   2147 				error = fd_close(fae->fae_fildes);
   2148 				break;
   2149 			}
   2150 			if (error)
   2151 				goto report_error;
   2152 		}
   2153 	}
   2154 
   2155 	/* handle posix_spawnattr */
   2156 	if (spawn_data->sed_attrs != NULL) {
   2157 		struct sigaction sigact;
   2158 		memset(&sigact, 0, sizeof(sigact));
   2159 		sigact._sa_u._sa_handler = SIG_DFL;
   2160 		sigact.sa_flags = 0;
   2161 
   2162 		/*
   2163 		 * set state to SSTOP so that this proc can be found by pid.
   2164 		 * see proc_enterprp, do_sched_setparam below
   2165 		 */
   2166 		mutex_enter(proc_lock);
   2167 		/*
   2168 		 * p_stat should be SACTIVE, so we need to adjust the
   2169 		 * parent's p_nstopchild here.  For safety, just make
   2170 		 * we're on the good side of SDEAD before we adjust.
   2171 		 */
   2172 		ostat = p->p_stat;
   2173 		KASSERT(ostat < SSTOP);
   2174 		p->p_stat = SSTOP;
   2175 		p->p_waited = 0;
   2176 		p->p_pptr->p_nstopchild++;
   2177 		mutex_exit(proc_lock);
   2178 
   2179 		/* Set process group */
   2180 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2181 			pid_t mypid = p->p_pid,
   2182 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2183 
   2184 			if (pgrp == 0)
   2185 				pgrp = mypid;
   2186 
   2187 			error = proc_enterpgrp(spawn_data->sed_parent,
   2188 			    mypid, pgrp, false);
   2189 			if (error)
   2190 				goto report_error_stopped;
   2191 		}
   2192 
   2193 		/* Set scheduler policy */
   2194 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2195 			error = do_sched_setparam(p->p_pid, 0,
   2196 			    spawn_data->sed_attrs->sa_schedpolicy,
   2197 			    &spawn_data->sed_attrs->sa_schedparam);
   2198 		else if (spawn_data->sed_attrs->sa_flags
   2199 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2200 			error = do_sched_setparam(ppid, 0,
   2201 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2202 		}
   2203 		if (error)
   2204 			goto report_error_stopped;
   2205 
   2206 		/* Reset user ID's */
   2207 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2208 			error = do_setresuid(l, -1,
   2209 			     kauth_cred_getgid(l->l_cred), -1,
   2210 			     ID_E_EQ_R | ID_E_EQ_S);
   2211 			if (error)
   2212 				goto report_error_stopped;
   2213 			error = do_setresuid(l, -1,
   2214 			    kauth_cred_getuid(l->l_cred), -1,
   2215 			    ID_E_EQ_R | ID_E_EQ_S);
   2216 			if (error)
   2217 				goto report_error_stopped;
   2218 		}
   2219 
   2220 		/* Set signal masks/defaults */
   2221 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2222 			mutex_enter(p->p_lock);
   2223 			error = sigprocmask1(l, SIG_SETMASK,
   2224 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2225 			mutex_exit(p->p_lock);
   2226 			if (error)
   2227 				goto report_error_stopped;
   2228 		}
   2229 
   2230 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2231 			/*
   2232 			 * The following sigaction call is using a sigaction
   2233 			 * version 0 trampoline which is in the compatibility
   2234 			 * code only. This is not a problem because for SIG_DFL
   2235 			 * and SIG_IGN, the trampolines are now ignored. If they
   2236 			 * were not, this would be a problem because we are
   2237 			 * holding the exec_lock, and the compat code needs
   2238 			 * to do the same in order to replace the trampoline
   2239 			 * code of the process.
