kern_exec.c revision 1.502 1 /* $NetBSD: kern_exec.c,v 1.502 2020/10/06 13:38:00 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.502 2020/10/06 13:38:00 christos Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <machine/reg.h>
116
117 #include <compat/common/compat_util.h>
118
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126
127 struct execve_data;
128
129 extern int user_va0_disable;
130
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134 char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137 char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148 __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156
157 /*
158 * DTrace SDT provider definitions
159 */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164
165 /*
166 * Exec function switch:
167 *
168 * Note that each makecmds function is responsible for loading the
169 * exec package with the necessary functions for any exec-type-specific
170 * handling.
171 *
172 * Functions for specific exec types should be defined in their own
173 * header file.
174 */
175 static const struct execsw **execsw = NULL;
176 static int nexecs;
177
178 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
179
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182 LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 LIST_ENTRY(exec_entry) ex_list;
185 SLIST_ENTRY(exec_entry) ex_slist;
186 const struct execsw *ex_sw;
187 };
188
189 #ifndef __HAVE_SYSCALL_INTERN
190 void syscall(void);
191 #endif
192
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 .e_name = "netbsd",
201 #ifdef EMUL_NATIVEROOT
202 .e_path = EMUL_NATIVEROOT,
203 #else
204 .e_path = NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 .e_flags = EMUL_HAS_SYS___syscall,
208 .e_errno = NULL,
209 .e_nosys = SYS_syscall,
210 .e_nsysent = SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 .e_sc_autoload = netbsd_syscalls_autoload,
214 #endif
215 .e_sysent = sysent,
216 .e_nomodbits = sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 .e_syscallnames = syscallnames,
219 #else
220 .e_syscallnames = NULL,
221 #endif
222 .e_sendsig = sendsig,
223 .e_trapsignal = trapsignal,
224 .e_sigcode = NULL,
225 .e_esigcode = NULL,
226 .e_sigobject = NULL,
227 .e_setregs = setregs,
228 .e_proc_exec = NULL,
229 .e_proc_fork = NULL,
230 .e_proc_exit = NULL,
231 .e_lwp_fork = NULL,
232 .e_lwp_exit = NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 .e_syscall_intern = syscall_intern,
235 #else
236 .e_syscall = syscall,
237 #endif
238 .e_sysctlovly = NULL,
239 .e_vm_default_addr = uvm_default_mapaddr,
240 .e_usertrap = NULL,
241 .e_ucsize = sizeof(ucontext_t),
242 .e_startlwp = startlwp
243 };
244
245 /*
246 * Exec lock. Used to control access to execsw[] structures.
247 * This must not be static so that netbsd32 can access it, too.
248 */
249 krwlock_t exec_lock __cacheline_aligned;
250
251 static kmutex_t sigobject_lock __cacheline_aligned;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 __func__, epp->ep_kname, error));
333 PNBUF_PUT(*rpath);
334 *rpath = NULL;
335 return error;
336 }
337 epp->ep_resolvedname = *rpath;
338 if ((p = strrchr(*rpath, '/')) != NULL)
339 epp->ep_kname = p + 1;
340 return 0;
341 }
342
343
344 /*
345 * check exec:
346 * given an "executable" described in the exec package's namei info,
347 * see what we can do with it.
348 *
349 * ON ENTRY:
350 * exec package with appropriate namei info
351 * lwp pointer of exec'ing lwp
352 * NO SELF-LOCKED VNODES
353 *
354 * ON EXIT:
355 * error: nothing held, etc. exec header still allocated.
356 * ok: filled exec package, executable's vnode (unlocked).
357 *
358 * EXEC SWITCH ENTRY:
359 * Locked vnode to check, exec package, proc.
360 *
361 * EXEC SWITCH EXIT:
362 * ok: return 0, filled exec package, executable's vnode (unlocked).
363 * error: destructive:
364 * everything deallocated execept exec header.
365 * non-destructive:
366 * error code, executable's vnode (unlocked),
367 * exec header unmodified.
368 */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372 char **rpath)
373 {
374 int error, i;
375 struct vnode *vp;
376 size_t resid;
377
378 if (epp->ep_resolvedname) {
379 struct nameidata nd;
380
381 // grab the absolute pathbuf here before namei() trashes it.
382 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384
385 /* first get the vnode */
386 if ((error = namei(&nd)) != 0)
387 return error;
388
389 epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 /* paranoia (take this out once namei stuff stabilizes) */
392 memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 } else {
395 struct file *fp;
396
397 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 return error;
399 epp->ep_vp = vp = fp->f_vnode;
400 vref(vp);
401 fd_putfile(epp->ep_xfd);
402 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 return error;
404 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 }
406
407 /* check access and type */
408 if (vp->v_type != VREG) {
409 error = EACCES;
410 goto bad1;
411 }
412 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 goto bad1;
414
415 /* get attributes */
416 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 goto bad1;
419
420 /* Check mount point */
421 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 error = EACCES;
423 goto bad1;
424 }
425 if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427
428 /* try to open it */
429 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 goto bad1;
431
432 /* now we have the file, get the exec header */
433 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 if (error)
436 goto bad1;
437
438 /* unlock vp, since we need it unlocked from here on out. */
439 VOP_UNLOCK(vp);
440
441 #if NVERIEXEC > 0
442 error = veriexec_verify(l, vp,
443 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 NULL);
446 if (error)
447 goto bad2;
448 #endif /* NVERIEXEC > 0 */
449
450 #ifdef PAX_SEGVGUARD
451 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 if (error)
453 goto bad2;
454 #endif /* PAX_SEGVGUARD */
455
456 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457
458 /*
459 * Set up default address space limits. Can be overridden
460 * by individual exec packages.
461 */
462 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464
465 /*
466 * set up the vmcmds for creation of the process
467 * address space
468 */
469 error = ENOEXEC;
470 for (i = 0; i < nexecs; i++) {
471 int newerror;
472
473 epp->ep_esch = execsw[i];
474 newerror = (*execsw[i]->es_makecmds)(l, epp);
475
476 if (!newerror) {
477 /* Seems ok: check that entry point is not too high */
478 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 printf("%s: rejecting %p due to "
481 "too high entry address (>= %p)\n",
482 __func__, (void *)epp->ep_entry,
483 (void *)epp->ep_vm_maxaddr);
484 #endif
485 error = ENOEXEC;
486 break;
487 }
488 /* Seems ok: check that entry point is not too low */
489 if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 printf("%s: rejecting %p due to "
492 "too low entry address (< %p)\n",
493 __func__, (void *)epp->ep_entry,
494 (void *)epp->ep_vm_minaddr);
495 #endif
496 error = ENOEXEC;
497 break;
498 }
499
500 /* check limits */
501 #ifdef MAXTSIZ
502 if (epp->ep_tsize > MAXTSIZ) {
503 #ifdef DIAGNOSTIC
504 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
505 printf(LMSG, __func__, "text",
506 (uintmax_t)epp->ep_tsize,
507 (uintmax_t)MAXTSIZ);
508 #endif
509 error = ENOMEM;
510 break;
511 }
512 #endif
513 vsize_t dlimit =
514 (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
515 if (epp->ep_dsize > dlimit) {
516 #ifdef DIAGNOSTIC
517 printf(LMSG, __func__, "data",
518 (uintmax_t)epp->ep_dsize,
519 (uintmax_t)dlimit);
520 #endif
521 error = ENOMEM;
522 break;
523 }
524 return 0;
525 }
526
527 /*
528 * Reset all the fields that may have been modified by the
529 * loader.
530 */
531 KASSERT(epp->ep_emul_arg == NULL);
532 if (epp->ep_emul_root != NULL) {
533 vrele(epp->ep_emul_root);
534 epp->ep_emul_root = NULL;
535 }
536 if (epp->ep_interp != NULL) {
537 vrele(epp->ep_interp);
538 epp->ep_interp = NULL;
539 }
540 epp->ep_pax_flags = 0;
541
542 /* make sure the first "interesting" error code is saved. */
543 if (error == ENOEXEC)
544 error = newerror;
545
546 if (epp->ep_flags & EXEC_DESTR)
547 /* Error from "#!" code, tidied up by recursive call */
548 return error;
549 }
550
551 /* not found, error */
552
553 /*
554 * free any vmspace-creation commands,
555 * and release their references
556 */
557 kill_vmcmds(&epp->ep_vmcmds);
558
559 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
560 bad2:
561 #endif
562 /*
563 * close and release the vnode, restore the old one, free the
564 * pathname buf, and punt.
565 */
566 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
567 VOP_CLOSE(vp, FREAD, l->l_cred);
568 vput(vp);
569 return error;
570
571 bad1:
572 /*
573 * free the namei pathname buffer, and put the vnode
574 * (which we don't yet have open).
