Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.502
      1 /*	$NetBSD: kern_exec.c,v 1.502 2020/10/06 13:38:00 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     34  * Copyright (C) 1992 Wolfgang Solfrank.
     35  * Copyright (C) 1992 TooLs GmbH.
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *	This product includes software developed by TooLs GmbH.
     49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.502 2020/10/06 13:38:00 christos Exp $");
     66 
     67 #include "opt_exec.h"
     68 #include "opt_execfmt.h"
     69 #include "opt_ktrace.h"
     70 #include "opt_modular.h"
     71 #include "opt_syscall_debug.h"
     72 #include "veriexec.h"
     73 #include "opt_pax.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/ptrace.h>
     81 #include <sys/mount.h>
     82 #include <sys/kmem.h>
     83 #include <sys/namei.h>
     84 #include <sys/vnode.h>
     85 #include <sys/file.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/acct.h>
     88 #include <sys/atomic.h>
     89 #include <sys/exec.h>
     90 #include <sys/ktrace.h>
     91 #include <sys/uidinfo.h>
     92 #include <sys/wait.h>
     93 #include <sys/mman.h>
     94 #include <sys/ras.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/stat.h>
     97 #include <sys/syscall.h>
     98 #include <sys/kauth.h>
     99 #include <sys/lwpctl.h>
    100 #include <sys/pax.h>
    101 #include <sys/cpu.h>
    102 #include <sys/module.h>
    103 #include <sys/syscallvar.h>
    104 #include <sys/syscallargs.h>
    105 #if NVERIEXEC > 0
    106 #include <sys/verified_exec.h>
    107 #endif /* NVERIEXEC > 0 */
    108 #include <sys/sdt.h>
    109 #include <sys/spawn.h>
    110 #include <sys/prot.h>
    111 #include <sys/cprng.h>
    112 
    113 #include <uvm/uvm_extern.h>
    114 
    115 #include <machine/reg.h>
    116 
    117 #include <compat/common/compat_util.h>
    118 
    119 #ifndef MD_TOPDOWN_INIT
    120 #ifdef __USE_TOPDOWN_VM
    121 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    122 #else
    123 #define	MD_TOPDOWN_INIT(epp)
    124 #endif
    125 #endif
    126 
    127 struct execve_data;
    128 
    129 extern int user_va0_disable;
    130 
    131 static size_t calcargs(struct execve_data * restrict, const size_t);
    132 static size_t calcstack(struct execve_data * restrict, const size_t);
    133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    134     char * const);
    135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    136 static int copyinargs(struct execve_data * restrict, char * const *,
    137     char * const *, execve_fetch_element_t, char **);
    138 static int copyinargstrs(struct execve_data * restrict, char * const *,
    139     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    140 static int exec_sigcode_map(struct proc *, const struct emul *);
    141 
    142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    143 #define DEBUG_EXEC
    144 #endif
    145 #ifdef DEBUG_EXEC
    146 #define DPRINTF(a) printf a
    147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    148     __LINE__, (s), (a), (b))
    149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    151 #else
    152 #define DPRINTF(a)
    153 #define COPYPRINTF(s, a, b)
    154 #define DUMPVMCMDS(p, x, e) do {} while (0)
    155 #endif /* DEBUG_EXEC */
    156 
    157 /*
    158  * DTrace SDT provider definitions
    159  */
    160 SDT_PROVIDER_DECLARE(proc);
    161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    164 
    165 /*
    166  * Exec function switch:
    167  *
    168  * Note that each makecmds function is responsible for loading the
    169  * exec package with the necessary functions for any exec-type-specific
    170  * handling.
    171  *
    172  * Functions for specific exec types should be defined in their own
    173  * header file.
    174  */
    175 static const struct execsw	**execsw = NULL;
    176 static int			nexecs;
    177 
    178 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    179 
    180 /* list of dynamically loaded execsw entries */
    181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    182     LIST_HEAD_INITIALIZER(ex_head);
    183 struct exec_entry {
    184 	LIST_ENTRY(exec_entry)	ex_list;
    185 	SLIST_ENTRY(exec_entry)	ex_slist;
    186 	const struct execsw	*ex_sw;
    187 };
    188 
    189 #ifndef __HAVE_SYSCALL_INTERN
    190 void	syscall(void);
    191 #endif
    192 
    193 /* NetBSD autoloadable syscalls */
    194 #ifdef MODULAR
    195 #include <kern/syscalls_autoload.c>
    196 #endif
    197 
    198 /* NetBSD emul struct */
    199 struct emul emul_netbsd = {
    200 	.e_name =		"netbsd",
    201 #ifdef EMUL_NATIVEROOT
    202 	.e_path =		EMUL_NATIVEROOT,
    203 #else
    204 	.e_path =		NULL,
    205 #endif
    206 #ifndef __HAVE_MINIMAL_EMUL
    207 	.e_flags =		EMUL_HAS_SYS___syscall,
    208 	.e_errno =		NULL,
    209 	.e_nosys =		SYS_syscall,
    210 	.e_nsysent =		SYS_NSYSENT,
    211 #endif
    212 #ifdef MODULAR
    213 	.e_sc_autoload =	netbsd_syscalls_autoload,
    214 #endif
    215 	.e_sysent =		sysent,
    216 	.e_nomodbits =		sysent_nomodbits,
    217 #ifdef SYSCALL_DEBUG
    218 	.e_syscallnames =	syscallnames,
    219 #else
    220 	.e_syscallnames =	NULL,
    221 #endif
    222 	.e_sendsig =		sendsig,
    223 	.e_trapsignal =		trapsignal,
    224 	.e_sigcode =		NULL,
    225 	.e_esigcode =		NULL,
    226 	.e_sigobject =		NULL,
    227 	.e_setregs =		setregs,
    228 	.e_proc_exec =		NULL,
    229 	.e_proc_fork =		NULL,
    230 	.e_proc_exit =		NULL,
    231 	.e_lwp_fork =		NULL,
    232 	.e_lwp_exit =		NULL,
    233 #ifdef __HAVE_SYSCALL_INTERN
    234 	.e_syscall_intern =	syscall_intern,
    235 #else
    236 	.e_syscall =		syscall,
    237 #endif
    238 	.e_sysctlovly =		NULL,
    239 	.e_vm_default_addr =	uvm_default_mapaddr,
    240 	.e_usertrap =		NULL,
    241 	.e_ucsize =		sizeof(ucontext_t),
    242 	.e_startlwp =		startlwp
    243 };
    244 
    245 /*
    246  * Exec lock. Used to control access to execsw[] structures.
    247  * This must not be static so that netbsd32 can access it, too.
    248  */
    249 krwlock_t exec_lock __cacheline_aligned;
    250 
    251 static kmutex_t sigobject_lock __cacheline_aligned;
    252 
    253 /*
    254  * Data used between a loadvm and execve part of an "exec" operation
    255  */
    256 struct execve_data {
    257 	struct exec_package	ed_pack;
    258 	struct pathbuf		*ed_pathbuf;
    259 	struct vattr		ed_attr;
    260 	struct ps_strings	ed_arginfo;
    261 	char			*ed_argp;
    262 	const char		*ed_pathstring;
    263 	char			*ed_resolvedname;
    264 	size_t			ed_ps_strings_sz;
    265 	int			ed_szsigcode;
    266 	size_t			ed_argslen;
    267 	long			ed_argc;
    268 	long			ed_envc;
    269 };
    270 
    271 /*
    272  * data passed from parent lwp to child during a posix_spawn()
    273  */
    274 struct spawn_exec_data {
    275 	struct execve_data	sed_exec;
    276 	struct posix_spawn_file_actions
    277 				*sed_actions;
    278 	struct posix_spawnattr	*sed_attrs;
    279 	struct proc		*sed_parent;
    280 	kcondvar_t		sed_cv_child_ready;
    281 	kmutex_t		sed_mtx_child;
    282 	int			sed_error;
    283 	volatile uint32_t	sed_refcnt;
    284 };
    285 
    286 static struct vm_map *exec_map;
    287 static struct pool exec_pool;
    288 
    289 static void *
    290 exec_pool_alloc(struct pool *pp, int flags)
    291 {
    292 
    293 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    294 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    295 }
    296 
    297 static void
    298 exec_pool_free(struct pool *pp, void *addr)
    299 {
    300 
    301 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    302 }
    303 
    304 static struct pool_allocator exec_palloc = {
    305 	.pa_alloc = exec_pool_alloc,
    306 	.pa_free = exec_pool_free,
    307 	.pa_pagesz = NCARGS
    308 };
    309 
    310 static void
    311 exec_path_free(struct execve_data *data)
    312 {
    313 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    314 	pathbuf_destroy(data->ed_pathbuf);
    315 	if (data->ed_resolvedname)
    316 		PNBUF_PUT(data->ed_resolvedname);
    317 }
    318 
    319 static int
    320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
    321     char **rpath)
    322 {
    323 	int error;
    324 	char *p;
    325 
    326 	KASSERT(rpath != NULL);
    327 
    328 	*rpath = PNBUF_GET();
    329 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
    330 	if (error) {
    331 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
    332 		    __func__, epp->ep_kname, error));
    333 		PNBUF_PUT(*rpath);
    334 		*rpath = NULL;
    335 		return error;
    336 	}
    337 	epp->ep_resolvedname = *rpath;
    338 	if ((p = strrchr(*rpath, '/')) != NULL)
    339 		epp->ep_kname = p + 1;
    340 	return 0;
    341 }
    342 
    343 
    344 /*
    345  * check exec:
    346  * given an "executable" described in the exec package's namei info,
    347  * see what we can do with it.
    348  *
    349  * ON ENTRY:
    350  *	exec package with appropriate namei info
    351  *	lwp pointer of exec'ing lwp
    352  *	NO SELF-LOCKED VNODES
    353  *
    354  * ON EXIT:
    355  *	error:	nothing held, etc.  exec header still allocated.
    356  *	ok:	filled exec package, executable's vnode (unlocked).
    357  *
    358  * EXEC SWITCH ENTRY:
    359  * 	Locked vnode to check, exec package, proc.
    360  *
    361  * EXEC SWITCH EXIT:
    362  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    363  *	error:	destructive:
    364  *			everything deallocated execept exec header.
    365  *		non-destructive:
    366  *			error code, executable's vnode (unlocked),
    367  *			exec header unmodified.
    368  */
    369 int
    370 /*ARGSUSED*/
    371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
    372     char **rpath)
    373 {
    374 	int		error, i;
    375 	struct vnode	*vp;
    376 	size_t		resid;
    377 
    378 	if (epp->ep_resolvedname) {
    379 		struct nameidata nd;
    380 
    381 		// grab the absolute pathbuf here before namei() trashes it.
