kern_exec.c revision 1.500 1 /* $NetBSD: kern_exec.c,v 1.500 2020/05/07 20:02:34 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.500 2020/05/07 20:02:34 kamil Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <machine/reg.h>
116
117 #include <compat/common/compat_util.h>
118
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126
127 struct execve_data;
128
129 extern int user_va0_disable;
130
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134 char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137 char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148 __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156
157 /*
158 * DTrace SDT provider definitions
159 */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164
165 /*
166 * Exec function switch:
167 *
168 * Note that each makecmds function is responsible for loading the
169 * exec package with the necessary functions for any exec-type-specific
170 * handling.
171 *
172 * Functions for specific exec types should be defined in their own
173 * header file.
174 */
175 static const struct execsw **execsw = NULL;
176 static int nexecs;
177
178 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
179
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182 LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 LIST_ENTRY(exec_entry) ex_list;
185 SLIST_ENTRY(exec_entry) ex_slist;
186 const struct execsw *ex_sw;
187 };
188
189 #ifndef __HAVE_SYSCALL_INTERN
190 void syscall(void);
191 #endif
192
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 .e_name = "netbsd",
201 #ifdef EMUL_NATIVEROOT
202 .e_path = EMUL_NATIVEROOT,
203 #else
204 .e_path = NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 .e_flags = EMUL_HAS_SYS___syscall,
208 .e_errno = NULL,
209 .e_nosys = SYS_syscall,
210 .e_nsysent = SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 .e_sc_autoload = netbsd_syscalls_autoload,
214 #endif
215 .e_sysent = sysent,
216 .e_nomodbits = sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 .e_syscallnames = syscallnames,
219 #else
220 .e_syscallnames = NULL,
221 #endif
222 .e_sendsig = sendsig,
223 .e_trapsignal = trapsignal,
224 .e_sigcode = NULL,
225 .e_esigcode = NULL,
226 .e_sigobject = NULL,
227 .e_setregs = setregs,
228 .e_proc_exec = NULL,
229 .e_proc_fork = NULL,
230 .e_proc_exit = NULL,
231 .e_lwp_fork = NULL,
232 .e_lwp_exit = NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 .e_syscall_intern = syscall_intern,
235 #else
236 .e_syscall = syscall,
237 #endif
238 .e_sysctlovly = NULL,
239 .e_vm_default_addr = uvm_default_mapaddr,
240 .e_usertrap = NULL,
241 .e_ucsize = sizeof(ucontext_t),
242 .e_startlwp = startlwp
243 };
244
245 /*
246 * Exec lock. Used to control access to execsw[] structures.
247 * This must not be static so that netbsd32 can access it, too.
248 */
249 krwlock_t exec_lock __cacheline_aligned;
250
251 static kmutex_t sigobject_lock __cacheline_aligned;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 __func__, epp->ep_kname, error));
333 PNBUF_PUT(*rpath);
334 *rpath = NULL;
335 return error;
336 }
337 epp->ep_resolvedname = *rpath;
338 if ((p = strrchr(*rpath, '/')) != NULL)
339 epp->ep_kname = p + 1;
340 return 0;
341 }
342
343
344 /*
345 * check exec:
346 * given an "executable" described in the exec package's namei info,
347 * see what we can do with it.
348 *
349 * ON ENTRY:
350 * exec package with appropriate namei info
351 * lwp pointer of exec'ing lwp
352 * NO SELF-LOCKED VNODES
353 *
354 * ON EXIT:
355 * error: nothing held, etc. exec header still allocated.
356 * ok: filled exec package, executable's vnode (unlocked).
357 *
358 * EXEC SWITCH ENTRY:
359 * Locked vnode to check, exec package, proc.
360 *
361 * EXEC SWITCH EXIT:
362 * ok: return 0, filled exec package, executable's vnode (unlocked).
363 * error: destructive:
364 * everything deallocated execept exec header.
365 * non-destructive:
366 * error code, executable's vnode (unlocked),
367 * exec header unmodified.
368 */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372 char **rpath)
373 {
374 int error, i;
375 struct vnode *vp;
376 size_t resid;
377
378 if (epp->ep_resolvedname) {
379 struct nameidata nd;
380
381 // grab the absolute pathbuf here before namei() trashes it.
382 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384
385 /* first get the vnode */
386 if ((error = namei(&nd)) != 0)
387 return error;
388
389 epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 /* paranoia (take this out once namei stuff stabilizes) */
392 memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 } else {
395 struct file *fp;
396
397 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 return error;
399 epp->ep_vp = vp = fp->f_vnode;
400 vref(vp);
401 fd_putfile(epp->ep_xfd);
402 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 return error;
404 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 }
406
407 /* check access and type */
408 if (vp->v_type != VREG) {
409 error = EACCES;
410 goto bad1;
411 }
412 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 goto bad1;
414
415 /* get attributes */
416 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 goto bad1;
419
420 /* Check mount point */
421 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 error = EACCES;
423 goto bad1;
424 }
425 if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427
428 /* try to open it */
429 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 goto bad1;
431
432 /* now we have the file, get the exec header */
433 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 if (error)
436 goto bad1;
437
438 /* unlock vp, since we need it unlocked from here on out. */
439 VOP_UNLOCK(vp);
440
441 #if NVERIEXEC > 0
442 error = veriexec_verify(l, vp,
443 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 NULL);
446 if (error)
447 goto bad2;
448 #endif /* NVERIEXEC > 0 */
449
450 #ifdef PAX_SEGVGUARD
451 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 if (error)
453 goto bad2;
454 #endif /* PAX_SEGVGUARD */
455
456 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457
458 /*
459 * Set up default address space limits. Can be overridden
460 * by individual exec packages.
461 */
462 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464
465 /*
466 * set up the vmcmds for creation of the process
467 * address space
468 */
469 error = ENOEXEC;
470 for (i = 0; i < nexecs; i++) {
471 int newerror;
472
473 epp->ep_esch = execsw[i];
474 newerror = (*execsw[i]->es_makecmds)(l, epp);
475
476 if (!newerror) {
477 /* Seems ok: check that entry point is not too high */
478 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 printf("%s: rejecting %p due to "
481 "too high entry address (>= %p)\n",
482 __func__, (void *)epp->ep_entry,
483 (void *)epp->ep_vm_maxaddr);
484 #endif
485 error = ENOEXEC;
486 break;
487 }
488 /* Seems ok: check that entry point is not too low */
489 if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 printf("%s: rejecting %p due to "
492 "too low entry address (< %p)\n",
493 __func__, (void *)epp->ep_entry,
494 (void *)epp->ep_vm_minaddr);
495 #endif
496 error = ENOEXEC;
497 break;
498 }
499
500 /* check limits */
501 if ((epp->ep_tsize > MAXTSIZ) ||
502 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
503 [RLIMIT_DATA].rlim_cur)) {
504 #ifdef DIAGNOSTIC
505 printf("%s: rejecting due to "
506 "limits (t=%llu > %llu || d=%llu > %llu)\n",
507 __func__,
508 (unsigned long long)epp->ep_tsize,
509 (unsigned long long)MAXTSIZ,
510 (unsigned long long)epp->ep_dsize,
511 (unsigned long long)
512 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
513 #endif
514 error = ENOMEM;
515 break;
516 }
517 return 0;
518 }
519
520 /*
521 * Reset all the fields that may have been modified by the
522 * loader.
523 */
524 KASSERT(epp->ep_emul_arg == NULL);
525 if (epp->ep_emul_root != NULL) {
526 vrele(epp->ep_emul_root);
527 epp->ep_emul_root = NULL;
528 }
529 if (epp->ep_interp != NULL) {
530 vrele(epp->ep_interp);
531 epp->ep_interp = NULL;
532 }
533 epp->ep_pax_flags = 0;
534
535 /* make sure the first "interesting" error code is saved. */
536 if (error == ENOEXEC)
537 error = newerror;
538
539 if (epp->ep_flags & EXEC_DESTR)
540 /* Error from "#!" code, tidied up by recursive call */
541 return error;
542 }
543
544 /* not found, error */
545
546 /*
547 * free any vmspace-creation commands,
548 * and release their references
549 */
550 kill_vmcmds(&epp->ep_vmcmds);
551
552 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
553 bad2:
554 #endif
555 /*
556 * close and release the vnode, restore the old one, free the
557 * pathname buf, and punt.
558 */
559 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
560 VOP_CLOSE(vp, FREAD, l->l_cred);
561 vput(vp);
562 return error;
563
564 bad1:
565 /*
566 * free the namei pathname buffer, and put the vnode
567 * (which we don't yet have open).
568 */
569 vput(vp); /* was still locked */
570 return error;
571 }
572
573 #ifdef __MACHINE_STACK_GROWS_UP
574 #define STACK_PTHREADSPACE NBPG
575 #else
576 #define STACK_PTHREADSPACE 0
577 #endif
578
579 static int
580 execve_fetch_element(char * const *array, size_t index, char **value)
581 {
582 return copyin(array + index, value, sizeof(*value));
583 }
584
585 /*
586 * exec system call
587 */
588 int
589 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
590 {
591 /* {
592 syscallarg(const char *) path;
593 syscallarg(char * const *) argp;
594 syscallarg(char * const *) envp;
595 } */
596
597 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
598 SCARG(uap, envp), execve_fetch_element);
599 }
600
601 int
602 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
603 register_t *retval)
604 {
605 /* {
606 syscallarg(int) fd;
607 syscallarg(char * const *) argp;
608 syscallarg(char * const *) envp;
609 } */
610
611 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
612 SCARG(uap, envp), execve_fetch_element);
613 }
614
615 /*
616 * Load modules to try and execute an image that we do not understand.