575 */
576 vput(vp); /* was still locked */
577 return error;
578 }
579
580 #ifdef __MACHINE_STACK_GROWS_UP
581 #define STACK_PTHREADSPACE NBPG
582 #else
583 #define STACK_PTHREADSPACE 0
584 #endif
585
586 static int
587 execve_fetch_element(char * const *array, size_t index, char **value)
588 {
589 return copyin(array + index, value, sizeof(*value));
590 }
591
592 /*
593 * exec system call
594 */
595 int
596 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
597 {
598 /* {
599 syscallarg(const char *) path;
600 syscallarg(char * const *) argp;
601 syscallarg(char * const *) envp;
602 } */
603
604 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
605 SCARG(uap, envp), execve_fetch_element);
606 }
607
608 int
609 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
610 register_t *retval)
611 {
612 /* {
613 syscallarg(int) fd;
614 syscallarg(char * const *) argp;
615 syscallarg(char * const *) envp;
616 } */
617
618 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
619 SCARG(uap, envp), execve_fetch_element);
620 }
621
622 /*
623 * Load modules to try and execute an image that we do not understand.
624 * If no execsw entries are present, we load those likely to be needed
625 * in order to run native images only. Otherwise, we autoload all
626 * possible modules that could let us run the binary. XXX lame
627 */
628 static void
629 exec_autoload(void)
630 {
631 #ifdef MODULAR
632 static const char * const native[] = {
633 "exec_elf32",
634 "exec_elf64",
635 "exec_script",
636 NULL
637 };
638 static const char * const compat[] = {
639 "exec_elf32",
640 "exec_elf64",
641 "exec_script",
642 "exec_aout",
643 "exec_coff",
644 "exec_ecoff",
645 "compat_aoutm68k",
646 "compat_netbsd32",
647 #if 0
648 "compat_linux",
649 "compat_linux32",
650 #endif
651 "compat_sunos",
652 "compat_sunos32",
653 "compat_ultrix",
654 NULL
655 };
656 char const * const *list;
657 int i;
658
659 list = nexecs == 0 ? native : compat;
660 for (i = 0; list[i] != NULL; i++) {
661 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
662 continue;
663 }
664 yield();
665 }
666 #endif
667 }
668
669 /*
670 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
671 * making it absolute in the process, by prepending the current working
672 * directory if it is not. If offs is supplied it will contain the offset
673 * where the original supplied copy of upath starts.
674 */
675 int
676 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
677 struct pathbuf **pbp, size_t *offs)
678 {
679 char *path, *bp;
680 size_t len, tlen;
681 int error;
682 struct cwdinfo *cwdi;
683
684 path = PNBUF_GET();
685 if (seg == UIO_SYSSPACE) {
686 error = copystr(upath, path, MAXPATHLEN, &len);
687 } else {
688 error = copyinstr(upath, path, MAXPATHLEN, &len);
689 }
690 if (error)
691 goto err;
692
693 if (path[0] == '/') {
694 if (offs)
695 *offs = 0;
696 goto out;
697 }
698
699 len++;
700 if (len + 1 >= MAXPATHLEN) {
701 error = ENAMETOOLONG;
702 goto err;
703 }
704 bp = path + MAXPATHLEN - len;
705 memmove(bp, path, len);
706 *(--bp) = '/';
707
708 cwdi = l->l_proc->p_cwdi;
709 rw_enter(&cwdi->cwdi_lock, RW_READER);
710 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
711 GETCWD_CHECK_ACCESS, l);
712 rw_exit(&cwdi->cwdi_lock);
713
714 if (error)
715 goto err;
716 tlen = path + MAXPATHLEN - bp;
717
718 memmove(path, bp, tlen);
719 path[tlen - 1] = '\0';
720 if (offs)
721 *offs = tlen - len;
722 out:
723 *pbp = pathbuf_assimilate(path);
724 return 0;
725 err:
726 PNBUF_PUT(path);
727 return error;
728 }
729
730 vaddr_t
731 exec_vm_minaddr(vaddr_t va_min)
732 {
733 /*
734 * Increase va_min if we don't want NULL to be mappable by the
735 * process.
736 */
737 #define VM_MIN_GUARD PAGE_SIZE
738 if (user_va0_disable && (va_min < VM_MIN_GUARD))
739 return VM_MIN_GUARD;
740 return va_min;
741 }
742
743 static int
744 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
745 char * const *args, char * const *envs,
746 execve_fetch_element_t fetch_element,
747 struct execve_data * restrict data)
748 {
749 struct exec_package * const epp = &data->ed_pack;
750 int error;
751 struct proc *p;
752 char *dp;
753 u_int modgen;
754
755 KASSERT(data != NULL);
756
757 p = l->l_proc;
758 modgen = 0;
759
760 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
761
762 /*
763 * Check if we have exceeded our number of processes limit.
764 * This is so that we handle the case where a root daemon
765 * forked, ran setuid to become the desired user and is trying
766 * to exec. The obvious place to do the reference counting check
767 * is setuid(), but we don't do the reference counting check there
768 * like other OS's do because then all the programs that use setuid()
769 * must be modified to check the return code of setuid() and exit().
770 * It is dangerous to make setuid() fail, because it fails open and
771 * the program will continue to run as root. If we make it succeed
772 * and return an error code, again we are not enforcing the limit.
773 * The best place to enforce the limit is here, when the process tries
774 * to execute a new image, because eventually the process will need
775 * to call exec in order to do something useful.
776 */
777 retry:
778 if (p->p_flag & PK_SUGID) {
779 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
780 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
781 &p->p_rlimit[RLIMIT_NPROC],
782 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
783 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
784 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
785 return EAGAIN;
786 }
787
788 /*
789 * Drain existing references and forbid new ones. The process
790 * should be left alone until we're done here. This is necessary
791 * to avoid race conditions - e.g. in ptrace() - that might allow
792 * a local user to illicitly obtain elevated privileges.
793 */
794 rw_enter(&p->p_reflock, RW_WRITER);
795
796 if (has_path) {
797 size_t offs;
798 /*
799 * Init the namei data to point the file user's program name.
800 * This is done here rather than in check_exec(), so that it's
801 * possible to override this settings if any of makecmd/probe
802 * functions call check_exec() recursively - for example,
803 * see exec_script_makecmds().
804 */
805 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
806 &data->ed_pathbuf, &offs)) != 0)
807 goto clrflg;
808 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
809 epp->ep_kname = data->ed_pathstring + offs;
810 data->ed_resolvedname = PNBUF_GET();
811 epp->ep_resolvedname = data->ed_resolvedname;
812 epp->ep_xfd = -1;
813 } else {
814 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
815 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
816 epp->ep_kname = "*fexecve*";
817 data->ed_resolvedname = NULL;
818 epp->ep_resolvedname = NULL;
819 epp->ep_xfd = fd;
820 }
821
822
823 /*
824 * initialize the fields of the exec package.
825 */
826 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
827 epp->ep_hdrlen = exec_maxhdrsz;
828 epp->ep_hdrvalid = 0;
829 epp->ep_emul_arg = NULL;
830 epp->ep_emul_arg_free = NULL;
831 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
832 epp->ep_vap = &data->ed_attr;
833 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
834 MD_TOPDOWN_INIT(epp);
835 epp->ep_emul_root = NULL;
836 epp->ep_interp = NULL;
837 epp->ep_esch = NULL;
838 epp->ep_pax_flags = 0;
839 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
840
841 rw_enter(&exec_lock, RW_READER);
842
843 /* see if we can run it. */
844 if ((error = check_exec(l, epp, data->ed_pathbuf,
845 &data->ed_resolvedname)) != 0) {
846 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
847 DPRINTF(("%s: check exec failed for %s, error %d\n",
848 __func__, epp->ep_kname, error));
849 }
850 goto freehdr;
851 }
852
853 /* allocate an argument buffer */
854 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
855 KASSERT(data->ed_argp != NULL);
856 dp = data->ed_argp;
857
858 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
859 goto bad;
860 }
861
862 /*
863 * Calculate the new stack size.
864 */
865
866 #ifdef __MACHINE_STACK_GROWS_UP
867 /*
868 * copyargs() fills argc/argv/envp from the lower address even on
869 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
870 * so that _rtld() use it.