    382 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    383 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    384 
    385 		/* first get the vnode */
    386 		if ((error = namei(&nd)) != 0)
    387 			return error;
    388 
    389 		epp->ep_vp = vp = nd.ni_vp;
    390 #ifdef DIAGNOSTIC
    391 		/* paranoia (take this out once namei stuff stabilizes) */
    392 		memset(nd.ni_pnbuf, '~', PATH_MAX);
    393 #endif
    394 	} else {
    395 		struct file *fp;
    396 
    397 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
    398 			return error;
    399 		epp->ep_vp = vp = fp->f_vnode;
    400 		vref(vp);
    401 		fd_putfile(epp->ep_xfd);
    402 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
    403 			return error;
    404 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    405 	}
    406 
    407 	/* check access and type */
    408 	if (vp->v_type != VREG) {
    409 		error = EACCES;
    410 		goto bad1;
    411 	}
    412 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    413 		goto bad1;
    414 
    415 	/* get attributes */
    416 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
    417 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    418 		goto bad1;
    419 
    420 	/* Check mount point */
    421 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    422 		error = EACCES;
    423 		goto bad1;
    424 	}
    425 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    426 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    427 
    428 	/* try to open it */
    429 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    430 		goto bad1;
    431 
    432 	/* now we have the file, get the exec header */
    433 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    434 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
    435 	if (error)
    436 		goto bad1;
    437 
    438 	/* unlock vp, since we need it unlocked from here on out. */
    439 	VOP_UNLOCK(vp);
    440 
    441 #if NVERIEXEC > 0
    442 	error = veriexec_verify(l, vp,
    443 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
    444 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    445 	    NULL);
    446 	if (error)
    447 		goto bad2;
    448 #endif /* NVERIEXEC > 0 */
    449 
    450 #ifdef PAX_SEGVGUARD
    451 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    452 	if (error)
    453 		goto bad2;
    454 #endif /* PAX_SEGVGUARD */
    455 
    456 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    457 
    458 	/*
    459 	 * Set up default address space limits.  Can be overridden
    460 	 * by individual exec packages.
    461 	 */
    462 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    463 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    464 
    465 	/*
    466 	 * set up the vmcmds for creation of the process
    467 	 * address space
    468 	 */
    469 	error = ENOEXEC;
    470 	for (i = 0; i < nexecs; i++) {
    471 		int newerror;
    472 
    473 		epp->ep_esch = execsw[i];
    474 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    475 
    476 		if (!newerror) {
    477 			/* Seems ok: check that entry point is not too high */
    478 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    479 #ifdef DIAGNOSTIC
    480 				printf("%s: rejecting %p due to "
    481 				    "too high entry address (>= %p)\n",
    482 					 __func__, (void *)epp->ep_entry,
    483 					 (void *)epp->ep_vm_maxaddr);
    484 #endif
    485 				error = ENOEXEC;
    486 				break;
    487 			}
    488 			/* Seems ok: check that entry point is not too low */
    489 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    490 #ifdef DIAGNOSTIC
    491 				printf("%s: rejecting %p due to "
    492 				    "too low entry address (< %p)\n",
    493 				     __func__, (void *)epp->ep_entry,
    494 				     (void *)epp->ep_vm_minaddr);
    495 #endif
    496 				error = ENOEXEC;
    497 				break;
    498 			}
    499 
    500 			/* check limits */
    501 #ifdef MAXTSIZ
    502 			if (epp->ep_tsize > MAXTSIZ) {
    503 #ifdef DIAGNOSTIC
    504 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
    505 				printf(LMSG, __func__, "text",
    506 				    (uintmax_t)epp->ep_tsize,
    507 				    (uintmax_t)MAXTSIZ);
    508 #endif
    509 				error = ENOMEM;
    510 				break;
    511 			}
    512 #endif
    513 			vsize_t dlimit =
    514 			    (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
    515 			if (epp->ep_dsize > dlimit) {
    516 #ifdef DIAGNOSTIC
    517 				printf(LMSG, __func__, "data",
    518 				    (uintmax_t)epp->ep_dsize,
    519 				    (uintmax_t)dlimit);
    520 #endif
    521 				error = ENOMEM;
    522 				break;
    523 			}
    524 			return 0;
    525 		}
    526 
    527 		/*
    528 		 * Reset all the fields that may have been modified by the
    529 		 * loader.
    530 		 */
    531 		KASSERT(epp->ep_emul_arg == NULL);
    532 		if (epp->ep_emul_root != NULL) {
    533 			vrele(epp->ep_emul_root);
    534 			epp->ep_emul_root = NULL;
    535 		}
    536 		if (epp->ep_interp != NULL) {
    537 			vrele(epp->ep_interp);
    538 			epp->ep_interp = NULL;
    539 		}
    540 		epp->ep_pax_flags = 0;
    541 
    542 		/* make sure the first "interesting" error code is saved. */
    543 		if (error == ENOEXEC)
    544 			error = newerror;
    545 
    546 		if (epp->ep_flags & EXEC_DESTR)
    547 			/* Error from "#!" code, tidied up by recursive call */
    548 			return error;
    549 	}
    550 
    551 	/* not found, error */
    552 
    553 	/*
    554 	 * free any vmspace-creation commands,
    555 	 * and release their references
    556 	 */
    557 	kill_vmcmds(&epp->ep_vmcmds);
    558 
    559 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
    560 bad2:
    561 #endif
    562 	/*
    563 	 * close and release the vnode, restore the old one, free the
    564 	 * pathname buf, and punt.
    565 	 */
    566 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    567 	VOP_CLOSE(vp, FREAD, l->l_cred);
    568 	vput(vp);
    569 	return error;
    570 
    571 bad1:
    572 	/*
    573 	 * free the namei pathname buffer, and put the vnode
    574 	 * (which we don't yet have open).
    575 	 */
    576 	vput(vp);				/* was still locked */
    577 	return error;
    578 }
    579 
    580 #ifdef __MACHINE_STACK_GROWS_UP
    581 #define STACK_PTHREADSPACE NBPG
    582 #else
    583 #define STACK_PTHREADSPACE 0
    584 #endif
    585 
    586 static int
    587 execve_fetch_element(char * const *array, size_t index, char **value)
    588 {
    589 	return copyin(array + index, value, sizeof(*value));
    590 }
    591 
    592 /*
    593  * exec system call
    594  */
    595 int
    596 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    597 {
    598 	/* {
    599 		syscallarg(const char *)	path;
    600 		syscallarg(char * const *)	argp;
    601 		syscallarg(char * const *)	envp;
    602 	} */
    603 
    604 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
    605 	    SCARG(uap, envp), execve_fetch_element);
    606 }
    607 
    608 int
    609 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    610     register_t *retval)
    611 {
    612 	/* {
    613 		syscallarg(int)			fd;
    614 		syscallarg(char * const *)	argp;
    615 		syscallarg(char * const *)	envp;
    616 	} */
    617 
    618 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
    619 	    SCARG(uap, envp), execve_fetch_element);
    620 }
    621 
    622 /*
    623  * Load modules to try and execute an image that we do not understand.
    624  * If no execsw entries are present, we load those likely to be needed
    625  * in order to run native images only.  Otherwise, we autoload all
    626  * possible modules that could let us run the binary.  XXX lame
    627  */
    628 static void
    629 exec_autoload(void)
    630 {
    631 #ifdef MODULAR
    632 	static const char * const native[] = {
    633 		"exec_elf32",
    634 		"exec_elf64",
    635 		"exec_script",
    636 		NULL
    637 	};
    638 	static const char * const compat[] = {
    639 		"exec_elf32",
    640 		"exec_elf64",
    641 		"exec_script",
    642 		"exec_aout",
    643 		"exec_coff",
    644 		"exec_ecoff",
    645 		"compat_aoutm68k",
    646 		"compat_netbsd32",
    647 #if 0
    648 		"compat_linux",
    649 		"compat_linux32",
    650 #endif
    651 		"compat_sunos",
    652 		"compat_sunos32",
    653 		"compat_ultrix",
    654 		NULL
    655 	};
    656 	char const * const *list;
    657 	int i;
    658 
    659 	list = nexecs == 0 ? native : compat;
    660 	for (i = 0; list[i] != NULL; i++) {
    661 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    662 			continue;
    663 		}
    664 		yield();
    665 	}
    666 #endif
    667 }
    668 
    669 /*
    670  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
    671  * making it absolute in the process, by prepending the current working
    672  * directory if it is not. If offs is supplied it will contain the offset
    673  * where the original supplied copy of upath starts.
    674  */
    675 int
    676 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    677     struct pathbuf **pbp, size_t *offs)
    678 {
    679 	char *path, *bp;
    680 	size_t len, tlen;
    681 	int error;
    682 	struct cwdinfo *cwdi;
    683 
    684 	path = PNBUF_GET();
    685 	if (seg == UIO_SYSSPACE) {
    686 		error = copystr(upath, path, MAXPATHLEN, &len);
    687 	} else {
    688 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    689 	}
    690 	if (error)
    691 		goto err;
    692 
    693 	if (path[0] == '/') {
    694 		if (offs)
    695 			*offs = 0;
    696 		goto out;
    697 	}
    698 
    699 	len++;
    700 	if (len + 1 >= MAXPATHLEN) {
    701 		error = ENAMETOOLONG;
    702 		goto err;
    703 	}
    704 	bp = path + MAXPATHLEN - len;
    705 	memmove(bp, path, len);
    706 	*(--bp) = '/';
    707 
    708 	cwdi = l->l_proc->p_cwdi;
    709 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    710 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    711 	    GETCWD_CHECK_ACCESS, l);
    712 	rw_exit(&cwdi->cwdi_lock);
    713 
    714 	if (error)
    715 		goto err;
    716 	tlen = path + MAXPATHLEN - bp;
    717 
    718 	memmove(path, bp, tlen);
    719 	path[tlen - 1] = '\0';
    720 	if (offs)
    721 		*offs = tlen - len;
    722 out:
    723 	*pbp = pathbuf_assimilate(path);
    724 	return 0;
    725 err:
    726 	PNBUF_PUT(path);
    727 	return error;
    728 }
    729 
    730 vaddr_t
    731 exec_vm_minaddr(vaddr_t va_min)
    732 {
    733 	/*
    734 	 * Increase va_min if we don't want NULL to be mappable by the
    735 	 * process.
    736 	 */
    737 #define VM_MIN_GUARD	PAGE_SIZE
    738 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    739 		return VM_MIN_GUARD;
    740 	return va_min;
    741 }
    742 
    743 static int
    744 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
    745 	char * const *args, char * const *envs,
    746 	execve_fetch_element_t fetch_element,
    747 	struct execve_data * restrict data)
    748 {
    749 	struct exec_package	* const epp = &data->ed_pack;
    750 	int			error;
    751 	struct proc		*p;
    752 	char			*dp;
    753 	u_int			modgen;
    754 
    755 	KASSERT(data != NULL);
    756 
    757 	p = l->l_proc;
    758 	modgen = 0;
    759 
    760 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    761 
    762 	/*
    763 	 * Check if we have exceeded our number of processes limit.
    764 	 * This is so that we handle the case where a root daemon
    765 	 * forked, ran setuid to become the desired user and is trying
    766 	 * to exec. The obvious place to do the reference counting check
    767 	 * is setuid(), but we don't do the reference counting check there
    768 	 * like other OS's do because then all the programs that use setuid()
    769 	 * must be modified to check the return code of setuid() and exit().
    770 	 * It is dangerous to make setuid() fail, because it fails open and
    771 	 * the program will continue to run as root. If we make it succeed
    772 	 * and return an error code, again we are not enforcing the limit.
    773 	 * The best place to enforce the limit is here, when the process tries
    774 	 * to execute a new image, because eventually the process will need
    775 	 * to call exec in order to do something useful.