   2240 			 */
   2241 			for (i = 1; i <= NSIG; i++) {
   2242 				if (sigismember(
   2243 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2244 					sigaction1(l, i, &sigact, NULL, NULL,
   2245 					    0);
   2246 			}
   2247 		}
   2248 		mutex_enter(proc_lock);
   2249 		p->p_stat = ostat;
   2250 		p->p_pptr->p_nstopchild--;
   2251 		mutex_exit(proc_lock);
   2252 	}
   2253 
   2254 	/* now do the real exec */
   2255 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2256 	    true);
   2257 	have_reflock = false;
   2258 	if (error == EJUSTRETURN)
   2259 		error = 0;
   2260 	else if (error)
   2261 		goto report_error;
   2262 
   2263 	if (parent_is_waiting) {
   2264 		mutex_enter(&spawn_data->sed_mtx_child);
   2265 		cv_signal(&spawn_data->sed_cv_child_ready);
   2266 		mutex_exit(&spawn_data->sed_mtx_child);
   2267 	}
   2268 
   2269 	/* release our refcount on the data */
   2270 	spawn_exec_data_release(spawn_data);
   2271 
   2272 	if (p->p_slflag & PSL_TRACED) {
   2273 		/* Paranoid check */
   2274 		mutex_enter(proc_lock);
   2275 		if (!(p->p_slflag & PSL_TRACED)) {
   2276 			mutex_exit(proc_lock);
   2277 			goto cpu_return;
   2278 		}
   2279 
   2280 		mutex_enter(p->p_lock);
   2281 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, p->p_opptr->p_pid);
   2282 	}
   2283 
   2284  cpu_return:
   2285 	/* and finally: leave to userland for the first time */
   2286 	cpu_spawn_return(l);
   2287 
   2288 	/* NOTREACHED */
   2289 	return;
   2290 
   2291  report_error_stopped:
   2292 	mutex_enter(proc_lock);
   2293 	p->p_stat = ostat;
   2294 	p->p_pptr->p_nstopchild--;
   2295 	mutex_exit(proc_lock);
   2296  report_error:
   2297 	if (have_reflock) {
   2298 		/*
   2299 		 * We have not passed through execve_runproc(),
   2300 		 * which would have released the p_reflock and also
   2301 		 * taken ownership of the sed_exec part of spawn_data,
   2302 		 * so release/free both here.
   2303 		 */
   2304 		rw_exit(&p->p_reflock);
   2305 		execve_free_data(&spawn_data->sed_exec);
   2306 	}
   2307 
   2308 	if (parent_is_waiting) {
   2309 		/* pass error to parent */
   2310 		mutex_enter(&spawn_data->sed_mtx_child);
   2311 		spawn_data->sed_error = error;
   2312 		cv_signal(&spawn_data->sed_cv_child_ready);
   2313 		mutex_exit(&spawn_data->sed_mtx_child);
   2314 	} else {
   2315 		rw_exit(&exec_lock);
   2316 	}
   2317 
   2318 	/* release our refcount on the data */
   2319 	spawn_exec_data_release(spawn_data);
   2320 
   2321 	/* done, exit */
   2322 	mutex_enter(p->p_lock);
   2323 	/*
   2324 	 * Posix explicitly asks for an exit code of 127 if we report
   2325 	 * errors from the child process - so, unfortunately, there
   2326 	 * is no way to report a more exact error code.