871 */
872 #define RTLD_GAP 32
873 #else
874 #define RTLD_GAP 0
875 #endif
876
877 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
878
879 data->ed_argslen = calcargs(data, argenvstrlen);
880
881 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
882
883 if (len > epp->ep_ssize) {
884 /* in effect, compare to initial limit */
885 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
886 error = ENOMEM;
887 goto bad;
888 }
889 /* adjust "active stack depth" for process VSZ */
890 epp->ep_ssize = len;
891
892 return 0;
893
894 bad:
895 /* free the vmspace-creation commands, and release their references */
896 kill_vmcmds(&epp->ep_vmcmds);
897 /* kill any opened file descriptor, if necessary */
898 if (epp->ep_flags & EXEC_HASFD) {
899 epp->ep_flags &= ~EXEC_HASFD;
900 fd_close(epp->ep_fd);
901 }
902 /* close and put the exec'd file */
903 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
904 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
905 vput(epp->ep_vp);
906 pool_put(&exec_pool, data->ed_argp);
907
908 freehdr:
909 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
910 if (epp->ep_emul_root != NULL)
911 vrele(epp->ep_emul_root);
912 if (epp->ep_interp != NULL)
913 vrele(epp->ep_interp);
914
915 rw_exit(&exec_lock);
916
917 exec_path_free(data);
918
919 clrflg:
920 rw_exit(&p->p_reflock);
921
922 if (modgen != module_gen && error == ENOEXEC) {
923 modgen = module_gen;
924 exec_autoload();
925 goto retry;
926 }
927
928 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
929 return error;
930 }
931
932 static int
933 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
934 {
935 struct exec_package * const epp = &data->ed_pack;
936 struct proc *p = l->l_proc;
937 struct exec_vmcmd *base_vcp;
938 int error = 0;
939 size_t i;
940
941 /* record proc's vnode, for use by procfs and others */
942 if (p->p_textvp)
943 vrele(p->p_textvp);
944 vref(epp->ep_vp);
945 p->p_textvp = epp->ep_vp;
946
947 /* create the new process's VM space by running the vmcmds */
948 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
949
950 #ifdef TRACE_EXEC
951 DUMPVMCMDS(epp, 0, 0);
952 #endif
953
954 base_vcp = NULL;
955
956 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
957 struct exec_vmcmd *vcp;
958
959 vcp = &epp->ep_vmcmds.evs_cmds[i];
960 if (vcp->ev_flags & VMCMD_RELATIVE) {
961 KASSERTMSG(base_vcp != NULL,
962 "%s: relative vmcmd with no base", __func__);
963 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
964 "%s: illegal base & relative vmcmd", __func__);
965 vcp->ev_addr += base_vcp->ev_addr;
966 }
967 error = (*vcp->ev_proc)(l, vcp);
968 if (error)
969 DUMPVMCMDS(epp, i, error);
970 if (vcp->ev_flags & VMCMD_BASE)
971 base_vcp = vcp;
972 }
973
974 /* free the vmspace-creation commands, and release their references */
975 kill_vmcmds(&epp->ep_vmcmds);
976
977 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
978 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
979 vput(epp->ep_vp);
980
981 /* if an error happened, deallocate and punt */
982 if (error != 0) {
983 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
984 }
985 return error;
986 }
987
988 static void
989 execve_free_data(struct execve_data *data)
990 {
991 struct exec_package * const epp = &data->ed_pack;
992
993 /* free the vmspace-creation commands, and release their references */
994 kill_vmcmds(&epp->ep_vmcmds);
995 /* kill any opened file descriptor, if necessary */
996 if (epp->ep_flags & EXEC_HASFD) {
997 epp->ep_flags &= ~EXEC_HASFD;
998 fd_close(epp->ep_fd);
999 }
1000
1001 /* close and put the exec'd file */
1002 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1003 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1004 vput(epp->ep_vp);
1005 pool_put(&exec_pool, data->ed_argp);
1006
1007 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1008 if (epp->ep_emul_root != NULL)
1009 vrele(epp->ep_emul_root);
1010 if (epp->ep_interp != NULL)
1011 vrele(epp->ep_interp);
1012
1013 exec_path_free(data);
1014 }
1015
1016 static void
1017 pathexec(struct proc *p, const char *resolvedname)
1018 {
1019 /* set command name & other accounting info */
1020 const char *cmdname;
1021
1022 if (resolvedname == NULL) {
1023 cmdname = "*fexecve*";
1024 resolvedname = "/";
1025 } else {
1026 cmdname = strrchr(resolvedname, '/') + 1;
1027 }
1028 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1029 resolvedname);
1030
1031 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1032
1033 kmem_strfree(p->p_path);
1034 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1035 }
1036
1037 /* XXX elsewhere */
1038 static int
1039 credexec(struct lwp *l, struct vattr *attr)
1040 {
1041 struct proc *p = l->l_proc;
1042 int error;
1043
1044 /*
1045 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1046 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1047 * out additional references on the process for the moment.
1048 */
1049 if ((p->p_slflag & PSL_TRACED) == 0 &&
1050
1051 (((attr->va_mode & S_ISUID) != 0 &&
1052 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1053
1054 ((attr->va_mode & S_ISGID) != 0 &&
1055 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1056 /*
1057 * Mark the process as SUGID before we do
1058 * anything that might block.
1059 */
1060 proc_crmod_enter();
1061 proc_crmod_leave(NULL, NULL, true);
1062
1063 /* Make sure file descriptors 0..2 are in use. */
1064 if ((error = fd_checkstd()) != 0) {
1065 DPRINTF(("%s: fdcheckstd failed %d\n",
1066 __func__, error));
1067 return error;
1068 }
1069
1070 /*
1071 * Copy the credential so other references don't see our
1072 * changes.
1073 */
1074 l->l_cred = kauth_cred_copy(l->l_cred);
1075 #ifdef KTRACE
1076 /*
1077 * If the persistent trace flag isn't set, turn off.
1078 */
1079 if (p->p_tracep) {
1080 mutex_enter(&ktrace_lock);
1081 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1082 ktrderef(p);
1083 mutex_exit(&ktrace_lock);
1084 }
1085 #endif
1086 if (attr->va_mode & S_ISUID)
1087 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1088 if (attr->va_mode & S_ISGID)
1089 kauth_cred_setegid(l->l_cred, attr->va_gid);
1090 } else {
1091 if (kauth_cred_geteuid(l->l_cred) ==
1092 kauth_cred_getuid(l->l_cred) &&
1093 kauth_cred_getegid(l->l_cred) ==
1094 kauth_cred_getgid(l->l_cred))
1095 p->p_flag &= ~PK_SUGID;
1096 }
1097
1098 /*
1099 * Copy the credential so other references don't see our changes.
1100 * Test to see if this is necessary first, since in the common case
1101 * we won't need a private reference.
1102 */
1103 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1104 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1105 l->l_cred = kauth_cred_copy(l->l_cred);
1106 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1107 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1108 }
1109
1110 /* Update the master credentials. */
1111 if (l->l_cred != p->p_cred) {
1112 kauth_cred_t ocred;
1113
1114 kauth_cred_hold(l->l_cred);
1115 mutex_enter(p->p_lock);
1116 ocred = p->p_cred;
1117 p->p_cred = l->l_cred;
1118 mutex_exit(p->p_lock);
1119 kauth_cred_free(ocred);
1120 }
1121
1122 return 0;
1123 }
1124
1125 static void
1126 emulexec(struct lwp *l, struct exec_package *epp)
1127 {
1128 struct proc *p = l->l_proc;
1129
1130 /* The emulation root will usually have been found when we looked
1131 * for the elf interpreter (or similar), if not look now. */
1132 if (epp->ep_esch->es_emul->e_path != NULL &&
1133 epp->ep_emul_root == NULL)
1134 emul_find_root(l, epp);
1135
1136 /* Any old emulation root got removed by fdcloseexec */
1137 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1138 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1139 rw_exit(&p->p_cwdi->cwdi_lock);
1140 epp->ep_emul_root = NULL;
1141 if (epp->ep_interp != NULL)
1142 vrele(epp->ep_interp);
1143
1144 /*
1145 * Call emulation specific exec hook. This can setup per-process
1146 * p->p_emuldata or do any other per-process stuff an emulation needs.
1147 *
1148 * If we are executing process of different emulation than the
1149 * original forked process, call e_proc_exit() of the old emulation
1150 * first, then e_proc_exec() of new emulation. If the emulation is
1151 * same, the exec hook code should deallocate any old emulation
1152 * resources held previously by this process.
1153 */
1154 if (p->p_emul && p->p_emul->e_proc_exit
1155 && p->p_emul != epp->ep_esch->es_emul)
1156 (*p->p_emul->e_proc_exit)(p);
1157
1158 /*
1159 * Call exec hook. Emulation code may NOT store reference to anything
1160 * from &pack.
1161 */
1162 if (epp->ep_esch->es_emul->e_proc_exec)
1163 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1164
1165 /* update p_emul, the old value is no longer needed */
1166 p->p_emul = epp->ep_esch->es_emul;
1167
1168 /* ...and the same for p_execsw */
1169 p->p_execsw = epp->ep_esch;
1170
1171 #ifdef __HAVE_SYSCALL_INTERN
1172 (*p->p_emul->e_syscall_intern)(p);
1173 #endif
1174 ktremul();
1175 }
1176
1177 static int
1178 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1179 bool no_local_exec_lock, bool is_spawn)
1180 {
1181 struct exec_package * const epp = &data->ed_pack;
1182 int error = 0;
1183 struct proc *p;
1184 struct vmspace *vm;
1185
1186 /*
1187 * In case of a posix_spawn operation, the child doing the exec
1188 * might not hold the reader lock on exec_lock, but the parent
1189 * will do this instead.