    776 	 */
    777  retry:
    778 	if (p->p_flag & PK_SUGID) {
    779 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    780 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    781 		     &p->p_rlimit[RLIMIT_NPROC],
    782 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    783 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    784 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    785 		return EAGAIN;
    786 	}
    787 
    788 	/*
    789 	 * Drain existing references and forbid new ones.  The process
    790 	 * should be left alone until we're done here.  This is necessary
    791 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    792 	 * a local user to illicitly obtain elevated privileges.
    793 	 */
    794 	rw_enter(&p->p_reflock, RW_WRITER);
    795 
    796 	if (has_path) {
    797 		size_t	offs;
    798 		/*
    799 		 * Init the namei data to point the file user's program name.
    800 		 * This is done here rather than in check_exec(), so that it's
    801 		 * possible to override this settings if any of makecmd/probe
    802 		 * functions call check_exec() recursively - for example,
    803 		 * see exec_script_makecmds().
    804 		 */
    805 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    806 		    &data->ed_pathbuf, &offs)) != 0)
    807 			goto clrflg;
    808 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    809 		epp->ep_kname = data->ed_pathstring + offs;
    810 		data->ed_resolvedname = PNBUF_GET();
    811 		epp->ep_resolvedname = data->ed_resolvedname;
    812 		epp->ep_xfd = -1;
    813 	} else {
    814 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
    815 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    816 		epp->ep_kname = "*fexecve*";
    817 		data->ed_resolvedname = NULL;
    818 		epp->ep_resolvedname = NULL;
    819 		epp->ep_xfd = fd;
    820 	}
    821 
    822 
    823 	/*
    824 	 * initialize the fields of the exec package.
    825 	 */
    826 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    827 	epp->ep_hdrlen = exec_maxhdrsz;
    828 	epp->ep_hdrvalid = 0;
    829 	epp->ep_emul_arg = NULL;
    830 	epp->ep_emul_arg_free = NULL;
    831 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    832 	epp->ep_vap = &data->ed_attr;
    833 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    834 	MD_TOPDOWN_INIT(epp);
    835 	epp->ep_emul_root = NULL;
    836 	epp->ep_interp = NULL;
    837 	epp->ep_esch = NULL;
    838 	epp->ep_pax_flags = 0;
    839 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    840 
    841 	rw_enter(&exec_lock, RW_READER);
    842 
    843 	/* see if we can run it. */
    844 	if ((error = check_exec(l, epp, data->ed_pathbuf,
    845 	    &data->ed_resolvedname)) != 0) {
    846 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    847 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    848 			    __func__, epp->ep_kname, error));
    849 		}
    850 		goto freehdr;
    851 	}
    852 
    853 	/* allocate an argument buffer */
    854 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    855 	KASSERT(data->ed_argp != NULL);
    856 	dp = data->ed_argp;
    857 
    858 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    859 		goto bad;
    860 	}
    861 
    862 	/*
    863 	 * Calculate the new stack size.
    864 	 */
    865 
    866 #ifdef __MACHINE_STACK_GROWS_UP
    867 /*
    868  * copyargs() fills argc/argv/envp from the lower address even on
    869  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    870  * so that _rtld() use it.
    871  */
    872 #define	RTLD_GAP	32
    873 #else
    874 #define	RTLD_GAP	0
    875 #endif
    876 
    877 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    878 
    879 	data->ed_argslen = calcargs(data, argenvstrlen);
    880 
    881 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    882 
    883 	if (len > epp->ep_ssize) {
    884 		/* in effect, compare to initial limit */
    885 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    886 		error = ENOMEM;
    887 		goto bad;
    888 	}
    889 	/* adjust "active stack depth" for process VSZ */
    890 	epp->ep_ssize = len;
    891 
    892 	return 0;
    893 
    894  bad:
    895 	/* free the vmspace-creation commands, and release their references */
    896 	kill_vmcmds(&epp->ep_vmcmds);
    897 	/* kill any opened file descriptor, if necessary */
    898 	if (epp->ep_flags & EXEC_HASFD) {
    899 		epp->ep_flags &= ~EXEC_HASFD;
    900 		fd_close(epp->ep_fd);
    901 	}
    902 	/* close and put the exec'd file */
    903 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    904 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    905 	vput(epp->ep_vp);
    906 	pool_put(&exec_pool, data->ed_argp);
    907 
    908  freehdr:
    909 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    910 	if (epp->ep_emul_root != NULL)
    911 		vrele(epp->ep_emul_root);
    912 	if (epp->ep_interp != NULL)
    913 		vrele(epp->ep_interp);
    914 
    915 	rw_exit(&exec_lock);
    916 
    917 	exec_path_free(data);
    918 
    919  clrflg:
    920 	rw_exit(&p->p_reflock);
    921 
    922 	if (modgen != module_gen && error == ENOEXEC) {
    923 		modgen = module_gen;
    924 		exec_autoload();
    925 		goto retry;
    926 	}
    927 
    928 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    929 	return error;
    930 }
    931 
    932 static int
    933 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    934 {
    935 	struct exec_package	* const epp = &data->ed_pack;
    936 	struct proc		*p = l->l_proc;
    937 	struct exec_vmcmd	*base_vcp;
    938 	int			error = 0;
    939 	size_t			i;
    940 
    941 	/* record proc's vnode, for use by procfs and others */
    942 	if (p->p_textvp)
    943 		vrele(p->p_textvp);
    944 	vref(epp->ep_vp);
    945 	p->p_textvp = epp->ep_vp;
    946 
    947 	/* create the new process's VM space by running the vmcmds */
    948 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    949 
    950 #ifdef TRACE_EXEC
    951 	DUMPVMCMDS(epp, 0, 0);
    952 #endif
    953 
    954 	base_vcp = NULL;
    955 
    956 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    957 		struct exec_vmcmd *vcp;
    958 
    959 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    960 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    961 			KASSERTMSG(base_vcp != NULL,
    962 			    "%s: relative vmcmd with no base", __func__);
    963 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    964 			    "%s: illegal base & relative vmcmd", __func__);
    965 			vcp->ev_addr += base_vcp->ev_addr;
    966 		}
    967 		error = (*vcp->ev_proc)(l, vcp);
    968 		if (error)
    969 			DUMPVMCMDS(epp, i, error);
    970 		if (vcp->ev_flags & VMCMD_BASE)
    971 			base_vcp = vcp;
    972 	}
    973 
    974 	/* free the vmspace-creation commands, and release their references */
    975 	kill_vmcmds(&epp->ep_vmcmds);
    976 
    977 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    978 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    979 	vput(epp->ep_vp);
    980 
    981 	/* if an error happened, deallocate and punt */
    982 	if (error != 0) {
    983 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    984 	}
    985 	return error;
    986 }
    987 
    988 static void
    989 execve_free_data(struct execve_data *data)
    990 {
    991 	struct exec_package	* const epp = &data->ed_pack;
    992 
    993 	/* free the vmspace-creation commands, and release their references */
    994 	kill_vmcmds(&epp->ep_vmcmds);
    995 	/* kill any opened file descriptor, if necessary */
    996 	if (epp->ep_flags & EXEC_HASFD) {
    997 		epp->ep_flags &= ~EXEC_HASFD;
    998 		fd_close(epp->ep_fd);
    999 	}
   1000 
   1001 	/* close and put the exec'd file */
   1002 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1003 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
   1004 	vput(epp->ep_vp);
   1005 	pool_put(&exec_pool, data->ed_argp);
   1006 
   1007 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1008 	if (epp->ep_emul_root != NULL)
   1009 		vrele(epp->ep_emul_root);
   1010 	if (epp->ep_interp != NULL)
   1011 		vrele(epp->ep_interp);
   1012 
   1013 	exec_path_free(data);
   1014 }
   1015 
   1016 static void
   1017 pathexec(struct proc *p, const char *resolvedname)
   1018 {
   1019 	/* set command name & other accounting info */
   1020 	const char *cmdname;
   1021 
   1022 	if (resolvedname == NULL) {
   1023 		cmdname = "*fexecve*";
   1024 		resolvedname = "/";
   1025 	} else {
   1026 		cmdname = strrchr(resolvedname, '/') + 1;
   1027 	}
   1028 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
   1029 	    resolvedname);
   1030 
   1031 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
   1032 
   1033 	kmem_strfree(p->p_path);
   1034 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
   1035 }
   1036 
   1037 /* XXX elsewhere */
   1038 static int
   1039 credexec(struct lwp *l, struct vattr *attr)
   1040 {
   1041 	struct proc *p = l->l_proc;
   1042 	int error;
   1043 
   1044 	/*
   1045 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1046 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1047 	 * out additional references on the process for the moment.
   1048 	 */
   1049 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1050 
   1051 	    (((attr->va_mode & S_ISUID) != 0 &&
   1052 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
   1053 
   1054 	     ((attr->va_mode & S_ISGID) != 0 &&
   1055 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
   1056 		/*
   1057 		 * Mark the process as SUGID before we do
   1058 		 * anything that might block.
   1059 		 */
   1060 		proc_crmod_enter();
   1061 		proc_crmod_leave(NULL, NULL, true);
   1062 
   1063 		/* Make sure file descriptors 0..2 are in use. */
   1064 		if ((error = fd_checkstd()) != 0) {
   1065 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1066 			    __func__, error));
   1067 			return error;
   1068 		}
   1069 
   1070 		/*
   1071 		 * Copy the credential so other references don't see our
   1072 		 * changes.
   1073 		 */
   1074 		l->l_cred = kauth_cred_copy(l->l_cred);
   1075 #ifdef KTRACE
   1076 		/*
   1077 		 * If the persistent trace flag isn't set, turn off.
   1078 		 */
   1079 		if (p->p_tracep) {
   1080 			mutex_enter(&ktrace_lock);
   1081 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1082 				ktrderef(p);
   1083 			mutex_exit(&ktrace_lock);
   1084 		}
   1085 #endif
   1086 		if (attr->va_mode & S_ISUID)
   1087 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1088 		if (attr->va_mode & S_ISGID)
   1089 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1090 	} else {
   1091 		if (kauth_cred_geteuid(l->l_cred) ==
   1092 		    kauth_cred_getuid(l->l_cred) &&
   1093 		    kauth_cred_getegid(l->l_cred) ==
   1094 		    kauth_cred_getgid(l->l_cred))
   1095 			p->p_flag &= ~PK_SUGID;
   1096 	}
   1097 
   1098 	/*
   1099 	 * Copy the credential so other references don't see our changes.
   1100 	 * Test to see if this is necessary first, since in the common case
   1101 	 * we won't need a private reference.
   1102 	 */
   1103 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1104 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1105 		l->l_cred = kauth_cred_copy(l->l_cred);
   1106 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1107 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1108 	}
   1109 
   1110 	/* Update the master credentials. */
   1111 	if (l->l_cred != p->p_cred) {
   1112 		kauth_cred_t ocred;
   1113 
   1114 		kauth_cred_hold(l->l_cred);
   1115 		mutex_enter(p->p_lock);
   1116 		ocred = p->p_cred;
   1117 		p->p_cred = l->l_cred;
   1118 		mutex_exit(p->p_lock);
   1119 		kauth_cred_free(ocred);
   1120 	}
   1121 
   1122 	return 0;
   1123 }
   1124 
   1125 static void
   1126 emulexec(struct lwp *l, struct exec_package *epp)
   1127 {
   1128 	struct proc		*p = l->l_proc;
   1129 
   1130 	/* The emulation root will usually have been found when we looked
   1131 	 * for the elf interpreter (or similar), if not look now. */
   1132 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1133 	    epp->ep_emul_root == NULL)
   1134 		emul_find_root(l, epp);
   1135 
   1136 	/* Any old emulation root got removed by fdcloseexec */
   1137 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1138 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1139 	rw_exit(&p->p_cwdi->cwdi_lock);
   1140 	epp->ep_emul_root = NULL;
   1141 	if (epp->ep_interp != NULL)
   1142 		vrele(epp->ep_interp);
   1143 
   1144 	/*
   1145 	 * Call emulation specific exec hook. This can setup per-process
   1146 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1147 	 *
   1148 	 * If we are executing process of different emulation than the
   1149 	 * original forked process, call e_proc_exit() of the old emulation
   1150 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1151 	 * same, the exec hook code should deallocate any old emulation
   1152 	 * resources held previously by this process.