617 * If no execsw entries are present, we load those likely to be needed
618 * in order to run native images only. Otherwise, we autoload all
619 * possible modules that could let us run the binary. XXX lame
620 */
621 static void
622 exec_autoload(void)
623 {
624 #ifdef MODULAR
625 static const char * const native[] = {
626 "exec_elf32",
627 "exec_elf64",
628 "exec_script",
629 NULL
630 };
631 static const char * const compat[] = {
632 "exec_elf32",
633 "exec_elf64",
634 "exec_script",
635 "exec_aout",
636 "exec_coff",
637 "exec_ecoff",
638 "compat_aoutm68k",
639 "compat_netbsd32",
640 #if 0
641 "compat_linux",
642 "compat_linux32",
643 #endif
644 "compat_sunos",
645 "compat_sunos32",
646 "compat_ultrix",
647 NULL
648 };
649 char const * const *list;
650 int i;
651
652 list = nexecs == 0 ? native : compat;
653 for (i = 0; list[i] != NULL; i++) {
654 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
655 continue;
656 }
657 yield();
658 }
659 #endif
660 }
661
662 /*
663 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
664 * making it absolute in the process, by prepending the current working
665 * directory if it is not. If offs is supplied it will contain the offset
666 * where the original supplied copy of upath starts.
667 */
668 int
669 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
670 struct pathbuf **pbp, size_t *offs)
671 {
672 char *path, *bp;
673 size_t len, tlen;
674 int error;
675 struct cwdinfo *cwdi;
676
677 path = PNBUF_GET();
678 if (seg == UIO_SYSSPACE) {
679 error = copystr(upath, path, MAXPATHLEN, &len);
680 } else {
681 error = copyinstr(upath, path, MAXPATHLEN, &len);
682 }
683 if (error)
684 goto err;
685
686 if (path[0] == '/') {
687 if (offs)
688 *offs = 0;
689 goto out;
690 }
691
692 len++;
693 if (len + 1 >= MAXPATHLEN) {
694 error = ENAMETOOLONG;
695 goto err;
696 }
697 bp = path + MAXPATHLEN - len;
698 memmove(bp, path, len);
699 *(--bp) = '/';
700
701 cwdi = l->l_proc->p_cwdi;
702 rw_enter(&cwdi->cwdi_lock, RW_READER);
703 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
704 GETCWD_CHECK_ACCESS, l);
705 rw_exit(&cwdi->cwdi_lock);
706
707 if (error)
708 goto err;
709 tlen = path + MAXPATHLEN - bp;
710
711 memmove(path, bp, tlen);
712 path[tlen - 1] = '\0';
713 if (offs)
714 *offs = tlen - len;
715 out:
716 *pbp = pathbuf_assimilate(path);
717 return 0;
718 err:
719 PNBUF_PUT(path);
720 return error;
721 }
722
723 vaddr_t
724 exec_vm_minaddr(vaddr_t va_min)
725 {
726 /*
727 * Increase va_min if we don't want NULL to be mappable by the
728 * process.
729 */
730 #define VM_MIN_GUARD PAGE_SIZE
731 if (user_va0_disable && (va_min < VM_MIN_GUARD))
732 return VM_MIN_GUARD;
733 return va_min;
734 }
735
736 static int
737 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
738 char * const *args, char * const *envs,
739 execve_fetch_element_t fetch_element,
740 struct execve_data * restrict data)
741 {
742 struct exec_package * const epp = &data->ed_pack;
743 int error;
744 struct proc *p;
745 char *dp;
746 u_int modgen;
747
748 KASSERT(data != NULL);
749
750 p = l->l_proc;
751 modgen = 0;
752
753 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
754
755 /*
756 * Check if we have exceeded our number of processes limit.
757 * This is so that we handle the case where a root daemon
758 * forked, ran setuid to become the desired user and is trying
759 * to exec. The obvious place to do the reference counting check
760 * is setuid(), but we don't do the reference counting check there
761 * like other OS's do because then all the programs that use setuid()
762 * must be modified to check the return code of setuid() and exit().
763 * It is dangerous to make setuid() fail, because it fails open and
764 * the program will continue to run as root. If we make it succeed
765 * and return an error code, again we are not enforcing the limit.
766 * The best place to enforce the limit is here, when the process tries
767 * to execute a new image, because eventually the process will need
768 * to call exec in order to do something useful.
769 */
770 retry:
771 if (p->p_flag & PK_SUGID) {
772 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
773 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
774 &p->p_rlimit[RLIMIT_NPROC],
775 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
776 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
777 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
778 return EAGAIN;
779 }
780
781 /*
782 * Drain existing references and forbid new ones. The process
783 * should be left alone until we're done here. This is necessary
784 * to avoid race conditions - e.g. in ptrace() - that might allow
785 * a local user to illicitly obtain elevated privileges.
786 */
787 rw_enter(&p->p_reflock, RW_WRITER);
788
789 if (has_path) {
790 size_t offs;
791 /*
792 * Init the namei data to point the file user's program name.
793 * This is done here rather than in check_exec(), so that it's
794 * possible to override this settings if any of makecmd/probe
795 * functions call check_exec() recursively - for example,
796 * see exec_script_makecmds().
797 */
798 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
799 &data->ed_pathbuf, &offs)) != 0)
800 goto clrflg;
801 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
802 epp->ep_kname = data->ed_pathstring + offs;
803 data->ed_resolvedname = PNBUF_GET();
804 epp->ep_resolvedname = data->ed_resolvedname;
805 epp->ep_xfd = -1;
806 } else {
807 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
808 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
809 epp->ep_kname = "*fexecve*";
810 data->ed_resolvedname = NULL;
811 epp->ep_resolvedname = NULL;
812 epp->ep_xfd = fd;
813 }
814
815
816 /*
817 * initialize the fields of the exec package.
818 */
819 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
820 epp->ep_hdrlen = exec_maxhdrsz;
821 epp->ep_hdrvalid = 0;
822 epp->ep_emul_arg = NULL;
823 epp->ep_emul_arg_free = NULL;
824 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
825 epp->ep_vap = &data->ed_attr;
826 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
827 MD_TOPDOWN_INIT(epp);
828 epp->ep_emul_root = NULL;
829 epp->ep_interp = NULL;
830 epp->ep_esch = NULL;
831 epp->ep_pax_flags = 0;
832 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
833
834 rw_enter(&exec_lock, RW_READER);
835
836 /* see if we can run it. */
837 if ((error = check_exec(l, epp, data->ed_pathbuf,
838 &data->ed_resolvedname)) != 0) {
839 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
840 DPRINTF(("%s: check exec failed for %s, error %d\n",
841 __func__, epp->ep_kname, error));
842 }
843 goto freehdr;
844 }
845
846 /* allocate an argument buffer */
847 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
848 KASSERT(data->ed_argp != NULL);
849 dp = data->ed_argp;
850
851 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
852 goto bad;
853 }
854
855 /*
856 * Calculate the new stack size.
857 */
858
859 #ifdef __MACHINE_STACK_GROWS_UP
860 /*
861 * copyargs() fills argc/argv/envp from the lower address even on
862 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
863 * so that _rtld() use it.