1190 */
1191 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1192 KASSERT(!no_local_exec_lock || is_spawn);
1193 KASSERT(data != NULL);
1194
1195 p = l->l_proc;
1196
1197 /* Get rid of other LWPs. */
1198 if (p->p_nlwps > 1) {
1199 mutex_enter(p->p_lock);
1200 exit_lwps(l);
1201 mutex_exit(p->p_lock);
1202 }
1203 KDASSERT(p->p_nlwps == 1);
1204
1205 /* Destroy any lwpctl info. */
1206 if (p->p_lwpctl != NULL)
1207 lwp_ctl_exit();
1208
1209 /* Remove POSIX timers */
1210 timers_free(p, TIMERS_POSIX);
1211
1212 /* Set the PaX flags. */
1213 pax_set_flags(epp, p);
1214
1215 /*
1216 * Do whatever is necessary to prepare the address space
1217 * for remapping. Note that this might replace the current
1218 * vmspace with another!
1219 *
1220 * vfork(): do not touch any user space data in the new child
1221 * until we have awoken the parent below, or it will defeat
1222 * lazy pmap switching (on x86).
1223 */
1224 if (is_spawn)
1225 uvmspace_spawn(l, epp->ep_vm_minaddr,
1226 epp->ep_vm_maxaddr,
1227 epp->ep_flags & EXEC_TOPDOWN_VM);
1228 else
1229 uvmspace_exec(l, epp->ep_vm_minaddr,
1230 epp->ep_vm_maxaddr,
1231 epp->ep_flags & EXEC_TOPDOWN_VM);
1232 vm = p->p_vmspace;
1233
1234 vm->vm_taddr = (void *)epp->ep_taddr;
1235 vm->vm_tsize = btoc(epp->ep_tsize);
1236 vm->vm_daddr = (void*)epp->ep_daddr;
1237 vm->vm_dsize = btoc(epp->ep_dsize);
1238 vm->vm_ssize = btoc(epp->ep_ssize);
1239 vm->vm_issize = 0;
1240 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1241 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1242
1243 pax_aslr_init_vm(l, vm, epp);
1244
1245 cwdexec(p);
1246 fd_closeexec(); /* handle close on exec */
1247
1248 if (__predict_false(ktrace_on))
1249 fd_ktrexecfd();
1250
1251 execsigs(p); /* reset caught signals */
1252
1253 mutex_enter(p->p_lock);
1254 l->l_ctxlink = NULL; /* reset ucontext link */
1255 p->p_acflag &= ~AFORK;
1256 p->p_flag |= PK_EXEC;
1257 mutex_exit(p->p_lock);
1258
1259 error = credexec(l, &data->ed_attr);
1260 if (error)
1261 goto exec_abort;
1262
1263 #if defined(__HAVE_RAS)
1264 /*
1265 * Remove all RASs from the address space.
1266 */
1267 ras_purgeall();
1268 #endif
1269
1270 /*
1271 * Stop profiling.
1272 */
1273 if ((p->p_stflag & PST_PROFIL) != 0) {
1274 mutex_spin_enter(&p->p_stmutex);
1275 stopprofclock(p);
1276 mutex_spin_exit(&p->p_stmutex);
1277 }
1278
1279 /*
1280 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1281 * exited and exec()/exit() are the only places it will be cleared.
1282 *
1283 * Once the parent has been awoken, curlwp may teleport to a new CPU
1284 * in sched_vforkexec(), and it's then OK to start messing with user
1285 * data. See comment above.
1286 */
1287 if ((p->p_lflag & PL_PPWAIT) != 0) {
1288 bool samecpu;
1289 lwp_t *lp;
1290
1291 mutex_enter(&proc_lock);
1292 lp = p->p_vforklwp;
1293 p->p_vforklwp = NULL;
1294 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1295 cv_broadcast(&lp->l_waitcv);
1296
1297 /* Clear flags after cv_broadcast() (scheduler needs them). */
1298 p->p_lflag &= ~PL_PPWAIT;
1299 lp->l_vforkwaiting = false;
1300
1301 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1302 samecpu = (lp->l_cpu == curlwp->l_cpu);
1303 mutex_exit(&proc_lock);
1304
1305 /* Give the parent its CPU back - find a new home. */
1306 KASSERT(!is_spawn);
1307 sched_vforkexec(l, samecpu);
1308 }
1309
1310 /* Now map address space. */
1311 error = execve_dovmcmds(l, data);
1312 if (error != 0)
1313 goto exec_abort;
1314
1315 pathexec(p, epp->ep_resolvedname);
1316
1317 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1318
1319 error = copyoutargs(data, l, newstack);
1320 if (error != 0)
1321 goto exec_abort;
1322
1323 doexechooks(p);
1324
1325 /*
1326 * Set initial SP at the top of the stack.
1327 *
1328 * Note that on machines where stack grows up (e.g. hppa), SP points to
1329 * the end of arg/env strings. Userland guesses the address of argc
1330 * via ps_strings::ps_argvstr.
1331 */
1332
1333 /* Setup new registers and do misc. setup. */
1334 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1335 if (epp->ep_esch->es_setregs)
1336 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1337
1338 /* Provide a consistent LWP private setting */
1339 (void)lwp_setprivate(l, NULL);
1340
1341 /* Discard all PCU state; need to start fresh */
1342 pcu_discard_all(l);
1343
1344 /* map the process's signal trampoline code */
1345 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1346 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1347 goto exec_abort;
1348 }
1349
1350 pool_put(&exec_pool, data->ed_argp);
1351
1352 /* notify others that we exec'd */
1353 KNOTE(&p->p_klist, NOTE_EXEC);
1354
1355 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1356
1357 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1358
1359 emulexec(l, epp);
1360
1361 /* Allow new references from the debugger/procfs. */
1362 rw_exit(&p->p_reflock);
1363 if (!no_local_exec_lock)
1364 rw_exit(&exec_lock);
1365
1366 mutex_enter(&proc_lock);
1367
1368 /* posix_spawn(3) reports a single event with implied exec(3) */
1369 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1370 mutex_enter(p->p_lock);
1371 eventswitch(TRAP_EXEC, 0, 0);
1372 mutex_enter(&proc_lock);
1373 }
1374
1375 if (p->p_sflag & PS_STOPEXEC) {
1376 ksiginfoq_t kq;
1377
1378 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1379 p->p_pptr->p_nstopchild++;
1380 p->p_waited = 0;
1381 mutex_enter(p->p_lock);
1382 ksiginfo_queue_init(&kq);
1383 sigclearall(p, &contsigmask, &kq);
1384 lwp_lock(l);
1385 l->l_stat = LSSTOP;
1386 p->p_stat = SSTOP;
1387 p->p_nrlwps--;
1388 lwp_unlock(l);
1389 mutex_exit(p->p_lock);
1390 mutex_exit(&proc_lock);
1391 lwp_lock(l);
1392 spc_lock(l->l_cpu);
1393 mi_switch(l);
1394 ksiginfo_queue_drain(&kq);
1395 } else {
1396 mutex_exit(&proc_lock);
1397 }
1398
1399 exec_path_free(data);
1400 #ifdef TRACE_EXEC
1401 DPRINTF(("%s finished\n", __func__));
1402 #endif
1403 return EJUSTRETURN;
1404
1405 exec_abort:
1406 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1407 rw_exit(&p->p_reflock);
1408 if (!no_local_exec_lock)
1409 rw_exit(&exec_lock);
1410
1411 exec_path_free(data);
1412
1413 /*
1414 * the old process doesn't exist anymore. exit gracefully.