   2327 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2328 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2329 	 */
   2330 	exit1(l, 127, 0);
   2331 }
   2332 
   2333 void
   2334 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2335 {
   2336 
   2337 	for (size_t i = 0; i < len; i++) {
   2338 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2339 		if (fae->fae_action != FAE_OPEN)
   2340 			continue;
   2341 		kmem_strfree(fae->fae_path);
   2342 	}
   2343 	if (fa->len > 0)
   2344 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2345 	kmem_free(fa, sizeof(*fa));
   2346 }
   2347 
   2348 static int
   2349 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2350     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2351 {
   2352 	struct posix_spawn_file_actions *fa;
   2353 	struct posix_spawn_file_actions_entry *fae;
   2354 	char *pbuf = NULL;
   2355 	int error;
   2356 	size_t i = 0;
   2357 
   2358 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2359 	error = copyin(ufa, fa, sizeof(*fa));
   2360 	if (error || fa->len == 0) {
   2361 		kmem_free(fa, sizeof(*fa));
   2362 		return error;	/* 0 if not an error, and len == 0 */
   2363 	}
   2364 
   2365 	if (fa->len > lim) {
   2366 		kmem_free(fa, sizeof(*fa));
   2367 		return EINVAL;
   2368 	}
   2369 
   2370 	fa->size = fa->len;
   2371 	size_t fal = fa->len * sizeof(*fae);
   2372 	fae = fa->fae;
   2373 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2374 	error = copyin(fae, fa->fae, fal);
   2375 	if (error)
   2376 		goto out;
   2377 
   2378 	pbuf = PNBUF_GET();
   2379 	for (; i < fa->len; i++) {
   2380 		fae = &fa->fae[i];
   2381 		if (fae->fae_action != FAE_OPEN)
   2382 			continue;
   2383 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2384 		if (error)
   2385 			goto out;
   2386 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2387 		memcpy(fae->fae_path, pbuf, fal);
   2388 	}
   2389 	PNBUF_PUT(pbuf);
   2390 
   2391 	*fap = fa;
   2392 	return 0;
   2393 out:
   2394 	if (pbuf)
   2395 		PNBUF_PUT(pbuf);
   2396 	posix_spawn_fa_free(fa, i);
   2397 	return error;
   2398 }
   2399 
   2400 int
   2401 check_posix_spawn(struct lwp *l1)
   2402 {
   2403 	int error, tnprocs, count;
   2404 	uid_t uid;
   2405 	struct proc *p1;
   2406 
   2407 	p1 = l1->l_proc;
   2408 	uid = kauth_cred_getuid(l1->l_cred);
   2409 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2410 
   2411 	/*
   2412 	 * Although process entries are dynamically created, we still keep
   2413 	 * a global limit on the maximum number we will create.
   2414 	 */
   2415 	if (__predict_false(tnprocs >= maxproc))
   2416 		error = -1;
   2417 	else
   2418 		error = kauth_authorize_process(l1->l_cred,
   2419 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2420 
   2421 	if (error) {
   2422 		atomic_dec_uint(&nprocs);
   2423 		return EAGAIN;
   2424 	}
   2425 
   2426 	/*
   2427 	 * Enforce limits.
   2428 	 */
   2429 	count = chgproccnt(uid, 1);
   2430 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2431 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2432 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2433 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2434 		(void)chgproccnt(uid, -1);
   2435 		atomic_dec_uint(&nprocs);
   2436 		return EAGAIN;
   2437 	}
   2438 
   2439 	return 0;
   2440 }
   2441 
   2442 int
   2443 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2444 	struct posix_spawn_file_actions *fa,
   2445 	struct posix_spawnattr *sa,
   2446 	char *const *argv, char *const *envp,
   2447 	execve_fetch_element_t fetch)
   2448 {
   2449 
   2450 	struct proc *p1, *p2;
   2451 	struct lwp *l2;
   2452 	int error;
   2453 	struct spawn_exec_data *spawn_data;
   2454 	vaddr_t uaddr;
   2455 	pid_t pid;
   2456 	bool have_exec_lock = false;
   2457 
   2458 	p1 = l1->l_proc;
   2459 
   2460 	/* Allocate and init spawn_data */
   2461 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2462 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2463 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2464 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2465 	mutex_enter(&spawn_data->sed_mtx_child);
   2466 
   2467 	/*
   2468 	 * Do the first part of the exec now, collect state
   2469 	 * in spawn_data.
   2470 	 */
   2471 	error = execve_loadvm(l1, true, path, -1, argv,
   2472 	    envp, fetch, &spawn_data->sed_exec);
   2473 	if (error == EJUSTRETURN)
   2474 		error = 0;
   2475 	else if (error)
   2476 		goto error_exit;
   2477 
   2478 	have_exec_lock = true;
   2479 
   2480 	/*
   2481 	 * Allocate virtual address space for the U-area now, while it
   2482 	 * is still easy to abort the fork operation if we're out of
   2483 	 * kernel virtual address space.