864 */
865 #define RTLD_GAP 32
866 #else
867 #define RTLD_GAP 0
868 #endif
869
870 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
871
872 data->ed_argslen = calcargs(data, argenvstrlen);
873
874 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
875
876 if (len > epp->ep_ssize) {
877 /* in effect, compare to initial limit */
878 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
879 error = ENOMEM;
880 goto bad;
881 }
882 /* adjust "active stack depth" for process VSZ */
883 epp->ep_ssize = len;
884
885 return 0;
886
887 bad:
888 /* free the vmspace-creation commands, and release their references */
889 kill_vmcmds(&epp->ep_vmcmds);
890 /* kill any opened file descriptor, if necessary */
891 if (epp->ep_flags & EXEC_HASFD) {
892 epp->ep_flags &= ~EXEC_HASFD;
893 fd_close(epp->ep_fd);
894 }
895 /* close and put the exec'd file */
896 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
897 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
898 vput(epp->ep_vp);
899 pool_put(&exec_pool, data->ed_argp);
900
901 freehdr:
902 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
903 if (epp->ep_emul_root != NULL)
904 vrele(epp->ep_emul_root);
905 if (epp->ep_interp != NULL)
906 vrele(epp->ep_interp);
907
908 rw_exit(&exec_lock);
909
910 exec_path_free(data);
911
912 clrflg:
913 rw_exit(&p->p_reflock);
914
915 if (modgen != module_gen && error == ENOEXEC) {
916 modgen = module_gen;
917 exec_autoload();
918 goto retry;
919 }
920
921 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
922 return error;
923 }
924
925 static int
926 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
927 {
928 struct exec_package * const epp = &data->ed_pack;
929 struct proc *p = l->l_proc;
930 struct exec_vmcmd *base_vcp;
931 int error = 0;
932 size_t i;
933
934 /* record proc's vnode, for use by procfs and others */
935 if (p->p_textvp)
936 vrele(p->p_textvp);
937 vref(epp->ep_vp);
938 p->p_textvp = epp->ep_vp;
939
940 /* create the new process's VM space by running the vmcmds */
941 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
942
943 #ifdef TRACE_EXEC
944 DUMPVMCMDS(epp, 0, 0);
945 #endif
946
947 base_vcp = NULL;
948
949 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
950 struct exec_vmcmd *vcp;
951
952 vcp = &epp->ep_vmcmds.evs_cmds[i];
953 if (vcp->ev_flags & VMCMD_RELATIVE) {
954 KASSERTMSG(base_vcp != NULL,
955 "%s: relative vmcmd with no base", __func__);
956 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
957 "%s: illegal base & relative vmcmd", __func__);
958 vcp->ev_addr += base_vcp->ev_addr;
959 }
960 error = (*vcp->ev_proc)(l, vcp);
961 if (error)
962 DUMPVMCMDS(epp, i, error);
963 if (vcp->ev_flags & VMCMD_BASE)
964 base_vcp = vcp;
965 }
966
967 /* free the vmspace-creation commands, and release their references */
968 kill_vmcmds(&epp->ep_vmcmds);
969
970 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
971 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
972 vput(epp->ep_vp);
973
974 /* if an error happened, deallocate and punt */
975 if (error != 0) {
976 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
977 }
978 return error;
979 }
980
981 static void
982 execve_free_data(struct execve_data *data)
983 {
984 struct exec_package * const epp = &data->ed_pack;
985
986 /* free the vmspace-creation commands, and release their references */
987 kill_vmcmds(&epp->ep_vmcmds);
988 /* kill any opened file descriptor, if necessary */
989 if (epp->ep_flags & EXEC_HASFD) {
990 epp->ep_flags &= ~EXEC_HASFD;
991 fd_close(epp->ep_fd);
992 }
993
994 /* close and put the exec'd file */
995 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
996 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
997 vput(epp->ep_vp);
998 pool_put(&exec_pool, data->ed_argp);
999
1000 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1001 if (epp->ep_emul_root != NULL)
1002 vrele(epp->ep_emul_root);
1003 if (epp->ep_interp != NULL)
1004 vrele(epp->ep_interp);
1005
1006 exec_path_free(data);
1007 }
1008
1009 static void
1010 pathexec(struct proc *p, const char *resolvedname)
1011 {
1012 /* set command name & other accounting info */
1013 const char *cmdname;
1014
1015 if (resolvedname == NULL) {
1016 cmdname = "*fexecve*";
1017 resolvedname = "/";
1018 } else {
1019 cmdname = strrchr(resolvedname, '/') + 1;
1020 }
1021 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1022 resolvedname);
1023
1024 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1025
1026 kmem_strfree(p->p_path);
1027 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1028 }
1029
1030 /* XXX elsewhere */
1031 static int
1032 credexec(struct lwp *l, struct vattr *attr)
1033 {
1034 struct proc *p = l->l_proc;
1035 int error;
1036
1037 /*
1038 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1039 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1040 * out additional references on the process for the moment.
1041 */
1042 if ((p->p_slflag & PSL_TRACED) == 0 &&
1043
1044 (((attr->va_mode & S_ISUID) != 0 &&
1045 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1046
1047 ((attr->va_mode & S_ISGID) != 0 &&
1048 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1049 /*
1050 * Mark the process as SUGID before we do
1051 * anything that might block.
1052 */
1053 proc_crmod_enter();
1054 proc_crmod_leave(NULL, NULL, true);
1055
1056 /* Make sure file descriptors 0..2 are in use. */
1057 if ((error = fd_checkstd()) != 0) {
1058 DPRINTF(("%s: fdcheckstd failed %d\n",
1059 __func__, error));
1060 return error;
1061 }
1062
1063 /*
1064 * Copy the credential so other references don't see our
1065 * changes.
1066 */
1067 l->l_cred = kauth_cred_copy(l->l_cred);
1068 #ifdef KTRACE
1069 /*
1070 * If the persistent trace flag isn't set, turn off.
1071 */
1072 if (p->p_tracep) {
1073 mutex_enter(&ktrace_lock);
1074 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1075 ktrderef(p);
1076 mutex_exit(&ktrace_lock);
1077 }
1078 #endif
1079 if (attr->va_mode & S_ISUID)
1080 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1081 if (attr->va_mode & S_ISGID)
1082 kauth_cred_setegid(l->l_cred, attr->va_gid);
1083 } else {
1084 if (kauth_cred_geteuid(l->l_cred) ==
1085 kauth_cred_getuid(l->l_cred) &&
1086 kauth_cred_getegid(l->l_cred) ==
1087 kauth_cred_getgid(l->l_cred))
1088 p->p_flag &= ~PK_SUGID;
1089 }
1090
1091 /*
1092 * Copy the credential so other references don't see our changes.
1093 * Test to see if this is necessary first, since in the common case
1094 * we won't need a private reference.
1095 */
1096 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1097 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1098 l->l_cred = kauth_cred_copy(l->l_cred);
1099 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1100 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1101 }
1102
1103 /* Update the master credentials. */
1104 if (l->l_cred != p->p_cred) {
1105 kauth_cred_t ocred;
1106
1107 kauth_cred_hold(l->l_cred);
1108 mutex_enter(p->p_lock);
1109 ocred = p->p_cred;
1110 p->p_cred = l->l_cred;
1111 mutex_exit(p->p_lock);
1112 kauth_cred_free(ocred);
1113 }
1114
1115 return 0;
1116 }
1117
1118 static void
1119 emulexec(struct lwp *l, struct exec_package *epp)
1120 {
1121 struct proc *p = l->l_proc;
1122
1123 /* The emulation root will usually have been found when we looked
1124 * for the elf interpreter (or similar), if not look now. */
1125 if (epp->ep_esch->es_emul->e_path != NULL &&
1126 epp->ep_emul_root == NULL)
1127 emul_find_root(l, epp);
1128
1129 /* Any old emulation root got removed by fdcloseexec */
1130 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1131 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1132 rw_exit(&p->p_cwdi->cwdi_lock);
1133 epp->ep_emul_root = NULL;
1134 if (epp->ep_interp != NULL)
1135 vrele(epp->ep_interp);
1136
1137 /*
1138 * Call emulation specific exec hook. This can setup per-process
1139 * p->p_emuldata or do any other per-process stuff an emulation needs.
1140 *
1141 * If we are executing process of different emulation than the
1142 * original forked process, call e_proc_exit() of the old emulation
1143 * first, then e_proc_exec() of new emulation. If the emulation is
1144 * same, the exec hook code should deallocate any old emulation
1145 * resources held previously by this process.
1146 */
1147 if (p->p_emul && p->p_emul->e_proc_exit
1148 && p->p_emul != epp->ep_esch->es_emul)
1149 (*p->p_emul->e_proc_exit)(p);
1150
1151 /*
1152 * Call exec hook. Emulation code may NOT store reference to anything
1153 * from &pack.
1154 */
1155 if (epp->ep_esch->es_emul->e_proc_exec)
1156 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1157
1158 /* update p_emul, the old value is no longer needed */
1159 p->p_emul = epp->ep_esch->es_emul;
1160
1161 /* ...and the same for p_execsw */
1162 p->p_execsw = epp->ep_esch;
1163
1164 #ifdef __HAVE_SYSCALL_INTERN
1165 (*p->p_emul->e_syscall_intern)(p);
1166 #endif
1167 ktremul();
1168 }
1169
1170 static int
1171 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1172 bool no_local_exec_lock, bool is_spawn)
1173 {
1174 struct exec_package * const epp = &data->ed_pack;
1175 int error = 0;
1176 struct proc *p;
1177 struct vmspace *vm;
1178
1179 /*
1180 * In case of a posix_spawn operation, the child doing the exec
1181 * might not hold the reader lock on exec_lock, but the parent
1182 * will do this instead.
1183 */
1184 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1185 KASSERT(!no_local_exec_lock || is_spawn);
1186 KASSERT(data != NULL);
1187
1188 p = l->l_proc;
1189
1190 /* Get rid of other LWPs. */
1191 if (p->p_nlwps > 1) {
1192 mutex_enter(p->p_lock);
1193 exit_lwps(l);
1194 mutex_exit(p->p_lock);
1195 }
1196 KDASSERT(p->p_nlwps == 1);
1197
1198 /* Destroy any lwpctl info. */
1199 if (p->p_lwpctl != NULL)
1200 lwp_ctl_exit();
1201
1202 /* Remove POSIX timers */
1203 timers_free(p, TIMERS_POSIX);
1204
1205 /* Set the PaX flags. */
1206 pax_set_flags(epp, p);
1207
1208 /*
1209 * Do whatever is necessary to prepare the address space
1210 * for remapping. Note that this might replace the current
1211 * vmspace with another!
1212 *
1213 * vfork(): do not touch any user space data in the new child
1214 * until we have awoken the parent below, or it will defeat
1215 * lazy pmap switching (on x86).
1216 */
1217 if (is_spawn)
1218 uvmspace_spawn(l, epp->ep_vm_minaddr,
1219 epp->ep_vm_maxaddr,
1220 epp->ep_flags & EXEC_TOPDOWN_VM);
1221 else
1222 uvmspace_exec(l, epp->ep_vm_minaddr,
1223 epp->ep_vm_maxaddr,
1224 epp->ep_flags & EXEC_TOPDOWN_VM);
1225 vm = p->p_vmspace;
1226
1227 vm->vm_taddr = (void *)epp->ep_taddr;
1228 vm->vm_tsize = btoc(epp->ep_tsize);
1229 vm->vm_daddr = (void*)epp->ep_daddr;
1230 vm->vm_dsize = btoc(epp->ep_dsize);
1231 vm->vm_ssize = btoc(epp->ep_ssize);
1232 vm->vm_issize = 0;
1233 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1234 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1235
1236 pax_aslr_init_vm(l, vm, epp);
1237
1238 cwdexec(p);
1239 fd_closeexec(); /* handle close on exec */
1240
1241 if (__predict_false(ktrace_on))
1242 fd_ktrexecfd();
1243
1244 execsigs(p); /* reset caught signals */
1245
1246 mutex_enter(p->p_lock);
1247 l->l_ctxlink = NULL; /* reset ucontext link */
1248 p->p_acflag &= ~AFORK;
1249 p->p_flag |= PK_EXEC;
1250 mutex_exit(p->p_lock);
1251
1252 error = credexec(l, &data->ed_attr);
1253 if (error)
1254 goto exec_abort;
1255
1256 #if defined(__HAVE_RAS)
1257 /*
1258 * Remove all RASs from the address space.