1415 * get rid of the (new) address space we have created, if any, get rid
1416 * of our namei data and vnode, and exit noting failure
1417 */
1418 if (vm != NULL) {
1419 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1420 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1421 }
1422
1423 exec_free_emul_arg(epp);
1424 pool_put(&exec_pool, data->ed_argp);
1425 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1426 if (epp->ep_emul_root != NULL)
1427 vrele(epp->ep_emul_root);
1428 if (epp->ep_interp != NULL)
1429 vrele(epp->ep_interp);
1430
1431 /* Acquire the sched-state mutex (exit1() will release it). */
1432 if (!is_spawn) {
1433 mutex_enter(p->p_lock);
1434 exit1(l, error, SIGABRT);
1435 }
1436
1437 return error;
1438 }
1439
1440 int
1441 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1442 char * const *args, char * const *envs,
1443 execve_fetch_element_t fetch_element)
1444 {
1445 struct execve_data data;
1446 int error;
1447
1448 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1449 &data);
1450 if (error)
1451 return error;
1452 error = execve_runproc(l, &data, false, false);
1453 return error;
1454 }
1455
1456 static size_t
1457 fromptrsz(const struct exec_package *epp)
1458 {
1459 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1460 }
1461
1462 static size_t
1463 ptrsz(const struct exec_package *epp)
1464 {
1465 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1466 }
1467
1468 static size_t
1469 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1470 {
1471 struct exec_package * const epp = &data->ed_pack;
1472
1473 const size_t nargenvptrs =
1474 1 + /* long argc */
1475 data->ed_argc + /* char *argv[] */
1476 1 + /* \0 */
1477 data->ed_envc + /* char *env[] */
1478 1; /* \0 */
1479
1480 return (nargenvptrs * ptrsz(epp)) /* pointers */
1481 + argenvstrlen /* strings */
1482 + epp->ep_esch->es_arglen; /* auxinfo */
1483 }
1484
1485 static size_t
1486 calcstack(struct execve_data * restrict data, const size_t gaplen)
1487 {
1488 struct exec_package * const epp = &data->ed_pack;
1489
1490 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1491 epp->ep_esch->es_emul->e_sigcode;
1492
1493 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1494 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1495
1496 const size_t sigcode_psstr_sz =
1497 data->ed_szsigcode + /* sigcode */
1498 data->ed_ps_strings_sz + /* ps_strings */
1499 STACK_PTHREADSPACE; /* pthread space */
1500
1501 const size_t stacklen =
1502 data->ed_argslen +
1503 gaplen +
1504 sigcode_psstr_sz;
1505
1506 /* make the stack "safely" aligned */
1507 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1508 }
1509
1510 static int
1511 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1512 char * const newstack)
1513 {
1514 struct exec_package * const epp = &data->ed_pack;
1515 struct proc *p = l->l_proc;
1516 int error;
1517
1518 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1519
1520 /* remember information about the process */
1521 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1522 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1523
1524 /*
1525 * Allocate the stack address passed to the newly execve()'ed process.
1526 *
1527 * The new stack address will be set to the SP (stack pointer) register
1528 * in setregs().
1529 */
1530
1531 char *newargs = STACK_ALLOC(
1532 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1533
1534 error = (*epp->ep_esch->es_copyargs)(l, epp,
1535 &data->ed_arginfo, &newargs, data->ed_argp);
1536
1537 if (error) {
1538 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1539 return error;
1540 }
1541
1542 error = copyoutpsstrs(data, p);
1543 if (error != 0)
1544 return error;
1545
1546 return 0;
1547 }
1548
1549 static int
1550 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1551 {
1552 struct exec_package * const epp = &data->ed_pack;
1553 struct ps_strings32 arginfo32;
1554 void *aip;
1555 int error;
1556
1557 /* fill process ps_strings info */
1558 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1559 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1560
1561 if (epp->ep_flags & EXEC_32) {
1562 aip = &arginfo32;
1563 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1564 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1565 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1566 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1567 } else
1568 aip = &data->ed_arginfo;
1569
1570 /* copy out the process's ps_strings structure */
1571 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1572 != 0) {
1573 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1574 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1575 return error;
1576 }
1577
1578 return 0;
1579 }
1580
1581 static int
1582 copyinargs(struct execve_data * restrict data, char * const *args,
1583 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1584 {
1585 struct exec_package * const epp = &data->ed_pack;
1586 char *dp;
1587 size_t i;
1588 int error;
1589
1590 dp = *dpp;
1591
1592 data->ed_argc = 0;
1593
1594 /* copy the fake args list, if there's one, freeing it as we go */
1595 if (epp->ep_flags & EXEC_HASARGL) {
1596 struct exec_fakearg *fa = epp->ep_fa;
1597
1598 while (fa->fa_arg != NULL) {
1599 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1600 size_t len;
1601
1602 len = strlcpy(dp, fa->fa_arg, maxlen);
1603 /* Count NUL into len. */
1604 if (len < maxlen)
1605 len++;
1606 else {
1607 while (fa->fa_arg != NULL) {
1608 kmem_free(fa->fa_arg, fa->fa_len);
1609 fa++;
1610 }
1611 kmem_free(epp->ep_fa, epp->ep_fa_len);
1612 epp->ep_flags &= ~EXEC_HASARGL;
1613 return E2BIG;
1614 }
1615 ktrexecarg(fa->fa_arg, len - 1);
1616 dp += len;
1617
1618 kmem_free(fa->fa_arg, fa->fa_len);
1619 fa++;
1620 data->ed_argc++;
1621 }
1622 kmem_free(epp->ep_fa, epp->ep_fa_len);
1623 epp->ep_flags &= ~EXEC_HASARGL;
1624 }
1625
1626 /*
1627 * Read and count argument strings from user.
1628 */
1629
1630 if (args == NULL) {
1631 DPRINTF(("%s: null args\n", __func__));
1632 return EINVAL;
1633 }
1634 if (epp->ep_flags & EXEC_SKIPARG)
1635 args = (const void *)((const char *)args + fromptrsz(epp));
1636 i = 0;
1637 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1638 if (error != 0) {
1639 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1640 return error;
1641 }
1642 data->ed_argc += i;
1643
1644 /*
1645 * Read and count environment strings from user.
1646 */
1647
1648 data->ed_envc = 0;
1649 /* environment need not be there */
1650 if (envs == NULL)
1651 goto done;
1652 i = 0;
1653 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1654 if (error != 0) {
1655 DPRINTF(("%s: copyin env %d\n", __func__, error));
1656 return error;
1657 }
1658 data->ed_envc += i;
1659
1660 done:
1661 *dpp = dp;
1662
1663 return 0;
1664 }
1665
1666 static int
1667 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1668 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1669 void (*ktr)(const void *, size_t))
1670 {
1671 char *dp, *sp;
1672 size_t i;
1673 int error;
1674
1675 dp = *dpp;
1676
1677 i = 0;
1678 while (1) {
1679 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1680 size_t len;
1681
1682 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1683 return error;
1684 }
1685 if (!sp)
1686 break;
1687 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1688 if (error == ENAMETOOLONG)
1689 error = E2BIG;
1690 return error;
1691 }
1692 if (__predict_false(ktrace_on))
1693 (*ktr)(dp, len - 1);
1694 dp += len;
1695 i++;
1696 }
1697
1698 *dpp = dp;
1699 *ip = i;
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1706 * Those strings are located just after auxinfo.
1707 */
1708 int
1709 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1710 char **stackp, void *argp)
1711 {
1712 char **cpp, *dp, *sp;
1713 size_t len;
1714 void *nullp;
1715 long argc, envc;
1716 int error;
1717
1718 cpp = (char **)*stackp;
1719 nullp = NULL;
1720 argc = arginfo->ps_nargvstr;
1721 envc = arginfo->ps_nenvstr;
1722
1723 /* argc on stack is long */
1724 CTASSERT(sizeof(*cpp) == sizeof(argc));
1725
1726 dp = (char *)(cpp +
1727 1 + /* long argc */
1728 argc + /* char *argv[] */
1729 1 + /* \0 */
1730 envc + /* char *env[] */
1731 1) + /* \0 */
1732 pack->ep_esch->es_arglen; /* auxinfo */
1733 sp = argp;
1734
1735 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1736 COPYPRINTF("", cpp - 1, sizeof(argc));
1737 return error;
1738 }
1739
1740 /* XXX don't copy them out, remap them! */
1741 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1742
1743 for (; --argc >= 0; sp += len, dp += len) {
1744 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1745 COPYPRINTF("", cpp - 1, sizeof(dp));
1746 return error;
1747 }
1748 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1749 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1750 return error;
1751 }
1752 }
1753
1754 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1755 COPYPRINTF("", cpp - 1, sizeof(nullp));
1756 return error;
1757 }
1758
1759 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1760
1761 for (; --envc >= 0; sp += len, dp += len) {
1762 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1763 COPYPRINTF("", cpp - 1, sizeof(dp));
1764 return error;
1765 }
1766 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1767 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1768 return error;
1769 }
1770
1771 }
1772
1773 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1774 COPYPRINTF("", cpp - 1, sizeof(nullp));
1775 return error;
1776 }
1777
1778 *stackp = (char *)cpp;
1779 return 0;
1780 }
1781
1782
1783 /*
1784 * Add execsw[] entries.