   1153 	 */
   1154 	if (p->p_emul && p->p_emul->e_proc_exit
   1155 	    && p->p_emul != epp->ep_esch->es_emul)
   1156 		(*p->p_emul->e_proc_exit)(p);
   1157 
   1158 	/*
   1159 	 * Call exec hook. Emulation code may NOT store reference to anything
   1160 	 * from &pack.
   1161 	 */
   1162 	if (epp->ep_esch->es_emul->e_proc_exec)
   1163 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1164 
   1165 	/* update p_emul, the old value is no longer needed */
   1166 	p->p_emul = epp->ep_esch->es_emul;
   1167 
   1168 	/* ...and the same for p_execsw */
   1169 	p->p_execsw = epp->ep_esch;
   1170 
   1171 #ifdef __HAVE_SYSCALL_INTERN
   1172 	(*p->p_emul->e_syscall_intern)(p);
   1173 #endif
   1174 	ktremul();
   1175 }
   1176 
   1177 static int
   1178 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1179 	bool no_local_exec_lock, bool is_spawn)
   1180 {
   1181 	struct exec_package	* const epp = &data->ed_pack;
   1182 	int error = 0;
   1183 	struct proc		*p;
   1184 	struct vmspace		*vm;
   1185 
   1186 	/*
   1187 	 * In case of a posix_spawn operation, the child doing the exec
   1188 	 * might not hold the reader lock on exec_lock, but the parent
   1189 	 * will do this instead.
   1190 	 */
   1191 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1192 	KASSERT(!no_local_exec_lock || is_spawn);
   1193 	KASSERT(data != NULL);
   1194 
   1195 	p = l->l_proc;
   1196 
   1197 	/* Get rid of other LWPs. */
   1198 	if (p->p_nlwps > 1) {
   1199 		mutex_enter(p->p_lock);
   1200 		exit_lwps(l);
   1201 		mutex_exit(p->p_lock);
   1202 	}
   1203 	KDASSERT(p->p_nlwps == 1);
   1204 
   1205 	/* Destroy any lwpctl info. */
   1206 	if (p->p_lwpctl != NULL)
   1207 		lwp_ctl_exit();
   1208 
   1209 	/* Remove POSIX timers */
   1210 	timers_free(p, TIMERS_POSIX);
   1211 
   1212 	/* Set the PaX flags. */
   1213 	pax_set_flags(epp, p);
   1214 
   1215 	/*
   1216 	 * Do whatever is necessary to prepare the address space
   1217 	 * for remapping.  Note that this might replace the current
   1218 	 * vmspace with another!
   1219 	 *
   1220 	 * vfork(): do not touch any user space data in the new child
   1221 	 * until we have awoken the parent below, or it will defeat
   1222 	 * lazy pmap switching (on x86).
   1223 	 */
   1224 	if (is_spawn)
   1225 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1226 		    epp->ep_vm_maxaddr,
   1227 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1228 	else
   1229 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1230 		    epp->ep_vm_maxaddr,
   1231 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1232 	vm = p->p_vmspace;
   1233 
   1234 	vm->vm_taddr = (void *)epp->ep_taddr;
   1235 	vm->vm_tsize = btoc(epp->ep_tsize);
   1236 	vm->vm_daddr = (void*)epp->ep_daddr;
   1237 	vm->vm_dsize = btoc(epp->ep_dsize);
   1238 	vm->vm_ssize = btoc(epp->ep_ssize);
   1239 	vm->vm_issize = 0;
   1240 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1241 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1242 
   1243 	pax_aslr_init_vm(l, vm, epp);
   1244 
   1245 	cwdexec(p);
   1246 	fd_closeexec();		/* handle close on exec */
   1247 
   1248 	if (__predict_false(ktrace_on))
   1249 		fd_ktrexecfd();
   1250 
   1251 	execsigs(p);		/* reset caught signals */
   1252 
   1253 	mutex_enter(p->p_lock);
   1254 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1255 	p->p_acflag &= ~AFORK;
   1256 	p->p_flag |= PK_EXEC;
   1257 	mutex_exit(p->p_lock);
   1258 
   1259 	error = credexec(l, &data->ed_attr);
   1260 	if (error)
   1261 		goto exec_abort;
   1262 
   1263 #if defined(__HAVE_RAS)
   1264 	/*
   1265 	 * Remove all RASs from the address space.
   1266 	 */
   1267 	ras_purgeall();
   1268 #endif
   1269 
   1270 	/*
   1271 	 * Stop profiling.
   1272 	 */
   1273 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1274 		mutex_spin_enter(&p->p_stmutex);
   1275 		stopprofclock(p);
   1276 		mutex_spin_exit(&p->p_stmutex);
   1277 	}
   1278 
   1279 	/*
   1280 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1281 	 * exited and exec()/exit() are the only places it will be cleared.
   1282 	 *
   1283 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
   1284 	 * in sched_vforkexec(), and it's then OK to start messing with user
   1285 	 * data.  See comment above.
   1286 	 */
   1287 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1288 		bool samecpu;
   1289 		lwp_t *lp;
   1290 
   1291 		mutex_enter(&proc_lock);
   1292 		lp = p->p_vforklwp;
   1293 		p->p_vforklwp = NULL;
   1294 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1295 		cv_broadcast(&lp->l_waitcv);
   1296 
   1297 		/* Clear flags after cv_broadcast() (scheduler needs them). */
   1298 		p->p_lflag &= ~PL_PPWAIT;
   1299 		lp->l_vforkwaiting = false;
   1300 
   1301 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
   1302 		samecpu = (lp->l_cpu == curlwp->l_cpu);
   1303 		mutex_exit(&proc_lock);
   1304 
   1305 		/* Give the parent its CPU back - find a new home. */
   1306 		KASSERT(!is_spawn);
   1307 		sched_vforkexec(l, samecpu);
   1308 	}
   1309 
   1310 	/* Now map address space. */
   1311 	error = execve_dovmcmds(l, data);
   1312 	if (error != 0)
   1313 		goto exec_abort;
   1314 
   1315 	pathexec(p, epp->ep_resolvedname);
   1316 
   1317 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1318 
   1319 	error = copyoutargs(data, l, newstack);
   1320 	if (error != 0)
   1321 		goto exec_abort;
   1322 
   1323 	doexechooks(p);
   1324 
   1325 	/*
   1326 	 * Set initial SP at the top of the stack.
   1327 	 *
   1328 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1329 	 * the end of arg/env strings.  Userland guesses the address of argc
   1330 	 * via ps_strings::ps_argvstr.
   1331 	 */
   1332 
   1333 	/* Setup new registers and do misc. setup. */
   1334 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1335 	if (epp->ep_esch->es_setregs)
   1336 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1337 
   1338 	/* Provide a consistent LWP private setting */
   1339 	(void)lwp_setprivate(l, NULL);
   1340 
   1341 	/* Discard all PCU state; need to start fresh */
   1342 	pcu_discard_all(l);
   1343 
   1344 	/* map the process's signal trampoline code */
   1345 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1346 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1347 		goto exec_abort;
   1348 	}
   1349 
   1350 	pool_put(&exec_pool, data->ed_argp);
   1351 
   1352 	/* notify others that we exec'd */
   1353 	KNOTE(&p->p_klist, NOTE_EXEC);
   1354 
   1355 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1356 
   1357 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1358 
   1359 	emulexec(l, epp);
   1360 
   1361 	/* Allow new references from the debugger/procfs. */
   1362 	rw_exit(&p->p_reflock);
   1363 	if (!no_local_exec_lock)
   1364 		rw_exit(&exec_lock);
   1365 
   1366 	mutex_enter(&proc_lock);
   1367 
   1368 	/* posix_spawn(3) reports a single event with implied exec(3) */
   1369 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
   1370 		mutex_enter(p->p_lock);
   1371 		eventswitch(TRAP_EXEC, 0, 0);
   1372 		mutex_enter(&proc_lock);
   1373 	}
   1374 
   1375 	if (p->p_sflag & PS_STOPEXEC) {
   1376 		ksiginfoq_t kq;
   1377 
   1378 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1379 		p->p_pptr->p_nstopchild++;
   1380 		p->p_waited = 0;
   1381 		mutex_enter(p->p_lock);
   1382 		ksiginfo_queue_init(&kq);
   1383 		sigclearall(p, &contsigmask, &kq);
   1384 		lwp_lock(l);
   1385 		l->l_stat = LSSTOP;
   1386 		p->p_stat = SSTOP;
   1387 		p->p_nrlwps--;
   1388 		lwp_unlock(l);
   1389 		mutex_exit(p->p_lock);
   1390 		mutex_exit(&proc_lock);
   1391 		lwp_lock(l);
   1392 		spc_lock(l->l_cpu);
   1393 		mi_switch(l);
   1394 		ksiginfo_queue_drain(&kq);
   1395 	} else {
   1396 		mutex_exit(&proc_lock);
   1397 	}
   1398 
   1399 	exec_path_free(data);
   1400 #ifdef TRACE_EXEC
   1401 	DPRINTF(("%s finished\n", __func__));
   1402 #endif
   1403 	return EJUSTRETURN;
   1404 
   1405  exec_abort:
   1406 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1407 	rw_exit(&p->p_reflock);
   1408 	if (!no_local_exec_lock)
   1409 		rw_exit(&exec_lock);
   1410 
   1411 	exec_path_free(data);
   1412 
   1413 	/*
   1414 	 * the old process doesn't exist anymore.  exit gracefully.