1259 */
1260 ras_purgeall();
1261 #endif
1262
1263 /*
1264 * Stop profiling.
1265 */
1266 if ((p->p_stflag & PST_PROFIL) != 0) {
1267 mutex_spin_enter(&p->p_stmutex);
1268 stopprofclock(p);
1269 mutex_spin_exit(&p->p_stmutex);
1270 }
1271
1272 /*
1273 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1274 * exited and exec()/exit() are the only places it will be cleared.
1275 *
1276 * Once the parent has been awoken, curlwp may teleport to a new CPU
1277 * in sched_vforkexec(), and it's then OK to start messing with user
1278 * data. See comment above.
1279 */
1280 if ((p->p_lflag & PL_PPWAIT) != 0) {
1281 bool samecpu;
1282 lwp_t *lp;
1283
1284 mutex_enter(proc_lock);
1285 lp = p->p_vforklwp;
1286 p->p_vforklwp = NULL;
1287 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1288 cv_broadcast(&lp->l_waitcv);
1289
1290 /* Clear flags after cv_broadcast() (scheduler needs them). */
1291 p->p_lflag &= ~PL_PPWAIT;
1292 lp->l_vforkwaiting = false;
1293
1294 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1295 samecpu = (lp->l_cpu == curlwp->l_cpu);
1296 mutex_exit(proc_lock);
1297
1298 /* Give the parent its CPU back - find a new home. */
1299 KASSERT(!is_spawn);
1300 sched_vforkexec(l, samecpu);
1301 }
1302
1303 /* Now map address space. */
1304 error = execve_dovmcmds(l, data);
1305 if (error != 0)
1306 goto exec_abort;
1307
1308 pathexec(p, epp->ep_resolvedname);
1309
1310 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1311
1312 error = copyoutargs(data, l, newstack);
1313 if (error != 0)
1314 goto exec_abort;
1315
1316 doexechooks(p);
1317
1318 /*
1319 * Set initial SP at the top of the stack.
1320 *
1321 * Note that on machines where stack grows up (e.g. hppa), SP points to
1322 * the end of arg/env strings. Userland guesses the address of argc
1323 * via ps_strings::ps_argvstr.
1324 */
1325
1326 /* Setup new registers and do misc. setup. */
1327 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1328 if (epp->ep_esch->es_setregs)
1329 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1330
1331 /* Provide a consistent LWP private setting */
1332 (void)lwp_setprivate(l, NULL);
1333
1334 /* Discard all PCU state; need to start fresh */
1335 pcu_discard_all(l);
1336
1337 /* map the process's signal trampoline code */
1338 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1339 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1340 goto exec_abort;
1341 }
1342
1343 pool_put(&exec_pool, data->ed_argp);
1344
1345 /* notify others that we exec'd */
1346 KNOTE(&p->p_klist, NOTE_EXEC);
1347
1348 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1349
1350 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1351
1352 emulexec(l, epp);
1353
1354 /* Allow new references from the debugger/procfs. */
1355 rw_exit(&p->p_reflock);
1356 if (!no_local_exec_lock)
1357 rw_exit(&exec_lock);
1358
1359 mutex_enter(proc_lock);
1360
1361 /* posix_spawn(3) reports a single event with implied exec(3) */
1362 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1363 mutex_enter(p->p_lock);
1364 eventswitch(TRAP_EXEC, 0, 0);
1365 mutex_enter(proc_lock);
1366 }
1367
1368 if (p->p_sflag & PS_STOPEXEC) {
1369 ksiginfoq_t kq;
1370
1371 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1372 p->p_pptr->p_nstopchild++;
1373 p->p_waited = 0;
1374 mutex_enter(p->p_lock);
1375 ksiginfo_queue_init(&kq);
1376 sigclearall(p, &contsigmask, &kq);
1377 lwp_lock(l);
1378 l->l_stat = LSSTOP;
1379 p->p_stat = SSTOP;
1380 p->p_nrlwps--;
1381 lwp_unlock(l);
1382 mutex_exit(p->p_lock);
1383 mutex_exit(proc_lock);
1384 lwp_lock(l);
1385 spc_lock(l->l_cpu);
1386 mi_switch(l);
1387 ksiginfo_queue_drain(&kq);
1388 } else {
1389 mutex_exit(proc_lock);
1390 }
1391
1392 exec_path_free(data);
1393 #ifdef TRACE_EXEC
1394 DPRINTF(("%s finished\n", __func__));
1395 #endif
1396 return EJUSTRETURN;
1397
1398 exec_abort:
1399 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1400 rw_exit(&p->p_reflock);
1401 if (!no_local_exec_lock)
1402 rw_exit(&exec_lock);
1403
1404 exec_path_free(data);
1405
1406 /*
1407 * the old process doesn't exist anymore. exit gracefully.
1408 * get rid of the (new) address space we have created, if any, get rid
1409 * of our namei data and vnode, and exit noting failure
1410 */
1411 if (vm != NULL) {
1412 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1413 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1414 }
1415
1416 exec_free_emul_arg(epp);
1417 pool_put(&exec_pool, data->ed_argp);
1418 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1419 if (epp->ep_emul_root != NULL)
1420 vrele(epp->ep_emul_root);
1421 if (epp->ep_interp != NULL)
1422 vrele(epp->ep_interp);
1423
1424 /* Acquire the sched-state mutex (exit1() will release it). */
1425 if (!is_spawn) {
1426 mutex_enter(p->p_lock);
1427 exit1(l, error, SIGABRT);
1428 }
1429
1430 return error;
1431 }
1432
1433 int
1434 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1435 char * const *args, char * const *envs,
1436 execve_fetch_element_t fetch_element)
1437 {
1438 struct execve_data data;
1439 int error;
1440
1441 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1442 &data);
1443 if (error)
1444 return error;
1445 error = execve_runproc(l, &data, false, false);
1446 return error;
1447 }
1448
1449 static size_t
1450 fromptrsz(const struct exec_package *epp)
1451 {
1452 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1453 }
1454
1455 static size_t
1456 ptrsz(const struct exec_package *epp)
1457 {
1458 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1459 }
1460
1461 static size_t
1462 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1463 {
1464 struct exec_package * const epp = &data->ed_pack;
1465
1466 const size_t nargenvptrs =
1467 1 + /* long argc */
1468 data->ed_argc + /* char *argv[] */
1469 1 + /* \0 */
1470 data->ed_envc + /* char *env[] */
1471 1; /* \0 */
1472
1473 return (nargenvptrs * ptrsz(epp)) /* pointers */
1474 + argenvstrlen /* strings */
1475 + epp->ep_esch->es_arglen; /* auxinfo */
1476 }
1477
1478 static size_t
1479 calcstack(struct execve_data * restrict data, const size_t gaplen)
1480 {
1481 struct exec_package * const epp = &data->ed_pack;
1482
1483 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1484 epp->ep_esch->es_emul->e_sigcode;
1485
1486 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1487 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1488
1489 const size_t sigcode_psstr_sz =
1490 data->ed_szsigcode + /* sigcode */
1491 data->ed_ps_strings_sz + /* ps_strings */
1492 STACK_PTHREADSPACE; /* pthread space */
1493
1494 const size_t stacklen =
1495 data->ed_argslen +
1496 gaplen +
1497 sigcode_psstr_sz;
1498
1499 /* make the stack "safely" aligned */
1500 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1501 }
1502
1503 static int
1504 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1505 char * const newstack)
1506 {
1507 struct exec_package * const epp = &data->ed_pack;
1508 struct proc *p = l->l_proc;
1509 int error;
1510
1511 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1512
1513 /* remember information about the process */
1514 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1515 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1516
1517 /*
1518 * Allocate the stack address passed to the newly execve()'ed process.
1519 *
1520 * The new stack address will be set to the SP (stack pointer) register
1521 * in setregs().