1785 */
1786 int
1787 exec_add(struct execsw *esp, int count)
1788 {
1789 struct exec_entry *it;
1790 int i;
1791
1792 if (count == 0) {
1793 return 0;
1794 }
1795
1796 /* Check for duplicates. */
1797 rw_enter(&exec_lock, RW_WRITER);
1798 for (i = 0; i < count; i++) {
1799 LIST_FOREACH(it, &ex_head, ex_list) {
1800 /* assume unique (makecmds, probe_func, emulation) */
1801 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1802 it->ex_sw->u.elf_probe_func ==
1803 esp[i].u.elf_probe_func &&
1804 it->ex_sw->es_emul == esp[i].es_emul) {
1805 rw_exit(&exec_lock);
1806 return EEXIST;
1807 }
1808 }
1809 }
1810
1811 /* Allocate new entries. */
1812 for (i = 0; i < count; i++) {
1813 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1814 it->ex_sw = &esp[i];
1815 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1816 }
1817
1818 /* update execsw[] */
1819 exec_init(0);
1820 rw_exit(&exec_lock);
1821 return 0;
1822 }
1823
1824 /*
1825 * Remove execsw[] entry.
1826 */
1827 int
1828 exec_remove(struct execsw *esp, int count)
1829 {
1830 struct exec_entry *it, *next;
1831 int i;
1832 const struct proclist_desc *pd;
1833 proc_t *p;
1834
1835 if (count == 0) {
1836 return 0;
1837 }
1838
1839 /* Abort if any are busy. */
1840 rw_enter(&exec_lock, RW_WRITER);
1841 for (i = 0; i < count; i++) {
1842 mutex_enter(&proc_lock);
1843 for (pd = proclists; pd->pd_list != NULL; pd++) {
1844 PROCLIST_FOREACH(p, pd->pd_list) {
1845 if (p->p_execsw == &esp[i]) {
1846 mutex_exit(&proc_lock);
1847 rw_exit(&exec_lock);
1848 return EBUSY;
1849 }
1850 }
1851 }
1852 mutex_exit(&proc_lock);
1853 }
1854
1855 /* None are busy, so remove them all. */
1856 for (i = 0; i < count; i++) {
1857 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1858 next = LIST_NEXT(it, ex_list);
1859 if (it->ex_sw == &esp[i]) {
1860 LIST_REMOVE(it, ex_list);
1861 kmem_free(it, sizeof(*it));
1862 break;
1863 }
1864 }
1865 }
1866
1867 /* update execsw[] */
1868 exec_init(0);
1869 rw_exit(&exec_lock);
1870 return 0;
1871 }
1872
1873 /*
1874 * Initialize exec structures. If init_boot is true, also does necessary
1875 * one-time initialization (it's called from main() that way).
1876 * Once system is multiuser, this should be called with exec_lock held,
1877 * i.e. via exec_{add|remove}().
1878 */
1879 int
1880 exec_init(int init_boot)
1881 {
1882 const struct execsw **sw;
1883 struct exec_entry *ex;
1884 SLIST_HEAD(,exec_entry) first;
1885 SLIST_HEAD(,exec_entry) any;
1886 SLIST_HEAD(,exec_entry) last;
1887 int i, sz;
1888
1889 if (init_boot) {
1890 /* do one-time initializations */
1891 vaddr_t vmin = 0, vmax;
1892
1893 rw_init(&exec_lock);
1894 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1895 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1896 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1897 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1898 "execargs", &exec_palloc, IPL_NONE);
1899 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1900 } else {
1901 KASSERT(rw_write_held(&exec_lock));
1902 }
1903
1904 /* Sort each entry onto the appropriate queue. */
1905 SLIST_INIT(&first);
1906 SLIST_INIT(&any);
1907 SLIST_INIT(&last);
1908 sz = 0;
1909 LIST_FOREACH(ex, &ex_head, ex_list) {
1910 switch(ex->ex_sw->es_prio) {
1911 case EXECSW_PRIO_FIRST:
1912 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1913 break;
1914 case EXECSW_PRIO_ANY:
1915 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1916 break;
1917 case EXECSW_PRIO_LAST:
1918 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1919 break;
1920 default:
1921 panic("%s", __func__);
1922 break;
1923 }
1924 sz++;
1925 }
1926
1927 /*
1928 * Create new execsw[]. Ensure we do not try a zero-sized
1929 * allocation.
1930 */
1931 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1932 i = 0;
1933 SLIST_FOREACH(ex, &first, ex_slist) {
1934 sw[i++] = ex->ex_sw;
1935 }
1936 SLIST_FOREACH(ex, &any, ex_slist) {
1937 sw[i++] = ex->ex_sw;
1938 }
1939 SLIST_FOREACH(ex, &last, ex_slist) {
1940 sw[i++] = ex->ex_sw;
1941 }
1942
1943 /* Replace old execsw[] and free used memory. */
1944 if (execsw != NULL) {
1945 kmem_free(__UNCONST(execsw),
1946 nexecs * sizeof(struct execsw *) + 1);
1947 }
1948 execsw = sw;
1949 nexecs = sz;
1950
1951 /* Figure out the maximum size of an exec header. */
1952 exec_maxhdrsz = sizeof(int);
1953 for (i = 0; i < nexecs; i++) {
1954 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1955 exec_maxhdrsz = execsw[i]->es_hdrsz;
1956 }
1957
1958 return 0;
1959 }
1960
1961 static int
1962 exec_sigcode_map(struct proc *p, const struct emul *e)
1963 {
1964 vaddr_t va;
1965 vsize_t sz;
1966 int error;
1967 struct uvm_object *uobj;
1968
1969 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1970
1971 if (e->e_sigobject == NULL || sz == 0) {
1972 return 0;
1973 }
1974
1975 /*
1976 * If we don't have a sigobject for this emulation, create one.
1977 *
1978 * sigobject is an anonymous memory object (just like SYSV shared
1979 * memory) that we keep a permanent reference to and that we map
1980 * in all processes that need this sigcode. The creation is simple,
1981 * we create an object, add a permanent reference to it, map it in
1982 * kernel space, copy out the sigcode to it and unmap it.
1983 * We map it with PROT_READ|PROT_EXEC into the process just
1984 * the way sys_mmap() would map it.
1985 */
1986
1987 uobj = *e->e_sigobject;
1988 if (uobj == NULL) {
1989 mutex_enter(&sigobject_lock);
1990 if ((uobj = *e->e_sigobject) == NULL) {
1991 uobj = uao_create(sz, 0);
1992 (*uobj->pgops->pgo_reference)(uobj);
1993 va = vm_map_min(kernel_map);
1994 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1995 uobj, 0, 0,
1996 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1997 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1998 printf("kernel mapping failed %d\n", error);
1999 (*uobj->pgops->pgo_detach)(uobj);
2000 mutex_exit(&sigobject_lock);
2001 return error;
2002 }
2003 memcpy((void *)va, e->e_sigcode, sz);
2004 #ifdef PMAP_NEED_PROCWR
2005 pmap_procwr(&proc0, va, sz);
2006 #endif
2007 uvm_unmap(kernel_map, va, va + round_page(sz));
2008 *e->e_sigobject = uobj;
2009 }
2010 mutex_exit(&sigobject_lock);
2011 }
2012
2013 /* Just a hint to uvm_map where to put it. */
2014 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2015 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2016
2017 #ifdef __alpha__
2018 /*
2019 * Tru64 puts /sbin/loader at the end of user virtual memory,
2020 * which causes the above calculation to put the sigcode at
2021 * an invalid address. Put it just below the text instead.
2022 */
2023 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2024 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2025 }
2026 #endif
2027
2028 (*uobj->pgops->pgo_reference)(uobj);
2029 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2030 uobj, 0, 0,
2031 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2032 UVM_ADV_RANDOM, 0));
2033 if (error) {
2034 DPRINTF(("%s, %d: map %p "
2035 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2036 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2037 va, error));
2038 (*uobj->pgops->pgo_detach)(uobj);
2039 return error;
2040 }
2041 p->p_sigctx.ps_sigcode = (void *)va;
2042 return 0;
2043 }
2044
2045 /*
2046 * Release a refcount on spawn_exec_data and destroy memory, if this
2047 * was the last one.