   2484 	 */
   2485 	uaddr = uvm_uarea_alloc();
   2486 	if (__predict_false(uaddr == 0)) {
   2487 		error = ENOMEM;
   2488 		goto error_exit;
   2489 	}
   2490 
   2491 	/*
   2492 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2493 	 * replace it with its own before returning to userland
   2494 	 * in the child.
   2495 	 * This is a point of no return, we will have to go through
   2496 	 * the child proc to properly clean it up past this point.
   2497 	 */
   2498 	p2 = proc_alloc();
   2499 	pid = p2->p_pid;
   2500 
   2501 	/*
   2502 	 * Make a proc table entry for the new process.
   2503 	 * Start by zeroing the section of proc that is zero-initialized,
   2504 	 * then copy the section that is copied directly from the parent.
   2505 	 */
   2506 	memset(&p2->p_startzero, 0,
   2507 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2508 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2509 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2510 	p2->p_vmspace = proc0.p_vmspace;
   2511 
   2512 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2513 
   2514 	LIST_INIT(&p2->p_lwps);
   2515 	LIST_INIT(&p2->p_sigwaiters);
   2516 
   2517 	/*
   2518 	 * Duplicate sub-structures as needed.
   2519 	 * Increase reference counts on shared objects.
   2520 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2521 	 * handling are important in order to keep a consistent behaviour
   2522 	 * for the child after the fork.  If we are a 32-bit process, the
   2523 	 * child will be too.
   2524 	 */
   2525 	p2->p_flag =
   2526 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2527 	p2->p_emul = p1->p_emul;
   2528 	p2->p_execsw = p1->p_execsw;
   2529 
   2530 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2531 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2532 	rw_init(&p2->p_reflock);
   2533 	rw_init(&p2->p_treelock);
   2534 	cv_init(&p2->p_waitcv, "wait");
   2535 	cv_init(&p2->p_lwpcv, "lwpwait");
   2536 
   2537 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2538 
   2539 	kauth_proc_fork(p1, p2);
   2540 
   2541 	p2->p_raslist = NULL;
   2542 	p2->p_fd = fd_copy();
   2543 
   2544 	/* XXX racy */
   2545 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2546 
   2547 	p2->p_cwdi = cwdinit();
   2548 
   2549 	/*
   2550 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2551 	 * we just need increase pl_refcnt.
   2552 	 */
   2553 	if (!p1->p_limit->pl_writeable) {
   2554 		lim_addref(p1->p_limit);
   2555 		p2->p_limit = p1->p_limit;
   2556 	} else {
   2557 		p2->p_limit = lim_copy(p1->p_limit);
   2558 	}
   2559 
   2560 	p2->p_lflag = 0;
   2561 	l1->l_vforkwaiting = false;
   2562 	p2->p_sflag = 0;
   2563 	p2->p_slflag = 0;
   2564 	p2->p_pptr = p1;
   2565 	p2->p_ppid = p1->p_pid;
   2566 	LIST_INIT(&p2->p_children);
   2567 
   2568 	p2->p_aio = NULL;
   2569 
   2570 #ifdef KTRACE
   2571 	/*
   2572 	 * Copy traceflag and tracefile if enabled.
   2573 	 * If not inherited, these were zeroed above.
   2574 	 */
   2575 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2576 		mutex_enter(&ktrace_lock);
   2577 		p2->p_traceflag = p1->p_traceflag;
   2578 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2579 			ktradref(p2);
   2580 		mutex_exit(&ktrace_lock);
   2581 	}
   2582 #endif
   2583 
   2584 	/*
   2585 	 * Create signal actions for the child process.
   2586 	 */
   2587 	p2->p_sigacts = sigactsinit(p1, 0);
   2588 	mutex_enter(p1->p_lock);
   2589 	p2->p_sflag |=
   2590 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2591 	sched_proc_fork(p1, p2);
   2592 	mutex_exit(p1->p_lock);
   2593 
   2594 	p2->p_stflag = p1->p_stflag;
   2595 
   2596 	/*
   2597 	 * p_stats.