1522 */
1523
1524 char *newargs = STACK_ALLOC(
1525 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1526
1527 error = (*epp->ep_esch->es_copyargs)(l, epp,
1528 &data->ed_arginfo, &newargs, data->ed_argp);
1529
1530 if (error) {
1531 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1532 return error;
1533 }
1534
1535 error = copyoutpsstrs(data, p);
1536 if (error != 0)
1537 return error;
1538
1539 return 0;
1540 }
1541
1542 static int
1543 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1544 {
1545 struct exec_package * const epp = &data->ed_pack;
1546 struct ps_strings32 arginfo32;
1547 void *aip;
1548 int error;
1549
1550 /* fill process ps_strings info */
1551 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1552 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1553
1554 if (epp->ep_flags & EXEC_32) {
1555 aip = &arginfo32;
1556 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1557 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1558 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1559 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1560 } else
1561 aip = &data->ed_arginfo;
1562
1563 /* copy out the process's ps_strings structure */
1564 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1565 != 0) {
1566 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1567 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1568 return error;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int
1575 copyinargs(struct execve_data * restrict data, char * const *args,
1576 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1577 {
1578 struct exec_package * const epp = &data->ed_pack;
1579 char *dp;
1580 size_t i;
1581 int error;
1582
1583 dp = *dpp;
1584
1585 data->ed_argc = 0;
1586
1587 /* copy the fake args list, if there's one, freeing it as we go */
1588 if (epp->ep_flags & EXEC_HASARGL) {
1589 struct exec_fakearg *fa = epp->ep_fa;
1590
1591 while (fa->fa_arg != NULL) {
1592 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1593 size_t len;
1594
1595 len = strlcpy(dp, fa->fa_arg, maxlen);
1596 /* Count NUL into len. */
1597 if (len < maxlen)
1598 len++;
1599 else {
1600 while (fa->fa_arg != NULL) {
1601 kmem_free(fa->fa_arg, fa->fa_len);
1602 fa++;
1603 }
1604 kmem_free(epp->ep_fa, epp->ep_fa_len);
1605 epp->ep_flags &= ~EXEC_HASARGL;
1606 return E2BIG;
1607 }
1608 ktrexecarg(fa->fa_arg, len - 1);
1609 dp += len;
1610
1611 kmem_free(fa->fa_arg, fa->fa_len);
1612 fa++;
1613 data->ed_argc++;
1614 }
1615 kmem_free(epp->ep_fa, epp->ep_fa_len);
1616 epp->ep_flags &= ~EXEC_HASARGL;
1617 }
1618
1619 /*
1620 * Read and count argument strings from user.
1621 */
1622
1623 if (args == NULL) {
1624 DPRINTF(("%s: null args\n", __func__));
1625 return EINVAL;
1626 }
1627 if (epp->ep_flags & EXEC_SKIPARG)
1628 args = (const void *)((const char *)args + fromptrsz(epp));
1629 i = 0;
1630 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1631 if (error != 0) {
1632 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1633 return error;
1634 }
1635 data->ed_argc += i;
1636
1637 /*
1638 * Read and count environment strings from user.
1639 */
1640
1641 data->ed_envc = 0;
1642 /* environment need not be there */
1643 if (envs == NULL)
1644 goto done;
1645 i = 0;
1646 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1647 if (error != 0) {
1648 DPRINTF(("%s: copyin env %d\n", __func__, error));
1649 return error;
1650 }
1651 data->ed_envc += i;
1652
1653 done:
1654 *dpp = dp;
1655
1656 return 0;
1657 }
1658
1659 static int
1660 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1661 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1662 void (*ktr)(const void *, size_t))
1663 {
1664 char *dp, *sp;
1665 size_t i;
1666 int error;
1667
1668 dp = *dpp;
1669
1670 i = 0;
1671 while (1) {
1672 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1673 size_t len;
1674
1675 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1676 return error;
1677 }
1678 if (!sp)
1679 break;
1680 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1681 if (error == ENAMETOOLONG)
1682 error = E2BIG;
1683 return error;
1684 }
1685 if (__predict_false(ktrace_on))
1686 (*ktr)(dp, len - 1);
1687 dp += len;
1688 i++;
1689 }
1690
1691 *dpp = dp;
1692 *ip = i;
1693
1694 return 0;
1695 }
1696
1697 /*
1698 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1699 * Those strings are located just after auxinfo.
1700 */
1701 int
1702 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1703 char **stackp, void *argp)
1704 {
1705 char **cpp, *dp, *sp;
1706 size_t len;
1707 void *nullp;
1708 long argc, envc;
1709 int error;
1710
1711 cpp = (char **)*stackp;
1712 nullp = NULL;
1713 argc = arginfo->ps_nargvstr;
1714 envc = arginfo->ps_nenvstr;
1715
1716 /* argc on stack is long */
1717 CTASSERT(sizeof(*cpp) == sizeof(argc));
1718
1719 dp = (char *)(cpp +
1720 1 + /* long argc */
1721 argc + /* char *argv[] */
1722 1 + /* \0 */
1723 envc + /* char *env[] */
1724 1) + /* \0 */
1725 pack->ep_esch->es_arglen; /* auxinfo */
1726 sp = argp;
1727
1728 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1729 COPYPRINTF("", cpp - 1, sizeof(argc));
1730 return error;
1731 }
1732
1733 /* XXX don't copy them out, remap them! */
1734 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1735
1736 for (; --argc >= 0; sp += len, dp += len) {
1737 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1738 COPYPRINTF("", cpp - 1, sizeof(dp));
1739 return error;
1740 }
1741 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1742 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1743 return error;
1744 }
1745 }
1746
1747 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1748 COPYPRINTF("", cpp - 1, sizeof(nullp));
1749 return error;
1750 }
1751
1752 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1753
1754 for (; --envc >= 0; sp += len, dp += len) {
1755 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1756 COPYPRINTF("", cpp - 1, sizeof(dp));
1757 return error;
1758 }
1759 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1760 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1761 return error;
1762 }
1763
1764 }
1765
1766 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1767 COPYPRINTF("", cpp - 1, sizeof(nullp));
1768 return error;
1769 }
1770
1771 *stackp = (char *)cpp;
1772 return 0;
1773 }
1774
1775
1776 /*
1777 * Add execsw[] entries.
1778 */
1779 int
1780 exec_add(struct execsw *esp, int count)
1781 {
1782 struct exec_entry *it;
1783 int i;
1784
1785 if (count == 0) {
1786 return 0;
1787 }
1788
1789 /* Check for duplicates. */
1790 rw_enter(&exec_lock, RW_WRITER);
1791 for (i = 0; i < count; i++) {
1792 LIST_FOREACH(it, &ex_head, ex_list) {
1793 /* assume unique (makecmds, probe_func, emulation) */
1794 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1795 it->ex_sw->u.elf_probe_func ==
1796 esp[i].u.elf_probe_func &&
1797 it->ex_sw->es_emul == esp[i].es_emul) {
1798 rw_exit(&exec_lock);
1799 return EEXIST;
1800 }
1801 }
1802 }
1803
1804 /* Allocate new entries. */
1805 for (i = 0; i < count; i++) {
1806 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1807 it->ex_sw = &esp[i];
1808 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1809 }
1810
1811 /* update execsw[] */
1812 exec_init(0);
1813 rw_exit(&exec_lock);
1814 return 0;
1815 }
1816
1817 /*
1818 * Remove execsw[] entry.
1819 */
1820 int
1821 exec_remove(struct execsw *esp, int count)
1822 {
1823 struct exec_entry *it, *next;
1824 int i;
1825 const struct proclist_desc *pd;
1826 proc_t *p;
1827
1828 if (count == 0) {
1829 return 0;
1830 }
1831
1832 /* Abort if any are busy. */
1833 rw_enter(&exec_lock, RW_WRITER);
1834 for (i = 0; i < count; i++) {
1835 mutex_enter(proc_lock);
1836 for (pd = proclists; pd->pd_list != NULL; pd++) {
1837 PROCLIST_FOREACH(p, pd->pd_list) {
1838 if (p->p_execsw == &esp[i]) {
1839 mutex_exit(proc_lock);
1840 rw_exit(&exec_lock);
1841 return EBUSY;
1842 }
1843 }
1844 }
1845 mutex_exit(proc_lock);
1846 }
1847
1848 /* None are busy, so remove them all. */
1849 for (i = 0; i < count; i++) {
1850 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1851 next = LIST_NEXT(it, ex_list);
1852 if (it->ex_sw == &esp[i]) {
1853 LIST_REMOVE(it, ex_list);
1854 kmem_free(it, sizeof(*it));
1855 break;
1856 }
1857 }
1858 }
1859
1860 /* update execsw[] */
1861 exec_init(0);
1862 rw_exit(&exec_lock);
1863 return 0;
1864 }
1865
1866 /*
1867 * Initialize exec structures. If init_boot is true, also does necessary
1868 * one-time initialization (it's called from main() that way).
1869 * Once system is multiuser, this should be called with exec_lock held,
1870 * i.e. via exec_{add|remove}().
1871 */
1872 int
1873 exec_init(int init_boot)
1874 {
1875 const struct execsw **sw;
1876 struct exec_entry *ex;
1877 SLIST_HEAD(,exec_entry) first;
1878 SLIST_HEAD(,exec_entry) any;
1879 SLIST_HEAD(,exec_entry) last;
1880 int i, sz;
1881
1882 if (init_boot) {
1883 /* do one-time initializations */
1884 vaddr_t vmin = 0, vmax;
1885
1886 rw_init(&exec_lock);
1887 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1888 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1889 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1890 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1891 "execargs", &exec_palloc, IPL_NONE);
1892 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1893 } else {
1894 KASSERT(rw_write_held(&exec_lock));
1895 }
1896
1897 /* Sort each entry onto the appropriate queue. */
1898 SLIST_INIT(&first);
1899 SLIST_INIT(&any);
1900 SLIST_INIT(&last);
1901 sz = 0;
1902 LIST_FOREACH(ex, &ex_head, ex_list) {
1903 switch(ex->ex_sw->es_prio) {
1904 case EXECSW_PRIO_FIRST:
1905 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1906 break;
1907 case EXECSW_PRIO_ANY:
1908 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1909 break;
1910 case EXECSW_PRIO_LAST:
1911 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1912 break;
1913 default:
1914 panic("%s", __func__);
1915 break;
1916 }
1917 sz++;
1918 }
1919
1920 /*
1921 * Create new execsw[]. Ensure we do not try a zero-sized
1922 * allocation.