2048 */
2049 static void
2050 spawn_exec_data_release(struct spawn_exec_data *data)
2051 {
2052 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2053 return;
2054
2055 cv_destroy(&data->sed_cv_child_ready);
2056 mutex_destroy(&data->sed_mtx_child);
2057
2058 if (data->sed_actions)
2059 posix_spawn_fa_free(data->sed_actions,
2060 data->sed_actions->len);
2061 if (data->sed_attrs)
2062 kmem_free(data->sed_attrs,
2063 sizeof(*data->sed_attrs));
2064 kmem_free(data, sizeof(*data));
2065 }
2066
2067 static int
2068 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2069 {
2070 struct lwp *l = curlwp;
2071 register_t retval;
2072 int error, newfd;
2073
2074 if (actions == NULL)
2075 return 0;
2076
2077 for (size_t i = 0; i < actions->len; i++) {
2078 const struct posix_spawn_file_actions_entry *fae =
2079 &actions->fae[i];
2080 switch (fae->fae_action) {
2081 case FAE_OPEN:
2082 if (fd_getfile(fae->fae_fildes) != NULL) {
2083 error = fd_close(fae->fae_fildes);
2084 if (error)
2085 return error;
2086 }
2087 error = fd_open(fae->fae_path, fae->fae_oflag,
2088 fae->fae_mode, &newfd);
2089 if (error)
2090 return error;
2091 if (newfd != fae->fae_fildes) {
2092 error = dodup(l, newfd,
2093 fae->fae_fildes, 0, &retval);
2094 if (fd_getfile(newfd) != NULL)
2095 fd_close(newfd);
2096 }
2097 break;
2098 case FAE_DUP2:
2099 error = dodup(l, fae->fae_fildes,
2100 fae->fae_newfildes, 0, &retval);
2101 break;
2102 case FAE_CLOSE:
2103 if (fd_getfile(fae->fae_fildes) == NULL) {
2104 return EBADF;
2105 }
2106 error = fd_close(fae->fae_fildes);
2107 break;
2108 }
2109 if (error)
2110 return error;
2111 }
2112 return 0;
2113 }
2114
2115 static int
2116 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2117 {
2118 struct sigaction sigact;
2119 int error;
2120 struct proc *p = curproc;
2121 struct lwp *l = curlwp;
2122
2123 if (attrs == NULL)
2124 return 0;
2125
2126 memset(&sigact, 0, sizeof(sigact));
2127 sigact._sa_u._sa_handler = SIG_DFL;
2128 sigact.sa_flags = 0;
2129
2130 /*
2131 * set state to SSTOP so that this proc can be found by pid.
2132 * see proc_enterprp, do_sched_setparam below
2133 */
2134 mutex_enter(&proc_lock);
2135 /*
2136 * p_stat should be SACTIVE, so we need to adjust the
2137 * parent's p_nstopchild here. For safety, just make
2138 * we're on the good side of SDEAD before we adjust.
2139 */
2140 int ostat = p->p_stat;
2141 KASSERT(ostat < SSTOP);
2142 p->p_stat = SSTOP;
2143 p->p_waited = 0;
2144 p->p_pptr->p_nstopchild++;
2145 mutex_exit(&proc_lock);
2146
2147 /* Set process group */
2148 if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2149 pid_t mypid = p->p_pid;
2150 pid_t pgrp = attrs->sa_pgroup;
2151
2152 if (pgrp == 0)
2153 pgrp = mypid;
2154
2155 error = proc_enterpgrp(parent, mypid, pgrp, false);
2156 if (error)
2157 goto out;
2158 }
2159
2160 /* Set scheduler policy */
2161 if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2162 error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2163 &attrs->sa_schedparam);
2164 else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2165 error = do_sched_setparam(parent->p_pid, 0,
2166 SCHED_NONE, &attrs->sa_schedparam);
2167 }
2168 if (error)
2169 goto out;
2170
2171 /* Reset user ID's */
2172 if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2173 error = do_setresuid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2174 ID_E_EQ_R | ID_E_EQ_S);
2175 if (error)
2176 return error;
2177 error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2178 ID_E_EQ_R | ID_E_EQ_S);
2179 if (error)
2180 goto out;
2181 }
2182
2183 /* Set signal masks/defaults */
2184 if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2185 mutex_enter(p->p_lock);
2186 error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2187 mutex_exit(p->p_lock);
2188 if (error)
2189 goto out;
2190 }
2191
2192 if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2193 /*
2194 * The following sigaction call is using a sigaction
2195 * version 0 trampoline which is in the compatibility
2196 * code only. This is not a problem because for SIG_DFL
2197 * and SIG_IGN, the trampolines are now ignored. If they
2198 * were not, this would be a problem because we are
2199 * holding the exec_lock, and the compat code needs
2200 * to do the same in order to replace the trampoline
2201 * code of the process.
2202 */
2203 for (int i = 1; i <= NSIG; i++) {
2204 if (sigismember(&attrs->sa_sigdefault, i))
2205 sigaction1(l, i, &sigact, NULL, NULL, 0);
2206 }
2207 }
2208 error = 0;
2209 out:
2210 mutex_enter(&proc_lock);
2211 p->p_stat = ostat;
2212 p->p_pptr->p_nstopchild--;
2213 mutex_exit(&proc_lock);
2214 return error;
2215 }
2216
2217 /*
2218 * A child lwp of a posix_spawn operation starts here and ends up in
2219 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2220 * manipulations in between.
2221 * The parent waits for the child, as it is not clear whether the child
2222 * will be able to acquire its own exec_lock. If it can, the parent can
2223 * be released early and continue running in parallel. If not (or if the
2224 * magic debug flag is passed in the scheduler attribute struct), the
2225 * child rides on the parent's exec lock until it is ready to return to
2226 * to userland - and only then releases the parent. This method loses
2227 * concurrency, but improves error reporting.
2228 */
2229 static void
2230 spawn_return(void *arg)
2231 {
2232 struct spawn_exec_data *spawn_data = arg;
2233 struct lwp *l = curlwp;
2234 struct proc *p = l->l_proc;
2235 int error;
2236 bool have_reflock;
2237 bool parent_is_waiting = true;
2238
2239 /*
2240 * Check if we can release parent early.
2241 * We either need to have no sed_attrs, or sed_attrs does not
2242 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2243 * safe access to the parent proc (passed in sed_parent).
2244 * We then try to get the exec_lock, and only if that works, we can
2245 * release the parent here already.
2246 */
2247 struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2248 if ((!attrs || (attrs->sa_flags
2249 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2250 && rw_tryenter(&exec_lock, RW_READER)) {
2251 parent_is_waiting = false;
2252 mutex_enter(&spawn_data->sed_mtx_child);
2253 cv_signal(&spawn_data->sed_cv_child_ready);
2254 mutex_exit(&spawn_data->sed_mtx_child);
2255 }
2256
2257 /* don't allow debugger access yet */
2258 rw_enter(&p->p_reflock, RW_WRITER);
2259 have_reflock = true;
2260
2261 /* handle posix_spawn_file_actions */
2262 error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2263 if (error)
2264 goto report_error;
2265
2266 /* handle posix_spawnattr */
2267 error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2268 if (error)
2269 goto report_error;
2270
2271 /* now do the real exec */
2272 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2273 true);
2274 have_reflock = false;
2275 if (error == EJUSTRETURN)
2276 error = 0;
2277 else if (error)
2278 goto report_error;
2279
2280 if (parent_is_waiting) {
2281 mutex_enter(&spawn_data->sed_mtx_child);
2282 cv_signal(&spawn_data->sed_cv_child_ready);
2283 mutex_exit(&spawn_data->sed_mtx_child);
2284 }
2285
2286 /* release our refcount on the data */
2287 spawn_exec_data_release(spawn_data);
2288
2289 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2290 (PSL_TRACED|PSL_TRACEDCHILD)) {
2291 eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2292 }
2293
2294 /* and finally: leave to userland for the first time */
2295 cpu_spawn_return(l);
2296
2297 /* NOTREACHED */
2298 return;
2299
2300 report_error:
2301 if (have_reflock) {
2302 /*
2303 * We have not passed through execve_runproc(),
2304 * which would have released the p_reflock and also
2305 * taken ownership of the sed_exec part of spawn_data,
2306 * so release/free both here.
2307 */
2308 rw_exit(&p->p_reflock);
2309 execve_free_data(&spawn_data->sed_exec);
2310 }
2311
2312 if (parent_is_waiting) {
2313 /* pass error to parent */
2314 mutex_enter(&spawn_data->sed_mtx_child);
2315 spawn_data->sed_error = error;
2316 cv_signal(&spawn_data->sed_cv_child_ready);
2317 mutex_exit(&spawn_data->sed_mtx_child);
2318 } else {
2319 rw_exit(&exec_lock);
2320 }
2321
2322 /* release our refcount on the data */
2323 spawn_exec_data_release(spawn_data);
2324
2325 /* done, exit */
2326 mutex_enter(p->p_lock);
2327 /*
2328 * Posix explicitly asks for an exit code of 127 if we report
2329 * errors from the child process - so, unfortunately, there
2330 * is no way to report a more exact error code.
2331 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2332 * flag bit in the attrp argument to posix_spawn(2), see above.