   1415 	 * get rid of the (new) address space we have created, if any, get rid
   1416 	 * of our namei data and vnode, and exit noting failure
   1417 	 */
   1418 	if (vm != NULL) {
   1419 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1420 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1421 	}
   1422 
   1423 	exec_free_emul_arg(epp);
   1424 	pool_put(&exec_pool, data->ed_argp);
   1425 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1426 	if (epp->ep_emul_root != NULL)
   1427 		vrele(epp->ep_emul_root);
   1428 	if (epp->ep_interp != NULL)
   1429 		vrele(epp->ep_interp);
   1430 
   1431 	/* Acquire the sched-state mutex (exit1() will release it). */
   1432 	if (!is_spawn) {
   1433 		mutex_enter(p->p_lock);
   1434 		exit1(l, error, SIGABRT);
   1435 	}
   1436 
   1437 	return error;
   1438 }
   1439 
   1440 int
   1441 execve1(struct lwp *l, bool has_path, const char *path, int fd,
   1442     char * const *args, char * const *envs,
   1443     execve_fetch_element_t fetch_element)
   1444 {
   1445 	struct execve_data data;
   1446 	int error;
   1447 
   1448 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
   1449 	    &data);
   1450 	if (error)
   1451 		return error;
   1452 	error = execve_runproc(l, &data, false, false);
   1453 	return error;
   1454 }
   1455 
   1456 static size_t
   1457 fromptrsz(const struct exec_package *epp)
   1458 {
   1459 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1460 }
   1461 
   1462 static size_t
   1463 ptrsz(const struct exec_package *epp)
   1464 {
   1465 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1466 }
   1467 
   1468 static size_t
   1469 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1470 {
   1471 	struct exec_package	* const epp = &data->ed_pack;
   1472 
   1473 	const size_t nargenvptrs =
   1474 	    1 +				/* long argc */
   1475 	    data->ed_argc +		/* char *argv[] */
   1476 	    1 +				/* \0 */
   1477 	    data->ed_envc +		/* char *env[] */
   1478 	    1;				/* \0 */
   1479 
   1480 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1481 	    + argenvstrlen			/* strings */
   1482 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1483 }
   1484 
   1485 static size_t
   1486 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1487 {
   1488 	struct exec_package	* const epp = &data->ed_pack;
   1489 
   1490 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1491 	    epp->ep_esch->es_emul->e_sigcode;
   1492 
   1493 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1494 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1495 
   1496 	const size_t sigcode_psstr_sz =
   1497 	    data->ed_szsigcode +	/* sigcode */
   1498 	    data->ed_ps_strings_sz +	/* ps_strings */
   1499 	    STACK_PTHREADSPACE;		/* pthread space */
   1500 
   1501 	const size_t stacklen =
   1502 	    data->ed_argslen +
   1503 	    gaplen +
   1504 	    sigcode_psstr_sz;
   1505 
   1506 	/* make the stack "safely" aligned */
   1507 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1508 }
   1509 
   1510 static int
   1511 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1512     char * const newstack)
   1513 {
   1514 	struct exec_package	* const epp = &data->ed_pack;
   1515 	struct proc		*p = l->l_proc;
   1516 	int			error;
   1517 
   1518 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1519 
   1520 	/* remember information about the process */
   1521 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1522 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1523 
   1524 	/*
   1525 	 * Allocate the stack address passed to the newly execve()'ed process.
   1526 	 *
   1527 	 * The new stack address will be set to the SP (stack pointer) register
   1528 	 * in setregs().
   1529 	 */
   1530 
   1531 	char *newargs = STACK_ALLOC(
   1532 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1533 
   1534 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1535 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1536 
   1537 	if (error) {
   1538 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1539 		return error;
   1540 	}
   1541 
   1542 	error = copyoutpsstrs(data, p);
   1543 	if (error != 0)
   1544 		return error;
   1545 
   1546 	return 0;
   1547 }
   1548 
   1549 static int
   1550 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1551 {
   1552 	struct exec_package	* const epp = &data->ed_pack;
   1553 	struct ps_strings32	arginfo32;
   1554 	void			*aip;
   1555 	int			error;
   1556 
   1557 	/* fill process ps_strings info */
   1558 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1559 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1560 
   1561 	if (epp->ep_flags & EXEC_32) {
   1562 		aip = &arginfo32;
   1563 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1564 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1565 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1566 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1567 	} else
   1568 		aip = &data->ed_arginfo;
   1569 
   1570 	/* copy out the process's ps_strings structure */
   1571 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1572 	    != 0) {
   1573 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1574 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1575 		return error;
   1576 	}
   1577 
   1578 	return 0;
   1579 }
   1580 
   1581 static int
   1582 copyinargs(struct execve_data * restrict data, char * const *args,
   1583     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1584 {
   1585 	struct exec_package	* const epp = &data->ed_pack;
   1586 	char			*dp;
   1587 	size_t			i;
   1588 	int			error;
   1589 
   1590 	dp = *dpp;
   1591 
   1592 	data->ed_argc = 0;
   1593 
   1594 	/* copy the fake args list, if there's one, freeing it as we go */
   1595 	if (epp->ep_flags & EXEC_HASARGL) {
   1596 		struct exec_fakearg	*fa = epp->ep_fa;
   1597 
   1598 		while (fa->fa_arg != NULL) {
   1599 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1600 			size_t len;
   1601 
   1602 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1603 			/* Count NUL into len. */
   1604 			if (len < maxlen)
   1605 				len++;
   1606 			else {
   1607 				while (fa->fa_arg != NULL) {
   1608 					kmem_free(fa->fa_arg, fa->fa_len);
   1609 					fa++;
   1610 				}
   1611 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1612 				epp->ep_flags &= ~EXEC_HASARGL;
   1613 				return E2BIG;
   1614 			}
   1615 			ktrexecarg(fa->fa_arg, len - 1);
   1616 			dp += len;
   1617 
   1618 			kmem_free(fa->fa_arg, fa->fa_len);
   1619 			fa++;
   1620 			data->ed_argc++;
   1621 		}
   1622 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1623 		epp->ep_flags &= ~EXEC_HASARGL;
   1624 	}
   1625 
   1626 	/*
   1627 	 * Read and count argument strings from user.
   1628 	 */
   1629 
   1630 	if (args == NULL) {
   1631 		DPRINTF(("%s: null args\n", __func__));
   1632 		return EINVAL;
   1633 	}
   1634 	if (epp->ep_flags & EXEC_SKIPARG)
   1635 		args = (const void *)((const char *)args + fromptrsz(epp));
   1636 	i = 0;
   1637 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1638 	if (error != 0) {
   1639 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1640 		return error;
   1641 	}
   1642 	data->ed_argc += i;
   1643 
   1644 	/*
   1645 	 * Read and count environment strings from user.
   1646 	 */
   1647 
   1648 	data->ed_envc = 0;
   1649 	/* environment need not be there */
   1650 	if (envs == NULL)
   1651 		goto done;
   1652 	i = 0;
   1653 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1654 	if (error != 0) {
   1655 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1656 		return error;
   1657 	}
   1658 	data->ed_envc += i;
   1659 
   1660 done:
   1661 	*dpp = dp;
   1662 
   1663 	return 0;
   1664 }
   1665 
   1666 static int
   1667 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1668     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1669     void (*ktr)(const void *, size_t))
   1670 {
   1671 	char			*dp, *sp;
   1672 	size_t			i;
   1673 	int			error;
   1674 
   1675 	dp = *dpp;
   1676 
   1677 	i = 0;
   1678 	while (1) {
   1679 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1680 		size_t len;
   1681 
   1682 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1683 			return error;
   1684 		}
   1685 		if (!sp)
   1686 			break;
   1687 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1688 			if (error == ENAMETOOLONG)
   1689 				error = E2BIG;
   1690 			return error;
   1691 		}
   1692 		if (__predict_false(ktrace_on))
   1693 			(*ktr)(dp, len - 1);
   1694 		dp += len;
   1695 		i++;
   1696 	}
   1697 
   1698 	*dpp = dp;
   1699 	*ip = i;
   1700 
   1701 	return 0;
   1702 }
   1703 
   1704 /*
   1705  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1706  * Those strings are located just after auxinfo.
   1707  */
   1708 int
   1709 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1710     char **stackp, void *argp)
   1711 {
   1712 	char	**cpp, *dp, *sp;
   1713 	size_t	len;
   1714 	void	*nullp;
   1715 	long	argc, envc;
   1716 	int	error;
   1717 
   1718 	cpp = (char **)*stackp;
   1719 	nullp = NULL;
   1720 	argc = arginfo->ps_nargvstr;
   1721 	envc = arginfo->ps_nenvstr;
   1722 
   1723 	/* argc on stack is long */
   1724 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1725 
   1726 	dp = (char *)(cpp +
   1727 	    1 +				/* long argc */
   1728 	    argc +			/* char *argv[] */
   1729 	    1 +				/* \0 */
   1730 	    envc +			/* char *env[] */
   1731 	    1) +			/* \0 */
   1732 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1733 	sp = argp;
   1734 
   1735 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1736 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1737 		return error;
   1738 	}
   1739 
   1740 	/* XXX don't copy them out, remap them! */
   1741 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1742 
   1743 	for (; --argc >= 0; sp += len, dp += len) {
   1744 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1745 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1746 			return error;
   1747 		}
   1748 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1749 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1750 			return error;
   1751 		}
   1752 	}
   1753 
   1754 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1755 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1756 		return error;
   1757 	}
   1758 
   1759 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1760 
   1761 	for (; --envc >= 0; sp += len, dp += len) {
   1762 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1763 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1764 			return error;
   1765 		}
   1766 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1767 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1768 			return error;
   1769 		}
   1770 
   1771 	}
   1772 
   1773 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1774 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1775 		return error;
   1776 	}
   1777 
   1778 	*stackp = (char *)cpp;
   1779 	return 0;
   1780 }
   1781 
   1782 
   1783 /*
   1784  * Add execsw[] entries.
   1785  */
   1786 int
   1787 exec_add(struct execsw *esp, int count)
   1788 {
   1789 	struct exec_entry	*it;
   1790 	int			i;
   1791 
   1792 	if (count == 0) {
   1793 		return 0;
   1794 	}
   1795 
   1796 	/* Check for duplicates. */
   1797 	rw_enter(&exec_lock, RW_WRITER);
   1798 	for (i = 0; i < count; i++) {
   1799 		LIST_FOREACH(it, &ex_head, ex_list) {
   1800 			/* assume unique (makecmds, probe_func, emulation) */
   1801 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1802 			    it->ex_sw->u.elf_probe_func ==
   1803 			    esp[i].u.elf_probe_func &&
   1804 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1805 				rw_exit(&exec_lock);
   1806 				return EEXIST;
   1807 			}
   1808 		}
   1809 	}
   1810 
   1811 	/* Allocate new entries. */
   1812 	for (i = 0; i < count; i++) {
   1813 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1814 		it->ex_sw = &esp[i];
   1815 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1816 	}
   1817 
   1818 	/* update execsw[] */
   1819 	exec_init(0);
   1820 	rw_exit(&exec_lock);
   1821 	return 0;
   1822 }
   1823 
   1824 /*
   1825  * Remove execsw[] entry.
   1826  */
   1827 int
   1828 exec_remove(struct execsw *esp, int count)
   1829 {
   1830 	struct exec_entry	*it, *next;
   1831 	int			i;
   1832 	const struct proclist_desc *pd;
   1833 	proc_t			*p;
   1834 
   1835 	if (count == 0) {
   1836 		return 0;
   1837 	}
   1838 
   1839 	/* Abort if any are busy. */
   1840 	rw_enter(&exec_lock, RW_WRITER);
   1841 	for (i = 0; i < count; i++) {
   1842 		mutex_enter(&proc_lock);
   1843 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1844 			PROCLIST_FOREACH(p, pd->pd_list) {
   1845 				if (p->p_execsw == &esp[i]) {
   1846 					mutex_exit(&proc_lock);
   1847 					rw_exit(&exec_lock);
   1848 					return EBUSY;
   1849 				}
   1850 			}
   1851 		}
   1852 		mutex_exit(&proc_lock);
   1853 	}
   1854 
   1855 	/* None are busy, so remove them all. */
   1856 	for (i = 0; i < count; i++) {
   1857 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1858 			next = LIST_NEXT(it, ex_list);
   1859 			if (it->ex_sw == &esp[i]) {
   1860 				LIST_REMOVE(it, ex_list);
   1861 				kmem_free(it, sizeof(*it));
   1862 				break;
   1863 			}
   1864 		}
   1865 	}
   1866 
   1867 	/* update execsw[] */
   1868 	exec_init(0);
   1869 	rw_exit(&exec_lock);
   1870 	return 0;
   1871 }
   1872 
   1873 /*
   1874  * Initialize exec structures. If init_boot is true, also does necessary
   1875  * one-time initialization (it's called from main() that way).