1923 */
1924 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1925 i = 0;
1926 SLIST_FOREACH(ex, &first, ex_slist) {
1927 sw[i++] = ex->ex_sw;
1928 }
1929 SLIST_FOREACH(ex, &any, ex_slist) {
1930 sw[i++] = ex->ex_sw;
1931 }
1932 SLIST_FOREACH(ex, &last, ex_slist) {
1933 sw[i++] = ex->ex_sw;
1934 }
1935
1936 /* Replace old execsw[] and free used memory. */
1937 if (execsw != NULL) {
1938 kmem_free(__UNCONST(execsw),
1939 nexecs * sizeof(struct execsw *) + 1);
1940 }
1941 execsw = sw;
1942 nexecs = sz;
1943
1944 /* Figure out the maximum size of an exec header. */
1945 exec_maxhdrsz = sizeof(int);
1946 for (i = 0; i < nexecs; i++) {
1947 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1948 exec_maxhdrsz = execsw[i]->es_hdrsz;
1949 }
1950
1951 return 0;
1952 }
1953
1954 static int
1955 exec_sigcode_map(struct proc *p, const struct emul *e)
1956 {
1957 vaddr_t va;
1958 vsize_t sz;
1959 int error;
1960 struct uvm_object *uobj;
1961
1962 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1963
1964 if (e->e_sigobject == NULL || sz == 0) {
1965 return 0;
1966 }
1967
1968 /*
1969 * If we don't have a sigobject for this emulation, create one.
1970 *
1971 * sigobject is an anonymous memory object (just like SYSV shared
1972 * memory) that we keep a permanent reference to and that we map
1973 * in all processes that need this sigcode. The creation is simple,
1974 * we create an object, add a permanent reference to it, map it in
1975 * kernel space, copy out the sigcode to it and unmap it.
1976 * We map it with PROT_READ|PROT_EXEC into the process just
1977 * the way sys_mmap() would map it.
1978 */
1979
1980 uobj = *e->e_sigobject;
1981 if (uobj == NULL) {
1982 mutex_enter(&sigobject_lock);
1983 if ((uobj = *e->e_sigobject) == NULL) {
1984 uobj = uao_create(sz, 0);
1985 (*uobj->pgops->pgo_reference)(uobj);
1986 va = vm_map_min(kernel_map);
1987 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1988 uobj, 0, 0,
1989 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1990 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1991 printf("kernel mapping failed %d\n", error);
1992 (*uobj->pgops->pgo_detach)(uobj);
1993 mutex_exit(&sigobject_lock);
1994 return error;
1995 }
1996 memcpy((void *)va, e->e_sigcode, sz);
1997 #ifdef PMAP_NEED_PROCWR
1998 pmap_procwr(&proc0, va, sz);
1999 #endif
2000 uvm_unmap(kernel_map, va, va + round_page(sz));
2001 *e->e_sigobject = uobj;
2002 }
2003 mutex_exit(&sigobject_lock);
2004 }
2005
2006 /* Just a hint to uvm_map where to put it. */
2007 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2008 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2009
2010 #ifdef __alpha__
2011 /*
2012 * Tru64 puts /sbin/loader at the end of user virtual memory,
2013 * which causes the above calculation to put the sigcode at
2014 * an invalid address. Put it just below the text instead.
2015 */
2016 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2017 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2018 }
2019 #endif
2020
2021 (*uobj->pgops->pgo_reference)(uobj);
2022 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2023 uobj, 0, 0,
2024 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2025 UVM_ADV_RANDOM, 0));
2026 if (error) {
2027 DPRINTF(("%s, %d: map %p "
2028 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2029 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2030 va, error));
2031 (*uobj->pgops->pgo_detach)(uobj);
2032 return error;
2033 }
2034 p->p_sigctx.ps_sigcode = (void *)va;
2035 return 0;
2036 }
2037
2038 /*
2039 * Release a refcount on spawn_exec_data and destroy memory, if this
2040 * was the last one.
2041 */
2042 static void
2043 spawn_exec_data_release(struct spawn_exec_data *data)
2044 {
2045 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2046 return;
2047
2048 cv_destroy(&data->sed_cv_child_ready);
2049 mutex_destroy(&data->sed_mtx_child);
2050
2051 if (data->sed_actions)
2052 posix_spawn_fa_free(data->sed_actions,
2053 data->sed_actions->len);
2054 if (data->sed_attrs)
2055 kmem_free(data->sed_attrs,
2056 sizeof(*data->sed_attrs));
2057 kmem_free(data, sizeof(*data));
2058 }
2059
2060 static int
2061 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2062 {
2063 struct lwp *l = curlwp;
2064 register_t retval;
2065 int error, newfd;
2066
2067 if (actions == NULL)
2068 return 0;
2069
2070 for (size_t i = 0; i < actions->len; i++) {
2071 const struct posix_spawn_file_actions_entry *fae =
2072 &actions->fae[i];
2073 switch (fae->fae_action) {
2074 case FAE_OPEN:
2075 if (fd_getfile(fae->fae_fildes) != NULL) {
2076 error = fd_close(fae->fae_fildes);
2077 if (error)
2078 return error;
2079 }
2080 error = fd_open(fae->fae_path, fae->fae_oflag,
2081 fae->fae_mode, &newfd);
2082 if (error)
2083 return error;
2084 if (newfd != fae->fae_fildes) {
2085 error = dodup(l, newfd,
2086 fae->fae_fildes, 0, &retval);
2087 if (fd_getfile(newfd) != NULL)
2088 fd_close(newfd);
2089 }
2090 break;
2091 case FAE_DUP2:
2092 error = dodup(l, fae->fae_fildes,
2093 fae->fae_newfildes, 0, &retval);
2094 break;
2095 case FAE_CLOSE:
2096 if (fd_getfile(fae->fae_fildes) == NULL) {
2097 return EBADF;
2098 }
2099 error = fd_close(fae->fae_fildes);
2100 break;
2101 }
2102 if (error)
2103 return error;
2104 }
2105 return 0;
2106 }
2107
2108 static int
2109 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2110 {
2111 struct sigaction sigact;
2112 int error;
2113 struct proc *p = curproc;
2114 struct lwp *l = curlwp;
2115
2116 if (attrs == NULL)
2117 return 0;
2118
2119 memset(&sigact, 0, sizeof(sigact));
2120 sigact._sa_u._sa_handler = SIG_DFL;
2121 sigact.sa_flags = 0;
2122
2123 /*
2124 * set state to SSTOP so that this proc can be found by pid.
2125 * see proc_enterprp, do_sched_setparam below
2126 */
2127 mutex_enter(proc_lock);
2128 /*
2129 * p_stat should be SACTIVE, so we need to adjust the
2130 * parent's p_nstopchild here. For safety, just make
2131 * we're on the good side of SDEAD before we adjust.
2132 */
2133 int ostat = p->p_stat;
2134 KASSERT(ostat < SSTOP);
2135 p->p_stat = SSTOP;
2136 p->p_waited = 0;
2137 p->p_pptr->p_nstopchild++;
2138 mutex_exit(proc_lock);
2139
2140 /* Set process group */
2141 if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2142 pid_t mypid = p->p_pid;
2143 pid_t pgrp = attrs->sa_pgroup;
2144
2145 if (pgrp == 0)
2146 pgrp = mypid;
2147
2148 error = proc_enterpgrp(parent, mypid, pgrp, false);
2149 if (error)
2150 goto out;
2151 }
2152
2153 /* Set scheduler policy */
2154 if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2155 error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2156 &attrs->sa_schedparam);
2157 else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2158 error = do_sched_setparam(parent->p_pid, 0,
2159 SCHED_NONE, &attrs->sa_schedparam);
2160 }
2161 if (error)
2162 goto out;
2163
2164 /* Reset user ID's */
2165 if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2166 error = do_setresuid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2167 ID_E_EQ_R | ID_E_EQ_S);
2168 if (error)
2169 return error;
2170 error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2171 ID_E_EQ_R | ID_E_EQ_S);
2172 if (error)
2173 goto out;
2174 }
2175
2176 /* Set signal masks/defaults */
2177 if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2178 mutex_enter(p->p_lock);
2179 error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2180 mutex_exit(p->p_lock);
2181 if (error)
2182 goto out;
2183 }
2184
2185 if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2186 /*
2187 * The following sigaction call is using a sigaction
2188 * version 0 trampoline which is in the compatibility
2189 * code only. This is not a problem because for SIG_DFL
2190 * and SIG_IGN, the trampolines are now ignored. If they
2191 * were not, this would be a problem because we are
2192 * holding the exec_lock, and the compat code needs
2193 * to do the same in order to replace the trampoline
2194 * code of the process.
2195 */
2196 for (int i = 1; i <= NSIG; i++) {
2197 if (sigismember(&attrs->sa_sigdefault, i))
2198 sigaction1(l, i, &sigact, NULL, NULL, 0);
2199 }
2200 }
2201 error = 0;
2202 out:
2203 mutex_enter(proc_lock);
2204 p->p_stat = ostat;
2205 p->p_pptr->p_nstopchild--;
2206 mutex_exit(proc_lock);
2207 return error;
2208 }
2209
2210 /*
2211 * A child lwp of a posix_spawn operation starts here and ends up in
2212 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2213 * manipulations in between.
2214 * The parent waits for the child, as it is not clear whether the child
2215 * will be able to acquire its own exec_lock. If it can, the parent can
2216 * be released early and continue running in parallel. If not (or if the
2217 * magic debug flag is passed in the scheduler attribute struct), the
2218 * child rides on the parent's exec lock until it is ready to return to
2219 * to userland - and only then releases the parent. This method loses
2220 * concurrency, but improves error reporting.
2221 */
2222 static void
2223 spawn_return(void *arg)
2224 {
2225 struct spawn_exec_data *spawn_data = arg;
2226 struct lwp *l = curlwp;
2227 struct proc *p = l->l_proc;
2228 int error;
2229 bool have_reflock;
2230 bool parent_is_waiting = true;
2231
2232 /*
2233 * Check if we can release parent early.