   2598 	 * Copy parts of p_stats, and zero out the rest.
   2599 	 */
   2600 	p2->p_stats = pstatscopy(p1->p_stats);
   2601 
   2602 	/* copy over machdep flags to the new proc */
   2603 	cpu_proc_fork(p1, p2);
   2604 
   2605 	/*
   2606 	 * Prepare remaining parts of spawn data
   2607 	 */
   2608 	spawn_data->sed_actions = fa;
   2609 	spawn_data->sed_attrs = sa;
   2610 
   2611 	spawn_data->sed_parent = p1;
   2612 
   2613 	/* create LWP */
   2614 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2615 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2616 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2617 
   2618 	/*
   2619 	 * Copy the credential so other references don't see our changes.
   2620 	 * Test to see if this is necessary first, since in the common case
   2621 	 * we won't need a private reference.
   2622 	 */
   2623 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2624 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2625 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2626 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2627 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2628 	}
   2629 
   2630 	/* Update the master credentials. */
   2631 	if (l2->l_cred != p2->p_cred) {
   2632 		kauth_cred_t ocred;
   2633 
   2634 		kauth_cred_hold(l2->l_cred);
   2635 		mutex_enter(p2->p_lock);
   2636 		ocred = p2->p_cred;
   2637 		p2->p_cred = l2->l_cred;
   2638 		mutex_exit(p2->p_lock);
   2639 		kauth_cred_free(ocred);
   2640 	}
   2641 
   2642 	*child_ok = true;
   2643 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2644 #if 0
   2645 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2646 #endif
   2647 
   2648 	/*
   2649 	 * It's now safe for the scheduler and other processes to see the
   2650 	 * child process.
   2651 	 */
   2652 	mutex_enter(proc_lock);
   2653 
   2654 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2655 		p2->p_lflag |= PL_CONTROLT;
   2656 
   2657 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2658 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2659 
   2660 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
   2661 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2662 		proc_changeparent(p2, p1->p_pptr);
   2663 	}
   2664 
   2665 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2666 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2667 
   2668 	p2->p_trace_enabled = trace_is_enabled(p2);
   2669 #ifdef __HAVE_SYSCALL_INTERN
   2670 	(*p2->p_emul->e_syscall_intern)(p2);
   2671 #endif
   2672 
   2673 	/*
   2674 	 * Make child runnable, set start time, and add to run queue except
   2675 	 * if the parent requested the child to start in SSTOP state.
   2676 	 */
   2677 	mutex_enter(p2->p_lock);
   2678 
   2679 	getmicrotime(&p2->p_stats->p_start);
   2680 
   2681 	lwp_lock(l2);
   2682 	KASSERT(p2->p_nrlwps == 1);
   2683 	KASSERT(l2->l_stat == LSIDL);
   2684 	p2->p_nrlwps = 1;
   2685 	p2->p_stat = SACTIVE;
   2686 	setrunnable(l2);
   2687 	/* LWP now unlocked */
   2688 
   2689 	mutex_exit(p2->p_lock);
   2690 	mutex_exit(proc_lock);
   2691 
   2692 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2693 	error = spawn_data->sed_error;
   2694 	mutex_exit(&spawn_data->sed_mtx_child);
   2695 	spawn_exec_data_release(spawn_data);
   2696 
   2697 	rw_exit(&p1->p_reflock);
   2698 	rw_exit(&exec_lock);
   2699 	have_exec_lock = false;
   2700 
   2701 	*pid_res = pid;
   2702 
   2703 	if (error)
   2704 		return error;
   2705 
   2706 	if (p1->p_slflag & PSL_TRACED) {
   2707 		/* Paranoid check */
   2708 		mutex_enter(proc_lock);
   2709 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
   2710 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2711 			mutex_exit(proc_lock);
   2712 			return 0;
   2713 		}
   2714 
   2715 		mutex_enter(p1->p_lock);
   2716 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
   2717 	}
   2718 	return 0;
   2719 
   2720  error_exit:
   2721 	if (have_exec_lock) {
   2722 		execve_free_data(&spawn_data->sed_exec);
   2723 		rw_exit(&p1->p_reflock);
   2724 		rw_exit(&exec_lock);
   2725 	}
   2726 	mutex_exit(&spawn_data->sed_mtx_child);
   2727 	spawn_exec_data_release(spawn_data);
   2728 
   2729 	return error;
   2730 }
   2731 
   2732 int
   2733 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2734     register_t *retval)
   2735 {
   2736 	/* {
   2737 		syscallarg(pid_t *) pid;
   2738 		syscallarg(const char *) path;
   2739 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2740 		syscallarg(const struct posix_spawnattr *) attrp;
   2741 		syscallarg(char *const *) argv;
   2742 		syscallarg(char *const *) envp;
   2743 	} */
   2744 
   2745 	int error;
   2746 	struct posix_spawn_file_actions *fa = NULL;
   2747 	struct posix_spawnattr *sa = NULL;
   2748 	pid_t pid;
   2749 	bool child_ok = false;
   2750 	rlim_t max_fileactions;
   2751 	proc_t *p = l1->l_proc;
   2752 
   2753 	error = check_posix_spawn(l1);
   2754 	if (error) {
   2755 		*retval = error;
   2756 		return 0;
   2757 	}
   2758 
   2759 	/* copy in file_actions struct */
   2760 	if (SCARG(uap, file_actions) != NULL) {
   2761 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2762 		    maxfiles);
   2763 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2764 		    max_fileactions);
   2765 		if (error)
   2766 			goto error_exit;
   2767 	}
   2768 
   2769 	/* copyin posix_spawnattr struct */
   2770 	if (SCARG(uap, attrp) != NULL) {
   2771 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2772 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2773 		if (error)
   2774 			goto error_exit;
   2775 	}
   2776 
   2777 	/*
   2778 	 * Do the spawn
   2779 	 */
   2780 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2781 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2782 	if (error)
   2783 		goto error_exit;
   2784 
   2785 	if (error == 0 && SCARG(uap, pid) != NULL)
   2786 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2787 
   2788 	*retval = error;
   2789 	return 0;
   2790 
   2791  error_exit:
   2792 	if (!child_ok) {
   2793 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2794 		atomic_dec_uint(&nprocs);
   2795 
   2796 		if (sa)
   2797 			kmem_free(sa, sizeof(*sa));
   2798 		if (fa)
   2799 			posix_spawn_fa_free(fa, fa->len);
   2800 	}
   2801 
   2802 	*retval = error;
   2803 	return 0;
   2804 }
   2805 
   2806 void
   2807 exec_free_emul_arg(struct exec_package *epp)
   2808 {
   2809 	if (epp->ep_emul_arg_free != NULL) {
   2810 		KASSERT(epp->ep_emul_arg != NULL);
   2811 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2812 		epp->ep_emul_arg_free = NULL;
   2813 		epp->ep_emul_arg = NULL;
   2814 	} else {
   2815 		KASSERT(epp->ep_emul_arg == NULL);
   2816 	}
   2817 }
   2818 
   2819 #ifdef DEBUG_EXEC
   2820 static void
   2821 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2822 {
   2823 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2824 	size_t j;
   2825 
   2826 	if (error == 0)
   2827 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2828 	else
   2829 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2830 		    epp->ep_vmcmds.evs_used, error));
   2831 
   2832 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2833 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2834 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2835 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2836 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2837 		    "pagedvn" :
   2838 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2839 		    "readvn" :
   2840 		    vp[j].ev_proc == vmcmd_map_zero ?
   2841 		    "zero" : "*unknown*",
   2842 		    vp[j].ev_addr, vp[j].ev_len,
   2843 		    vp[j].ev_offset, vp[j].ev_prot,
   2844 		    vp[j].ev_flags));
   2845 		if (error != 0 && j == x)
   2846 			DPRINTF(("     ^--- failed\n"));
   2847 	}
   2848 }
   2849 #endif
   2850