   1876  * Once system is multiuser, this should be called with exec_lock held,
   1877  * i.e. via exec_{add|remove}().
   1878  */
   1879 int
   1880 exec_init(int init_boot)
   1881 {
   1882 	const struct execsw 	**sw;
   1883 	struct exec_entry	*ex;
   1884 	SLIST_HEAD(,exec_entry)	first;
   1885 	SLIST_HEAD(,exec_entry)	any;
   1886 	SLIST_HEAD(,exec_entry)	last;
   1887 	int			i, sz;
   1888 
   1889 	if (init_boot) {
   1890 		/* do one-time initializations */
   1891 		vaddr_t vmin = 0, vmax;
   1892 
   1893 		rw_init(&exec_lock);
   1894 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1895 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1896 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1897 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1898 		    "execargs", &exec_palloc, IPL_NONE);
   1899 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1900 	} else {
   1901 		KASSERT(rw_write_held(&exec_lock));
   1902 	}
   1903 
   1904 	/* Sort each entry onto the appropriate queue. */
   1905 	SLIST_INIT(&first);
   1906 	SLIST_INIT(&any);
   1907 	SLIST_INIT(&last);
   1908 	sz = 0;
   1909 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1910 		switch(ex->ex_sw->es_prio) {
   1911 		case EXECSW_PRIO_FIRST:
   1912 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1913 			break;
   1914 		case EXECSW_PRIO_ANY:
   1915 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1916 			break;
   1917 		case EXECSW_PRIO_LAST:
   1918 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1919 			break;
   1920 		default:
   1921 			panic("%s", __func__);
   1922 			break;
   1923 		}
   1924 		sz++;
   1925 	}
   1926 
   1927 	/*
   1928 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1929 	 * allocation.
   1930 	 */
   1931 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1932 	i = 0;
   1933 	SLIST_FOREACH(ex, &first, ex_slist) {
   1934 		sw[i++] = ex->ex_sw;
   1935 	}
   1936 	SLIST_FOREACH(ex, &any, ex_slist) {
   1937 		sw[i++] = ex->ex_sw;
   1938 	}
   1939 	SLIST_FOREACH(ex, &last, ex_slist) {
   1940 		sw[i++] = ex->ex_sw;
   1941 	}
   1942 
   1943 	/* Replace old execsw[] and free used memory. */
   1944 	if (execsw != NULL) {
   1945 		kmem_free(__UNCONST(execsw),
   1946 		    nexecs * sizeof(struct execsw *) + 1);
   1947 	}
   1948 	execsw = sw;
   1949 	nexecs = sz;
   1950 
   1951 	/* Figure out the maximum size of an exec header. */
   1952 	exec_maxhdrsz = sizeof(int);
   1953 	for (i = 0; i < nexecs; i++) {
   1954 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1955 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1956 	}
   1957 
   1958 	return 0;
   1959 }
   1960 
   1961 static int
   1962 exec_sigcode_map(struct proc *p, const struct emul *e)
   1963 {
   1964 	vaddr_t va;
   1965 	vsize_t sz;
   1966 	int error;
   1967 	struct uvm_object *uobj;
   1968 
   1969 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1970 
   1971 	if (e->e_sigobject == NULL || sz == 0) {
   1972 		return 0;
   1973 	}
   1974 
   1975 	/*
   1976 	 * If we don't have a sigobject for this emulation, create one.
   1977 	 *
   1978 	 * sigobject is an anonymous memory object (just like SYSV shared
   1979 	 * memory) that we keep a permanent reference to and that we map
   1980 	 * in all processes that need this sigcode. The creation is simple,
   1981 	 * we create an object, add a permanent reference to it, map it in
   1982 	 * kernel space, copy out the sigcode to it and unmap it.
   1983 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1984 	 * the way sys_mmap() would map it.
   1985 	 */
   1986 
   1987 	uobj = *e->e_sigobject;
   1988 	if (uobj == NULL) {
   1989 		mutex_enter(&sigobject_lock);
   1990 		if ((uobj = *e->e_sigobject) == NULL) {
   1991 			uobj = uao_create(sz, 0);
   1992 			(*uobj->pgops->pgo_reference)(uobj);
   1993 			va = vm_map_min(kernel_map);
   1994 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1995 			    uobj, 0, 0,
   1996 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1997 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1998 				printf("kernel mapping failed %d\n", error);
   1999 				(*uobj->pgops->pgo_detach)(uobj);
   2000 				mutex_exit(&sigobject_lock);
   2001 				return error;
   2002 			}
   2003 			memcpy((void *)va, e->e_sigcode, sz);
   2004 #ifdef PMAP_NEED_PROCWR
   2005 			pmap_procwr(&proc0, va, sz);
   2006 #endif
   2007 			uvm_unmap(kernel_map, va, va + round_page(sz));
   2008 			*e->e_sigobject = uobj;
   2009 		}
   2010 		mutex_exit(&sigobject_lock);
   2011 	}
   2012 
   2013 	/* Just a hint to uvm_map where to put it. */
   2014 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   2015 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   2016 
   2017 #ifdef __alpha__
   2018 	/*
   2019 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   2020 	 * which causes the above calculation to put the sigcode at
   2021 	 * an invalid address.  Put it just below the text instead.
   2022 	 */
   2023 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   2024 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   2025 	}
   2026 #endif
   2027 
   2028 	(*uobj->pgops->pgo_reference)(uobj);
   2029 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   2030 			uobj, 0, 0,
   2031 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   2032 				    UVM_ADV_RANDOM, 0));
   2033 	if (error) {
   2034 		DPRINTF(("%s, %d: map %p "
   2035 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   2036 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   2037 		    va, error));
   2038 		(*uobj->pgops->pgo_detach)(uobj);
   2039 		return error;
   2040 	}
   2041 	p->p_sigctx.ps_sigcode = (void *)va;
   2042 	return 0;
   2043 }
   2044 
   2045 /*
   2046  * Release a refcount on spawn_exec_data and destroy memory, if this
   2047  * was the last one.
   2048  */
   2049 static void
   2050 spawn_exec_data_release(struct spawn_exec_data *data)
   2051 {
   2052 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   2053 		return;
   2054 
   2055 	cv_destroy(&data->sed_cv_child_ready);
   2056 	mutex_destroy(&data->sed_mtx_child);
   2057 
   2058 	if (data->sed_actions)
   2059 		posix_spawn_fa_free(data->sed_actions,
   2060 		    data->sed_actions->len);
   2061 	if (data->sed_attrs)
   2062 		kmem_free(data->sed_attrs,
   2063 		    sizeof(*data->sed_attrs));
   2064 	kmem_free(data, sizeof(*data));
   2065 }
   2066 
   2067 static int
   2068 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
   2069 {
   2070 	struct lwp *l = curlwp;
   2071 	register_t retval;
   2072 	int error, newfd;
   2073 
   2074 	if (actions == NULL)
   2075 		return 0;
   2076 
   2077 	for (size_t i = 0; i < actions->len; i++) {
   2078 		const struct posix_spawn_file_actions_entry *fae =
   2079 		    &actions->fae[i];
   2080 		switch (fae->fae_action) {
   2081 		case FAE_OPEN:
   2082 			if (fd_getfile(fae->fae_fildes) != NULL) {
   2083 				error = fd_close(fae->fae_fildes);
   2084 				if (error)
   2085 					return error;
   2086 			}
   2087 			error = fd_open(fae->fae_path, fae->fae_oflag,
   2088 			    fae->fae_mode, &newfd);
   2089 			if (error)
   2090 				return error;
   2091 			if (newfd != fae->fae_fildes) {
   2092 				error = dodup(l, newfd,
   2093 				    fae->fae_fildes, 0, &retval);
   2094 				if (fd_getfile(newfd) != NULL)
   2095 					fd_close(newfd);
   2096 			}
   2097 			break;
   2098 		case FAE_DUP2:
   2099 			error = dodup(l, fae->fae_fildes,
   2100 			    fae->fae_newfildes, 0, &retval);
   2101 			break;
   2102 		case FAE_CLOSE:
   2103 			if (fd_getfile(fae->fae_fildes) == NULL) {
   2104 				return EBADF;
   2105 			}
   2106 			error = fd_close(fae->fae_fildes);
   2107 			break;
   2108 		}
   2109 		if (error)
   2110 			return error;
   2111 	}
   2112 	return 0;
   2113 }
   2114 
   2115 static int
   2116 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
   2117 {
   2118 	struct sigaction sigact;
   2119 	int error;
   2120 	struct proc *p = curproc;
   2121 	struct lwp *l = curlwp;
   2122 
   2123 	if (attrs == NULL)
   2124 		return 0;
   2125 
   2126 	memset(&sigact, 0, sizeof(sigact));
   2127 	sigact._sa_u._sa_handler = SIG_DFL;
   2128 	sigact.sa_flags = 0;
   2129 
   2130 	/*
   2131 	 * set state to SSTOP so that this proc can be found by pid.
   2132 	 * see proc_enterprp, do_sched_setparam below
   2133 	 */
   2134 	mutex_enter(&proc_lock);
   2135 	/*
   2136 	 * p_stat should be SACTIVE, so we need to adjust the
   2137 	 * parent's p_nstopchild here.  For safety, just make
   2138 	 * we're on the good side of SDEAD before we adjust.
   2139 	 */
   2140 	int ostat = p->p_stat;
   2141 	KASSERT(ostat < SSTOP);
   2142 	p->p_stat = SSTOP;
   2143 	p->p_waited = 0;
   2144 	p->p_pptr->p_nstopchild++;
   2145 	mutex_exit(&proc_lock);
   2146 
   2147 	/* Set process group */
   2148 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2149 		pid_t mypid = p->p_pid;
   2150 		pid_t pgrp = attrs->sa_pgroup;
   2151 
   2152 		if (pgrp == 0)
   2153 			pgrp = mypid;
   2154 
   2155 		error = proc_enterpgrp(parent, mypid, pgrp, false);
   2156 		if (error)
   2157 			goto out;
   2158 	}
   2159 
   2160 	/* Set scheduler policy */
   2161 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2162 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
   2163 		    &attrs->sa_schedparam);
   2164 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
   2165 		error = do_sched_setparam(parent->p_pid, 0,
   2166 		    SCHED_NONE, &attrs->sa_schedparam);
   2167 	}
   2168 	if (error)
   2169 		goto out;
   2170 
   2171 	/* Reset user ID's */
   2172 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2173 		error = do_setresuid(l, -1, kauth_cred_getgid(l->l_cred), -1,
   2174 		     ID_E_EQ_R | ID_E_EQ_S);
   2175 		if (error)
   2176 			return error;
   2177 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
   2178 		    ID_E_EQ_R | ID_E_EQ_S);
   2179 		if (error)
   2180 			goto out;
   2181 	}
   2182 
   2183 	/* Set signal masks/defaults */
   2184 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2185 		mutex_enter(p->p_lock);
   2186 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
   2187 		mutex_exit(p->p_lock);
   2188 		if (error)
   2189 			goto out;
   2190 	}
   2191 
   2192 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2193 		/*
   2194 		 * The following sigaction call is using a sigaction
   2195 		 * version 0 trampoline which is in the compatibility
   2196 		 * code only. This is not a problem because for SIG_DFL
   2197 		 * and SIG_IGN, the trampolines are now ignored. If they
   2198 		 * were not, this would be a problem because we are
   2199 		 * holding the exec_lock, and the compat code needs
   2200 		 * to do the same in order to replace the trampoline
   2201 		 * code of the process.