2234 * We either need to have no sed_attrs, or sed_attrs does not
2235 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2236 * safe access to the parent proc (passed in sed_parent).
2237 * We then try to get the exec_lock, and only if that works, we can
2238 * release the parent here already.
2239 */
2240 struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2241 if ((!attrs || (attrs->sa_flags
2242 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2243 && rw_tryenter(&exec_lock, RW_READER)) {
2244 parent_is_waiting = false;
2245 mutex_enter(&spawn_data->sed_mtx_child);
2246 cv_signal(&spawn_data->sed_cv_child_ready);
2247 mutex_exit(&spawn_data->sed_mtx_child);
2248 }
2249
2250 /* don't allow debugger access yet */
2251 rw_enter(&p->p_reflock, RW_WRITER);
2252 have_reflock = true;
2253
2254 /* handle posix_spawn_file_actions */
2255 error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2256 if (error)
2257 goto report_error;
2258
2259 /* handle posix_spawnattr */
2260 error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2261 if (error)
2262 goto report_error;
2263
2264 /* now do the real exec */
2265 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2266 true);
2267 have_reflock = false;
2268 if (error == EJUSTRETURN)
2269 error = 0;
2270 else if (error)
2271 goto report_error;
2272
2273 if (parent_is_waiting) {
2274 mutex_enter(&spawn_data->sed_mtx_child);
2275 cv_signal(&spawn_data->sed_cv_child_ready);
2276 mutex_exit(&spawn_data->sed_mtx_child);
2277 }
2278
2279 /* release our refcount on the data */
2280 spawn_exec_data_release(spawn_data);
2281
2282 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2283 (PSL_TRACED|PSL_TRACEDCHILD)) {
2284 eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2285 }
2286
2287 /* and finally: leave to userland for the first time */
2288 cpu_spawn_return(l);
2289
2290 /* NOTREACHED */
2291 return;
2292
2293 report_error:
2294 if (have_reflock) {
2295 /*
2296 * We have not passed through execve_runproc(),
2297 * which would have released the p_reflock and also
2298 * taken ownership of the sed_exec part of spawn_data,
2299 * so release/free both here.
2300 */
2301 rw_exit(&p->p_reflock);
2302 execve_free_data(&spawn_data->sed_exec);
2303 }
2304
2305 if (parent_is_waiting) {
2306 /* pass error to parent */
2307 mutex_enter(&spawn_data->sed_mtx_child);
2308 spawn_data->sed_error = error;
2309 cv_signal(&spawn_data->sed_cv_child_ready);
2310 mutex_exit(&spawn_data->sed_mtx_child);
2311 } else {
2312 rw_exit(&exec_lock);
2313 }
2314
2315 /* release our refcount on the data */
2316 spawn_exec_data_release(spawn_data);
2317
2318 /* done, exit */
2319 mutex_enter(p->p_lock);
2320 /*
2321 * Posix explicitly asks for an exit code of 127 if we report
2322 * errors from the child process - so, unfortunately, there
2323 * is no way to report a more exact error code.
2324 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2325 * flag bit in the attrp argument to posix_spawn(2), see above.
2326 */
2327 exit1(l, 127, 0);
2328 }
2329
2330 void
2331 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2332 {
2333
2334 for (size_t i = 0; i < len; i++) {
2335 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2336 if (fae->fae_action != FAE_OPEN)
2337 continue;
2338 kmem_strfree(fae->fae_path);
2339 }
2340 if (fa->len > 0)
2341 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2342 kmem_free(fa, sizeof(*fa));
2343 }
2344
2345 static int
2346 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2347 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2348 {
2349 struct posix_spawn_file_actions *fa;
2350 struct posix_spawn_file_actions_entry *fae;
2351 char *pbuf = NULL;
2352 int error;
2353 size_t i = 0;
2354
2355 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2356 error = copyin(ufa, fa, sizeof(*fa));
2357 if (error || fa->len == 0) {
2358 kmem_free(fa, sizeof(*fa));
2359 return error; /* 0 if not an error, and len == 0 */
2360 }
2361
2362 if (fa->len > lim) {
2363 kmem_free(fa, sizeof(*fa));
2364 return EINVAL;
2365 }
2366
2367 fa->size = fa->len;
2368 size_t fal = fa->len * sizeof(*fae);
2369 fae = fa->fae;
2370 fa->fae = kmem_alloc(fal, KM_SLEEP);
2371 error = copyin(fae, fa->fae, fal);
2372 if (error)
2373 goto out;
2374
2375 pbuf = PNBUF_GET();
2376 for (; i < fa->len; i++) {
2377 fae = &fa->fae[i];
2378 if (fae->fae_action != FAE_OPEN)
2379 continue;
2380 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2381 if (error)
2382 goto out;
2383 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2384 memcpy(fae->fae_path, pbuf, fal);
2385 }
2386 PNBUF_PUT(pbuf);
2387
2388 *fap = fa;
2389 return 0;
2390 out:
2391 if (pbuf)
2392 PNBUF_PUT(pbuf);
2393 posix_spawn_fa_free(fa, i);
2394 return error;
2395 }
2396
2397 /*
2398 * N.B. increments nprocs upon success. Callers need to drop nprocs if
2399 * they fail for some other reason.
2400 */
2401 int
2402 check_posix_spawn(struct lwp *l1)
2403 {
2404 int error, tnprocs, count;
2405 uid_t uid;
2406 struct proc *p1;
2407
2408 p1 = l1->l_proc;
2409 uid = kauth_cred_getuid(l1->l_cred);
2410 tnprocs = atomic_inc_uint_nv(&nprocs);
2411
2412 /*
2413 * Although process entries are dynamically created, we still keep
2414 * a global limit on the maximum number we will create.
2415 */
2416 if (__predict_false(tnprocs >= maxproc))
2417 error = -1;
2418 else
2419 error = kauth_authorize_process(l1->l_cred,
2420 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2421
2422 if (error) {
2423 atomic_dec_uint(&nprocs);
2424 return EAGAIN;
2425 }
2426
2427 /*
2428 * Enforce limits.
2429 */
2430 count = chgproccnt(uid, 1);
2431 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2432 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2433 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2434 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2435 (void)chgproccnt(uid, -1);
2436 atomic_dec_uint(&nprocs);
2437 return EAGAIN;
2438 }
2439
2440 return 0;
2441 }
2442
2443 int
2444 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2445 struct posix_spawn_file_actions *fa,
2446 struct posix_spawnattr *sa,
2447 char *const *argv, char *const *envp,
2448 execve_fetch_element_t fetch)
2449 {
2450
2451 struct proc *p1, *p2;
2452 struct lwp *l2;
2453 int error;
2454 struct spawn_exec_data *spawn_data;
2455 vaddr_t uaddr;
2456 pid_t pid;
2457 bool have_exec_lock = false;
2458
2459 p1 = l1->l_proc;
2460
2461 /* Allocate and init spawn_data */
2462 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2463 spawn_data->sed_refcnt = 1; /* only parent so far */
2464 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2465 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2466 mutex_enter(&spawn_data->sed_mtx_child);
2467
2468 /*
2469 * Do the first part of the exec now, collect state
2470 * in spawn_data.
2471 */
2472 error = execve_loadvm(l1, true, path, -1, argv,
2473 envp, fetch, &spawn_data->sed_exec);
2474 if (error == EJUSTRETURN)
2475 error = 0;
2476 else if (error)
2477 goto error_exit;
2478
2479 have_exec_lock = true;
2480
2481 /*
2482 * Allocate virtual address space for the U-area now, while it
2483 * is still easy to abort the fork operation if we're out of
2484 * kernel virtual address space.
2485 */
2486 uaddr = uvm_uarea_alloc();
2487 if (__predict_false(uaddr == 0)) {
2488 error = ENOMEM;
2489 goto error_exit;
2490 }
2491
2492 /*
2493 * Allocate new proc. Borrow proc0 vmspace for it, we will
2494 * replace it with its own before returning to userland
2495 * in the child.
2496 */
2497 p2 = proc_alloc();
2498 if (p2 == NULL) {
2499 /* We were unable to allocate a process ID. */
2500 error = EAGAIN;
2501 goto error_exit;
2502 }
2503
2504 /*
2505 * This is a point of no return, we will have to go through
2506 * the child proc to properly clean it up past this point.
2507 */
2508 pid = p2->p_pid;
2509
2510 /*
2511 * Make a proc table entry for the new process.
2512 * Start by zeroing the section of proc that is zero-initialized,
2513 * then copy the section that is copied directly from the parent.
2514 */
2515 memset(&p2->p_startzero, 0,
2516 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2517 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2518 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2519 p2->p_vmspace = proc0.p_vmspace;
2520
2521 TAILQ_INIT(&p2->p_sigpend.sp_info);
2522
2523 LIST_INIT(&p2->p_lwps);
2524 LIST_INIT(&p2->p_sigwaiters);
2525
2526 /*
2527 * Duplicate sub-structures as needed.
2528 * Increase reference counts on shared objects.
2529 * Inherit flags we want to keep. The flags related to SIGCHLD
2530 * handling are important in order to keep a consistent behaviour
2531 * for the child after the fork. If we are a 32-bit process, the
2532 * child will be too.