   2202 		 */
   2203 		for (int i = 1; i <= NSIG; i++) {
   2204 			if (sigismember(&attrs->sa_sigdefault, i))
   2205 				sigaction1(l, i, &sigact, NULL, NULL, 0);
   2206 		}
   2207 	}
   2208 	error = 0;
   2209 out:
   2210 	mutex_enter(&proc_lock);
   2211 	p->p_stat = ostat;
   2212 	p->p_pptr->p_nstopchild--;
   2213 	mutex_exit(&proc_lock);
   2214 	return error;
   2215 }
   2216 
   2217 /*
   2218  * A child lwp of a posix_spawn operation starts here and ends up in
   2219  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   2220  * manipulations in between.
   2221  * The parent waits for the child, as it is not clear whether the child
   2222  * will be able to acquire its own exec_lock. If it can, the parent can
   2223  * be released early and continue running in parallel. If not (or if the
   2224  * magic debug flag is passed in the scheduler attribute struct), the
   2225  * child rides on the parent's exec lock until it is ready to return to
   2226  * to userland - and only then releases the parent. This method loses
   2227  * concurrency, but improves error reporting.
   2228  */
   2229 static void
   2230 spawn_return(void *arg)
   2231 {
   2232 	struct spawn_exec_data *spawn_data = arg;
   2233 	struct lwp *l = curlwp;
   2234 	struct proc *p = l->l_proc;
   2235 	int error;
   2236 	bool have_reflock;
   2237 	bool parent_is_waiting = true;
   2238 
   2239 	/*
   2240 	 * Check if we can release parent early.
   2241 	 * We either need to have no sed_attrs, or sed_attrs does not
   2242 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2243 	 * safe access to the parent proc (passed in sed_parent).
   2244 	 * We then try to get the exec_lock, and only if that works, we can
   2245 	 * release the parent here already.
   2246 	 */
   2247 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
   2248 	if ((!attrs || (attrs->sa_flags
   2249 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2250 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2251 		parent_is_waiting = false;
   2252 		mutex_enter(&spawn_data->sed_mtx_child);
   2253 		cv_signal(&spawn_data->sed_cv_child_ready);
   2254 		mutex_exit(&spawn_data->sed_mtx_child);
   2255 	}
   2256 
   2257 	/* don't allow debugger access yet */
   2258 	rw_enter(&p->p_reflock, RW_WRITER);
   2259 	have_reflock = true;
   2260 
   2261 	/* handle posix_spawn_file_actions */
   2262 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
   2263 	if (error)
   2264 		goto report_error;
   2265 
   2266 	/* handle posix_spawnattr */
   2267 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
   2268 	if (error)
   2269 		goto report_error;
   2270 
   2271 	/* now do the real exec */
   2272 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2273 	    true);
   2274 	have_reflock = false;
   2275 	if (error == EJUSTRETURN)
   2276 		error = 0;
   2277 	else if (error)
   2278 		goto report_error;
   2279 
   2280 	if (parent_is_waiting) {
   2281 		mutex_enter(&spawn_data->sed_mtx_child);
   2282 		cv_signal(&spawn_data->sed_cv_child_ready);
   2283 		mutex_exit(&spawn_data->sed_mtx_child);
   2284 	}
   2285 
   2286 	/* release our refcount on the data */
   2287 	spawn_exec_data_release(spawn_data);
   2288 
   2289 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
   2290 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   2291 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
   2292 	}
   2293 
   2294 	/* and finally: leave to userland for the first time */
   2295 	cpu_spawn_return(l);
   2296 
   2297 	/* NOTREACHED */
   2298 	return;
   2299 
   2300  report_error:
   2301 	if (have_reflock) {
   2302 		/*
   2303 		 * We have not passed through execve_runproc(),
   2304 		 * which would have released the p_reflock and also
   2305 		 * taken ownership of the sed_exec part of spawn_data,
   2306 		 * so release/free both here.
   2307 		 */
   2308 		rw_exit(&p->p_reflock);
   2309 		execve_free_data(&spawn_data->sed_exec);
   2310 	}
   2311 
   2312 	if (parent_is_waiting) {
   2313 		/* pass error to parent */
   2314 		mutex_enter(&spawn_data->sed_mtx_child);
   2315 		spawn_data->sed_error = error;
   2316 		cv_signal(&spawn_data->sed_cv_child_ready);
   2317 		mutex_exit(&spawn_data->sed_mtx_child);
   2318 	} else {
   2319 		rw_exit(&exec_lock);
   2320 	}
   2321 
   2322 	/* release our refcount on the data */
   2323 	spawn_exec_data_release(spawn_data);
   2324 
   2325 	/* done, exit */
   2326 	mutex_enter(p->p_lock);
   2327 	/*
   2328 	 * Posix explicitly asks for an exit code of 127 if we report
   2329 	 * errors from the child process - so, unfortunately, there
   2330 	 * is no way to report a more exact error code.
   2331 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2332 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2333 	 */
   2334 	exit1(l, 127, 0);
   2335 }
   2336 
   2337 void
   2338 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2339 {
   2340 
   2341 	for (size_t i = 0; i < len; i++) {
   2342 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2343 		if (fae->fae_action != FAE_OPEN)
   2344 			continue;
   2345 		kmem_strfree(fae->fae_path);
   2346 	}
   2347 	if (fa->len > 0)
   2348 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2349 	kmem_free(fa, sizeof(*fa));
   2350 }
   2351 
   2352 static int
   2353 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2354     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2355 {
   2356 	struct posix_spawn_file_actions *fa;
   2357 	struct posix_spawn_file_actions_entry *fae;
   2358 	char *pbuf = NULL;
   2359 	int error;
   2360 	size_t i = 0;
   2361 
   2362 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2363 	error = copyin(ufa, fa, sizeof(*fa));
   2364 	if (error || fa->len == 0) {
   2365 		kmem_free(fa, sizeof(*fa));
   2366 		return error;	/* 0 if not an error, and len == 0 */
   2367 	}
   2368 
   2369 	if (fa->len > lim) {
   2370 		kmem_free(fa, sizeof(*fa));
   2371 		return EINVAL;
   2372 	}
   2373 
   2374 	fa->size = fa->len;
   2375 	size_t fal = fa->len * sizeof(*fae);
   2376 	fae = fa->fae;
   2377 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2378 	error = copyin(fae, fa->fae, fal);
   2379 	if (error)
   2380 		goto out;
   2381 
   2382 	pbuf = PNBUF_GET();
   2383 	for (; i < fa->len; i++) {
   2384 		fae = &fa->fae[i];
   2385 		if (fae->fae_action != FAE_OPEN)
   2386 			continue;
   2387 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2388 		if (error)
   2389 			goto out;
   2390 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2391 		memcpy(fae->fae_path, pbuf, fal);
   2392 	}
   2393 	PNBUF_PUT(pbuf);
   2394 
   2395 	*fap = fa;
   2396 	return 0;
   2397 out:
   2398 	if (pbuf)
   2399 		PNBUF_PUT(pbuf);
   2400 	posix_spawn_fa_free(fa, i);
   2401 	return error;
   2402 }
   2403 
   2404 /*
   2405  * N.B. increments nprocs upon success.  Callers need to drop nprocs if
   2406  * they fail for some other reason.
   2407  */
   2408 int
   2409 check_posix_spawn(struct lwp *l1)
   2410 {
   2411 	int error, tnprocs, count;
   2412 	uid_t uid;
   2413 	struct proc *p1;
   2414 
   2415 	p1 = l1->l_proc;
   2416 	uid = kauth_cred_getuid(l1->l_cred);
   2417 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2418 
   2419 	/*
   2420 	 * Although process entries are dynamically created, we still keep
   2421 	 * a global limit on the maximum number we will create.
   2422 	 */
   2423 	if (__predict_false(tnprocs >= maxproc))
   2424 		error = -1;
   2425 	else
   2426 		error = kauth_authorize_process(l1->l_cred,
   2427 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2428 
   2429 	if (error) {
   2430 		atomic_dec_uint(&nprocs);
   2431 		return EAGAIN;
   2432 	}
   2433 
   2434 	/*
   2435 	 * Enforce limits.
   2436 	 */
   2437 	count = chgproccnt(uid, 1);
   2438 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2439 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2440 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2441 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2442 		(void)chgproccnt(uid, -1);
   2443 		atomic_dec_uint(&nprocs);
   2444 		return EAGAIN;
   2445 	}
   2446 
   2447 	return 0;
   2448 }
   2449 
   2450 int
   2451 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2452 	struct posix_spawn_file_actions *fa,
   2453 	struct posix_spawnattr *sa,
   2454 	char *const *argv, char *const *envp,
   2455 	execve_fetch_element_t fetch)
   2456 {
   2457 
   2458 	struct proc *p1, *p2;
   2459 	struct lwp *l2;
   2460 	int error;
   2461 	struct spawn_exec_data *spawn_data;
   2462 	vaddr_t uaddr;
   2463 	pid_t pid;
   2464 	bool have_exec_lock = false;
   2465 
   2466 	p1 = l1->l_proc;
   2467 
   2468 	/* Allocate and init spawn_data */
   2469 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2470 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2471 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2472 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2473 	mutex_enter(&spawn_data->sed_mtx_child);
   2474 
   2475 	/*
   2476 	 * Do the first part of the exec now, collect state
   2477 	 * in spawn_data.
   2478 	 */
   2479 	error = execve_loadvm(l1, true, path, -1, argv,
   2480 	    envp, fetch, &spawn_data->sed_exec);
   2481 	if (error == EJUSTRETURN)
   2482 		error = 0;
   2483 	else if (error)
   2484 		goto error_exit;
   2485 
   2486 	have_exec_lock = true;
   2487 
   2488 	/*
   2489 	 * Allocate virtual address space for the U-area now, while it
   2490 	 * is still easy to abort the fork operation if we're out of
   2491 	 * kernel virtual address space.
   2492 	 */
   2493 	uaddr = uvm_uarea_alloc();
   2494 	if (__predict_false(uaddr == 0)) {
   2495 		error = ENOMEM;
   2496 		goto error_exit;
   2497 	}
   2498 
   2499 	/*
   2500 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2501 	 * replace it with its own before returning to userland
   2502 	 * in the child.
   2503 	 */
   2504 	p2 = proc_alloc();
   2505 	if (p2 == NULL) {
   2506 		/* We were unable to allocate a process ID. */
   2507 		error = EAGAIN;
   2508 		goto error_exit;
   2509 	}
   2510 
   2511 	/*
   2512 	 * This is a point of no return, we will have to go through
   2513 	 * the child proc to properly clean it up past this point.
   2514 	 */
   2515 	pid = p2->p_pid;
   2516 
   2517 	/*
   2518 	 * Make a proc table entry for the new process.
   2519 	 * Start by zeroing the section of proc that is zero-initialized,
   2520 	 * then copy the section that is copied directly from the parent.
   2521 	 */
   2522 	memset(&p2->p_startzero, 0,
   2523 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2524 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2525 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2526 	p2->p_vmspace = proc0.p_vmspace;
   2527 
   2528 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2529 
   2530 	LIST_INIT(&p2->p_lwps);
   2531 	LIST_INIT(&p2->p_sigwaiters);
   2532 
   2533 	/*
   2534 	 * Duplicate sub-structures as needed.
   2535 	 * Increase reference counts on shared objects.
   2536 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2537 	 * handling are important in order to keep a consistent behaviour
   2538 	 * for the child after the fork.  If we are a 32-bit process, the
   2539 	 * child will be too.
   2540 	 */
   2541 	p2->p_flag =
   2542 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2543 	p2->p_emul = p1->p_emul;
   2544 	p2->p_execsw = p1->p_execsw;
   2545 
   2546 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2547 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2548 	rw_init(&p2->p_reflock);
   2549 	cv_init(&p2->p_waitcv, "wait");
   2550 	cv_init(&p2->p_lwpcv, "lwpwait");
   2551 
   2552 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2553 
   2554 	kauth_proc_fork(p1, p2);
   2555 
   2556 	p2->p_raslist = NULL;
   2557 	p2->p_fd = fd_copy();
   2558 
   2559 	/* XXX racy */
   2560 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2561 
   2562 	p2->p_cwdi = cwdinit();
   2563 
   2564 	/*
   2565 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2566 	 * we just need increase pl_refcnt.
   2567 	 */
   2568 	if (!p1->p_limit->pl_writeable) {
   2569 		lim_addref(p1->p_limit);
   2570 		p2->p_limit = p1->p_limit;
   2571 	} else {
   2572 		p2->p_limit = lim_copy(p1->p_limit);
   2573 	}
   2574 
   2575 	p2->p_lflag = 0;
   2576 	l1->l_vforkwaiting = false;
   2577 	p2->p_sflag = 0;
   2578 	p2->p_slflag = 0;
   2579 	p2->p_pptr = p1;
   2580 	p2->p_ppid = p1->p_pid;
   2581 	LIST_INIT(&p2->p_children);
   2582 
   2583 	p2->p_aio = NULL;
   2584 
   2585 #ifdef KTRACE
   2586 	/*
   2587 	 * Copy traceflag and tracefile if enabled.
   2588 	 * If not inherited, these were zeroed above.
   2589 	 */
   2590 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2591 		mutex_enter(&ktrace_lock);
   2592 		p2->p_traceflag = p1->p_traceflag;
   2593 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2594 			ktradref(p2);
   2595 		mutex_exit(&ktrace_lock);
   2596 	}
   2597 #endif
   2598 
   2599 	/*
   2600 	 * Create signal actions for the child process.
   2601 	 */
   2602 	p2->p_sigacts = sigactsinit(p1, 0);
   2603 	mutex_enter(p1->p_lock);
   2604 	p2->p_sflag |=
   2605 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2606 	sched_proc_fork(p1, p2);
   2607 	mutex_exit(p1->p_lock);
   2608 
   2609 	p2->p_stflag = p1->p_stflag;
   2610 
   2611 	/*
   2612 	 * p_stats.
   2613 	 * Copy parts of p_stats, and zero out the rest.
   2614 	 */
   2615 	p2->p_stats = pstatscopy(p1->p_stats);
   2616 
   2617 	/* copy over machdep flags to the new proc */
   2618 	cpu_proc_fork(p1, p2);
   2619 
   2620 	/*
   2621 	 * Prepare remaining parts of spawn data
   2622 	 */
   2623 	spawn_data->sed_actions = fa;
   2624 	spawn_data->sed_attrs = sa;
   2625 
   2626 	spawn_data->sed_parent = p1;
   2627 
   2628 	/* create LWP */
   2629 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2630 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2631 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2632 
   2633 	/*
   2634 	 * Copy the credential so other references don't see our changes.
   2635 	 * Test to see if this is necessary first, since in the common case
   2636 	 * we won't need a private reference.
   2637 	 */
   2638 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2639 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2640 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2641 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2642 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2643 	}
   2644 
   2645 	/* Update the master credentials. */
   2646 	if (l2->l_cred != p2->p_cred) {
   2647 		kauth_cred_t ocred;
   2648 
   2649 		kauth_cred_hold(l2->l_cred);
   2650 		mutex_enter(p2->p_lock);
   2651 		ocred = p2->p_cred;
   2652 		p2->p_cred = l2->l_cred;
   2653 		mutex_exit(p2->p_lock);
   2654 		kauth_cred_free(ocred);
   2655 	}
   2656 
   2657 	*child_ok = true;
   2658 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2659 #if 0
   2660 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2661 #endif
   2662 
   2663 	/*
   2664 	 * It's now safe for the scheduler and other processes to see the
   2665 	 * child process.
   2666 	 */
   2667 	mutex_enter(&proc_lock);
   2668 
   2669 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2670 		p2->p_lflag |= PL_CONTROLT;
   2671 
   2672 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2673 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2674 
   2675 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
   2676 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2677 		proc_changeparent(p2, p1->p_pptr);
   2678 		SET(p2->p_slflag, PSL_TRACEDCHILD);
   2679 	}
   2680 
   2681 	p2->p_oppid = p1->p_pid;  /* Remember the original parent id. */
   2682 
   2683 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2684 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2685 
   2686 	p2->p_trace_enabled = trace_is_enabled(p2);
   2687 #ifdef __HAVE_SYSCALL_INTERN
   2688 	(*p2->p_emul->e_syscall_intern)(p2);
   2689 #endif
   2690 
   2691 	/*
   2692 	 * Make child runnable, set start time, and add to run queue except
   2693 	 * if the parent requested the child to start in SSTOP state.
   2694 	 */
   2695 	mutex_enter(p2->p_lock);
   2696 
   2697 	getmicrotime(&p2->p_stats->p_start);
   2698 
   2699 	lwp_lock(l2);
   2700 	KASSERT(p2->p_nrlwps == 1);
   2701 	KASSERT(l2->l_stat == LSIDL);
   2702 	p2->p_nrlwps = 1;
   2703 	p2->p_stat = SACTIVE;
   2704 	setrunnable(l2);
   2705 	/* LWP now unlocked */
   2706 
   2707 	mutex_exit(p2->p_lock);
   2708 	mutex_exit(&proc_lock);
   2709 
   2710 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2711 	error = spawn_data->sed_error;
   2712 	mutex_exit(&spawn_data->sed_mtx_child);
   2713 	spawn_exec_data_release(spawn_data);
   2714 
   2715 	rw_exit(&p1->p_reflock);
   2716 	rw_exit(&exec_lock);
   2717 	have_exec_lock = false;
   2718 
   2719 	*pid_res = pid;
   2720 
   2721 	if (error)
   2722 		return error;
   2723 
   2724 	if (p1->p_slflag & PSL_TRACED) {
   2725 		/* Paranoid check */
   2726 		mutex_enter(&proc_lock);
   2727 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
   2728 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2729 			mutex_exit(&proc_lock);
   2730 			return 0;
   2731 		}
   2732 
   2733 		mutex_enter(p1->p_lock);
   2734 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
   2735 	}
   2736 	return 0;
   2737 
   2738  error_exit:
   2739 	if (have_exec_lock) {
   2740 		execve_free_data(&spawn_data->sed_exec);
   2741 		rw_exit(&p1->p_reflock);
   2742 		rw_exit(&exec_lock);
   2743 	}
   2744 	mutex_exit(&spawn_data->sed_mtx_child);
   2745 	spawn_exec_data_release(spawn_data);
   2746 
   2747 	return error;
   2748 }
   2749 
   2750 int
   2751 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2752     register_t *retval)
   2753 {
   2754 	/* {
   2755 		syscallarg(pid_t *) pid;
   2756 		syscallarg(const char *) path;
   2757 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2758 		syscallarg(const struct posix_spawnattr *) attrp;
   2759 		syscallarg(char *const *) argv;
   2760 		syscallarg(char *const *) envp;
   2761 	} */
   2762 
   2763 	int error;
   2764 	struct posix_spawn_file_actions *fa = NULL;
   2765 	struct posix_spawnattr *sa = NULL;
   2766 	pid_t pid;
   2767 	bool child_ok = false;
   2768 	rlim_t max_fileactions;
   2769 	proc_t *p = l1->l_proc;
   2770 
   2771 	/* check_posix_spawn() increments nprocs for us. */
   2772 	error = check_posix_spawn(l1);
   2773 	if (error) {
   2774 		*retval = error;
   2775 		return 0;
   2776 	}
   2777 
   2778 	/* copy in file_actions struct */
   2779 	if (SCARG(uap, file_actions) != NULL) {
   2780 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2781 		    maxfiles);
   2782 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2783 		    max_fileactions);
   2784 		if (error)
   2785 			goto error_exit;
   2786 	}
   2787 
   2788 	/* copyin posix_spawnattr struct */
   2789 	if (SCARG(uap, attrp) != NULL) {
   2790 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2791 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2792 		if (error)
   2793 			goto error_exit;
   2794 	}
   2795 
   2796 	/*
   2797 	 * Do the spawn
   2798 	 */
   2799 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2800 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2801 	if (error)
   2802 		goto error_exit;
   2803 
   2804 	if (error == 0 && SCARG(uap, pid) != NULL)
   2805 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2806 
   2807 	*retval = error;
   2808 	return 0;
   2809 
   2810  error_exit:
   2811 	if (!child_ok) {
   2812 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2813 		atomic_dec_uint(&nprocs);
   2814 
   2815 		if (sa)
   2816 			kmem_free(sa, sizeof(*sa));
   2817 		if (fa)
   2818 			posix_spawn_fa_free(fa, fa->len);
   2819 	}
   2820 
   2821 	*retval = error;
   2822 	return 0;
   2823 }
   2824 
   2825 void
   2826 exec_free_emul_arg(struct exec_package *epp)
   2827 {
   2828 	if (epp->ep_emul_arg_free != NULL) {
   2829 		KASSERT(epp->ep_emul_arg != NULL);
   2830 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2831 		epp->ep_emul_arg_free = NULL;
   2832 		epp->ep_emul_arg = NULL;
   2833 	} else {
   2834 		KASSERT(epp->ep_emul_arg == NULL);
   2835 	}
   2836 }
   2837 
   2838 #ifdef DEBUG_EXEC
   2839 static void
   2840 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2841 {
   2842 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2843 	size_t j;
   2844 
   2845 	if (error == 0)
   2846 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2847 	else
   2848 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2849 		    epp->ep_vmcmds.evs_used, error));
   2850 
   2851 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2852 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2853 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2854 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2855 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2856 		    "pagedvn" :
   2857 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2858 		    "readvn" :
   2859 		    vp[j].ev_proc == vmcmd_map_zero ?
   2860 		    "zero" : "*unknown*",
   2861 		    vp[j].ev_addr, vp[j].ev_len,
   2862 		    vp[j].ev_offset, vp[j].ev_prot,
   2863 		    vp[j].ev_flags));
   2864 		if (error != 0 && j == x)
   2865 			DPRINTF(("     ^--- failed\n"));
   2866 	}
   2867 }
   2868 #endif
   2869