2533 */
2534 p2->p_flag =
2535 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2536 p2->p_emul = p1->p_emul;
2537 p2->p_execsw = p1->p_execsw;
2538
2539 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2540 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2541 rw_init(&p2->p_reflock);
2542 cv_init(&p2->p_waitcv, "wait");
2543 cv_init(&p2->p_lwpcv, "lwpwait");
2544
2545 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2546
2547 kauth_proc_fork(p1, p2);
2548
2549 p2->p_raslist = NULL;
2550 p2->p_fd = fd_copy();
2551
2552 /* XXX racy */
2553 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2554
2555 p2->p_cwdi = cwdinit();
2556
2557 /*
2558 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2559 * we just need increase pl_refcnt.
2560 */
2561 if (!p1->p_limit->pl_writeable) {
2562 lim_addref(p1->p_limit);
2563 p2->p_limit = p1->p_limit;
2564 } else {
2565 p2->p_limit = lim_copy(p1->p_limit);
2566 }
2567
2568 p2->p_lflag = 0;
2569 l1->l_vforkwaiting = false;
2570 p2->p_sflag = 0;
2571 p2->p_slflag = 0;
2572 p2->p_pptr = p1;
2573 p2->p_ppid = p1->p_pid;
2574 LIST_INIT(&p2->p_children);
2575
2576 p2->p_aio = NULL;
2577
2578 #ifdef KTRACE
2579 /*
2580 * Copy traceflag and tracefile if enabled.
2581 * If not inherited, these were zeroed above.
2582 */
2583 if (p1->p_traceflag & KTRFAC_INHERIT) {
2584 mutex_enter(&ktrace_lock);
2585 p2->p_traceflag = p1->p_traceflag;
2586 if ((p2->p_tracep = p1->p_tracep) != NULL)
2587 ktradref(p2);
2588 mutex_exit(&ktrace_lock);
2589 }
2590 #endif
2591
2592 /*
2593 * Create signal actions for the child process.
2594 */
2595 p2->p_sigacts = sigactsinit(p1, 0);
2596 mutex_enter(p1->p_lock);
2597 p2->p_sflag |=
2598 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2599 sched_proc_fork(p1, p2);
2600 mutex_exit(p1->p_lock);
2601
2602 p2->p_stflag = p1->p_stflag;
2603
2604 /*
2605 * p_stats.
2606 * Copy parts of p_stats, and zero out the rest.
2607 */
2608 p2->p_stats = pstatscopy(p1->p_stats);
2609
2610 /* copy over machdep flags to the new proc */
2611 cpu_proc_fork(p1, p2);
2612
2613 /*
2614 * Prepare remaining parts of spawn data
2615 */
2616 spawn_data->sed_actions = fa;
2617 spawn_data->sed_attrs = sa;
2618
2619 spawn_data->sed_parent = p1;
2620
2621 /* create LWP */
2622 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2623 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2624 l2->l_ctxlink = NULL; /* reset ucontext link */
2625
2626 /*
2627 * Copy the credential so other references don't see our changes.
2628 * Test to see if this is necessary first, since in the common case
2629 * we won't need a private reference.
2630 */
2631 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2632 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2633 l2->l_cred = kauth_cred_copy(l2->l_cred);
2634 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2635 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2636 }
2637
2638 /* Update the master credentials. */
2639 if (l2->l_cred != p2->p_cred) {
2640 kauth_cred_t ocred;
2641
2642 kauth_cred_hold(l2->l_cred);
2643 mutex_enter(p2->p_lock);
2644 ocred = p2->p_cred;
2645 p2->p_cred = l2->l_cred;
2646 mutex_exit(p2->p_lock);
2647 kauth_cred_free(ocred);
2648 }
2649
2650 *child_ok = true;
2651 spawn_data->sed_refcnt = 2; /* child gets it as well */
2652 #if 0
2653 l2->l_nopreempt = 1; /* start it non-preemptable */
2654 #endif
2655
2656 /*
2657 * It's now safe for the scheduler and other processes to see the
2658 * child process.
2659 */
2660 mutex_enter(proc_lock);
2661
2662 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2663 p2->p_lflag |= PL_CONTROLT;
2664
2665 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2666 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2667
2668 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2669 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2670 proc_changeparent(p2, p1->p_pptr);
2671 SET(p2->p_slflag, PSL_TRACEDCHILD);
2672 }
2673
2674 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
2675
2676 LIST_INSERT_AFTER(p1, p2, p_pglist);
2677 LIST_INSERT_HEAD(&allproc, p2, p_list);
2678
2679 p2->p_trace_enabled = trace_is_enabled(p2);
2680 #ifdef __HAVE_SYSCALL_INTERN
2681 (*p2->p_emul->e_syscall_intern)(p2);
2682 #endif
2683
2684 /*
2685 * Make child runnable, set start time, and add to run queue except
2686 * if the parent requested the child to start in SSTOP state.
2687 */
2688 mutex_enter(p2->p_lock);
2689
2690 getmicrotime(&p2->p_stats->p_start);
2691
2692 lwp_lock(l2);
2693 KASSERT(p2->p_nrlwps == 1);
2694 KASSERT(l2->l_stat == LSIDL);
2695 p2->p_nrlwps = 1;
2696 p2->p_stat = SACTIVE;
2697 setrunnable(l2);
2698 /* LWP now unlocked */
2699
2700 mutex_exit(p2->p_lock);
2701 mutex_exit(proc_lock);
2702
2703 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2704 error = spawn_data->sed_error;
2705 mutex_exit(&spawn_data->sed_mtx_child);
2706 spawn_exec_data_release(spawn_data);
2707
2708 rw_exit(&p1->p_reflock);
2709 rw_exit(&exec_lock);
2710 have_exec_lock = false;
2711
2712 *pid_res = pid;
2713
2714 if (error)
2715 return error;
2716
2717 if (p1->p_slflag & PSL_TRACED) {
2718 /* Paranoid check */
2719 mutex_enter(proc_lock);
2720 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2721 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2722 mutex_exit(proc_lock);
2723 return 0;
2724 }
2725
2726 mutex_enter(p1->p_lock);
2727 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2728 }
2729 return 0;
2730
2731 error_exit:
2732 if (have_exec_lock) {
2733 execve_free_data(&spawn_data->sed_exec);
2734 rw_exit(&p1->p_reflock);
2735 rw_exit(&exec_lock);
2736 }
2737 mutex_exit(&spawn_data->sed_mtx_child);
2738 spawn_exec_data_release(spawn_data);
2739
2740 return error;
2741 }
2742
2743 int
2744 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2745 register_t *retval)
2746 {
2747 /* {
2748 syscallarg(pid_t *) pid;
2749 syscallarg(const char *) path;
2750 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2751 syscallarg(const struct posix_spawnattr *) attrp;
2752 syscallarg(char *const *) argv;
2753 syscallarg(char *const *) envp;
2754 } */
2755
2756 int error;
2757 struct posix_spawn_file_actions *fa = NULL;
2758 struct posix_spawnattr *sa = NULL;
2759 pid_t pid;
2760 bool child_ok = false;
2761 rlim_t max_fileactions;
2762 proc_t *p = l1->l_proc;
2763
2764 /* check_posix_spawn() increments nprocs for us. */
2765 error = check_posix_spawn(l1);
2766 if (error) {
2767 *retval = error;
2768 return 0;
2769 }
2770
2771 /* copy in file_actions struct */
2772 if (SCARG(uap, file_actions) != NULL) {
2773 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2774 maxfiles);
2775 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2776 max_fileactions);
2777 if (error)
2778 goto error_exit;
2779 }
2780
2781 /* copyin posix_spawnattr struct */
2782 if (SCARG(uap, attrp) != NULL) {
2783 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2784 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2785 if (error)
2786 goto error_exit;
2787 }
2788
2789 /*
2790 * Do the spawn
2791 */
2792 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2793 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2794 if (error)
2795 goto error_exit;
2796
2797 if (error == 0 && SCARG(uap, pid) != NULL)
2798 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2799
2800 *retval = error;
2801 return 0;
2802
2803 error_exit:
2804 if (!child_ok) {
2805 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2806 atomic_dec_uint(&nprocs);
2807
2808 if (sa)
2809 kmem_free(sa, sizeof(*sa));
2810 if (fa)
2811 posix_spawn_fa_free(fa, fa->len);
2812 }
2813
2814 *retval = error;
2815 return 0;
2816 }
2817
2818 void
2819 exec_free_emul_arg(struct exec_package *epp)
2820 {
2821 if (epp->ep_emul_arg_free != NULL) {
2822 KASSERT(epp->ep_emul_arg != NULL);
2823 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2824 epp->ep_emul_arg_free = NULL;
2825 epp->ep_emul_arg = NULL;
2826 } else {
2827 KASSERT(epp->ep_emul_arg == NULL);
2828 }
2829 }
2830
2831 #ifdef DEBUG_EXEC
2832 static void
2833 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2834 {
2835 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2836 size_t j;
2837
2838 if (error == 0)
2839 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2840 else
2841 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2842 epp->ep_vmcmds.evs_used, error));
2843
2844 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2845 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2846 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2847 PRIxVSIZE" prot=0%o flags=%d\n", j,
2848 vp[j].ev_proc == vmcmd_map_pagedvn ?
2849 "pagedvn" :
2850 vp[j].ev_proc == vmcmd_map_readvn ?
2851 "readvn" :
2852 vp[j].ev_proc == vmcmd_map_zero ?
2853 "zero" : "*unknown*",
2854 vp[j].ev_addr, vp[j].ev_len,
2855 vp[j].ev_offset, vp[j].ev_prot,
2856 vp[j].ev_flags));
2857 if (error != 0 && j == x)
2858 DPRINTF((" ^--- failed\n"));
2859 }
2860 }
2861 #endif
2862