2333 */
2334 exit1(l, 127, 0);
2335 }
2336
2337 void
2338 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2339 {
2340
2341 for (size_t i = 0; i < len; i++) {
2342 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2343 if (fae->fae_action != FAE_OPEN)
2344 continue;
2345 kmem_strfree(fae->fae_path);
2346 }
2347 if (fa->len > 0)
2348 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2349 kmem_free(fa, sizeof(*fa));
2350 }
2351
2352 static int
2353 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2354 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2355 {
2356 struct posix_spawn_file_actions *fa;
2357 struct posix_spawn_file_actions_entry *fae;
2358 char *pbuf = NULL;
2359 int error;
2360 size_t i = 0;
2361
2362 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2363 error = copyin(ufa, fa, sizeof(*fa));
2364 if (error || fa->len == 0) {
2365 kmem_free(fa, sizeof(*fa));
2366 return error; /* 0 if not an error, and len == 0 */
2367 }
2368
2369 if (fa->len > lim) {
2370 kmem_free(fa, sizeof(*fa));
2371 return EINVAL;
2372 }
2373
2374 fa->size = fa->len;
2375 size_t fal = fa->len * sizeof(*fae);
2376 fae = fa->fae;
2377 fa->fae = kmem_alloc(fal, KM_SLEEP);
2378 error = copyin(fae, fa->fae, fal);
2379 if (error)
2380 goto out;
2381
2382 pbuf = PNBUF_GET();
2383 for (; i < fa->len; i++) {
2384 fae = &fa->fae[i];
2385 if (fae->fae_action != FAE_OPEN)
2386 continue;
2387 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2388 if (error)
2389 goto out;
2390 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2391 memcpy(fae->fae_path, pbuf, fal);
2392 }
2393 PNBUF_PUT(pbuf);
2394
2395 *fap = fa;
2396 return 0;
2397 out:
2398 if (pbuf)
2399 PNBUF_PUT(pbuf);
2400 posix_spawn_fa_free(fa, i);
2401 return error;
2402 }
2403
2404 /*
2405 * N.B. increments nprocs upon success. Callers need to drop nprocs if
2406 * they fail for some other reason.
2407 */
2408 int
2409 check_posix_spawn(struct lwp *l1)
2410 {
2411 int error, tnprocs, count;
2412 uid_t uid;
2413 struct proc *p1;
2414
2415 p1 = l1->l_proc;
2416 uid = kauth_cred_getuid(l1->l_cred);
2417 tnprocs = atomic_inc_uint_nv(&nprocs);
2418
2419 /*
2420 * Although process entries are dynamically created, we still keep
2421 * a global limit on the maximum number we will create.
2422 */
2423 if (__predict_false(tnprocs >= maxproc))
2424 error = -1;
2425 else
2426 error = kauth_authorize_process(l1->l_cred,
2427 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2428
2429 if (error) {
2430 atomic_dec_uint(&nprocs);
2431 return EAGAIN;
2432 }
2433
2434 /*
2435 * Enforce limits.
2436 */
2437 count = chgproccnt(uid, 1);
2438 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2439 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2440 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2441 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2442 (void)chgproccnt(uid, -1);
2443 atomic_dec_uint(&nprocs);
2444 return EAGAIN;
2445 }
2446
2447 return 0;
2448 }
2449
2450 int
2451 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2452 struct posix_spawn_file_actions *fa,
2453 struct posix_spawnattr *sa,
2454 char *const *argv, char *const *envp,
2455 execve_fetch_element_t fetch)
2456 {
2457
2458 struct proc *p1, *p2;
2459 struct lwp *l2;
2460 int error;
2461 struct spawn_exec_data *spawn_data;
2462 vaddr_t uaddr;
2463 pid_t pid;
2464 bool have_exec_lock = false;
2465
2466 p1 = l1->l_proc;
2467
2468 /* Allocate and init spawn_data */
2469 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2470 spawn_data->sed_refcnt = 1; /* only parent so far */
2471 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2472 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2473 mutex_enter(&spawn_data->sed_mtx_child);
2474
2475 /*
2476 * Do the first part of the exec now, collect state
2477 * in spawn_data.
2478 */
2479 error = execve_loadvm(l1, true, path, -1, argv,
2480 envp, fetch, &spawn_data->sed_exec);
2481 if (error == EJUSTRETURN)
2482 error = 0;
2483 else if (error)
2484 goto error_exit;
2485
2486 have_exec_lock = true;
2487
2488 /*
2489 * Allocate virtual address space for the U-area now, while it
2490 * is still easy to abort the fork operation if we're out of
2491 * kernel virtual address space.
2492 */
2493 uaddr = uvm_uarea_alloc();
2494 if (__predict_false(uaddr == 0)) {
2495 error = ENOMEM;
2496 goto error_exit;
2497 }
2498
2499 /*
2500 * Allocate new proc. Borrow proc0 vmspace for it, we will
2501 * replace it with its own before returning to userland
2502 * in the child.
2503 */
2504 p2 = proc_alloc();
2505 if (p2 == NULL) {
2506 /* We were unable to allocate a process ID. */
2507 error = EAGAIN;
2508 goto error_exit;
2509 }
2510
2511 /*
2512 * This is a point of no return, we will have to go through
2513 * the child proc to properly clean it up past this point.
2514 */
2515 pid = p2->p_pid;
2516
2517 /*
2518 * Make a proc table entry for the new process.
2519 * Start by zeroing the section of proc that is zero-initialized,
2520 * then copy the section that is copied directly from the parent.
2521 */
2522 memset(&p2->p_startzero, 0,
2523 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2524 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2525 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2526 p2->p_vmspace = proc0.p_vmspace;
2527
2528 TAILQ_INIT(&p2->p_sigpend.sp_info);
2529
2530 LIST_INIT(&p2->p_lwps);
2531 LIST_INIT(&p2->p_sigwaiters);
2532
2533 /*
2534 * Duplicate sub-structures as needed.
2535 * Increase reference counts on shared objects.
2536 * Inherit flags we want to keep. The flags related to SIGCHLD
2537 * handling are important in order to keep a consistent behaviour
2538 * for the child after the fork. If we are a 32-bit process, the
2539 * child will be too.
2540 */
2541 p2->p_flag =
2542 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2543 p2->p_emul = p1->p_emul;
2544 p2->p_execsw = p1->p_execsw;
2545
2546 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2547 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2548 rw_init(&p2->p_reflock);
2549 cv_init(&p2->p_waitcv, "wait");
2550 cv_init(&p2->p_lwpcv, "lwpwait");
2551
2552 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2553
2554 kauth_proc_fork(p1, p2);
2555
2556 p2->p_raslist = NULL;
2557 p2->p_fd = fd_copy();
2558
2559 /* XXX racy */
2560 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2561
2562 p2->p_cwdi = cwdinit();
2563
2564 /*
2565 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2566 * we just need increase pl_refcnt.
2567 */
2568 if (!p1->p_limit->pl_writeable) {
2569 lim_addref(p1->p_limit);
2570 p2->p_limit = p1->p_limit;
2571 } else {
2572 p2->p_limit = lim_copy(p1->p_limit);
2573 }
2574
2575 p2->p_lflag = 0;
2576 l1->l_vforkwaiting = false;
2577 p2->p_sflag = 0;
2578 p2->p_slflag = 0;
2579 p2->p_pptr = p1;
2580 p2->p_ppid = p1->p_pid;
2581 LIST_INIT(&p2->p_children);
2582
2583 p2->p_aio = NULL;
2584
2585 #ifdef KTRACE
2586 /*
2587 * Copy traceflag and tracefile if enabled.
2588 * If not inherited, these were zeroed above.
2589 */
2590 if (p1->p_traceflag & KTRFAC_INHERIT) {
2591 mutex_enter(&ktrace_lock);
2592 p2->p_traceflag = p1->p_traceflag;
2593 if ((p2->p_tracep = p1->p_tracep) != NULL)
2594 ktradref(p2);
2595 mutex_exit(&ktrace_lock);
2596 }
2597 #endif
2598
2599 /*
2600 * Create signal actions for the child process.
2601 */
2602 p2->p_sigacts = sigactsinit(p1, 0);
2603 mutex_enter(p1->p_lock);
2604 p2->p_sflag |=
2605 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2606 sched_proc_fork(p1, p2);
2607 mutex_exit(p1->p_lock);
2608
2609 p2->p_stflag = p1->p_stflag;
2610
2611 /*
2612 * p_stats.
2613 * Copy parts of p_stats, and zero out the rest.
2614 */
2615 p2->p_stats = pstatscopy(p1->p_stats);
2616
2617 /* copy over machdep flags to the new proc */
2618 cpu_proc_fork(p1, p2);
2619
2620 /*
2621 * Prepare remaining parts of spawn data
2622 */
2623 spawn_data->sed_actions = fa;
2624 spawn_data->sed_attrs = sa;
2625
2626 spawn_data->sed_parent = p1;
2627
2628 /* create LWP */
2629 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2630 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2631 l2->l_ctxlink = NULL; /* reset ucontext link */
2632
2633 /*
2634 * Copy the credential so other references don't see our changes.
2635 * Test to see if this is necessary first, since in the common case
2636 * we won't need a private reference.
2637 */
2638 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2639 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2640 l2->l_cred = kauth_cred_copy(l2->l_cred);
2641 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2642 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2643 }
2644
2645 /* Update the master credentials. */
2646 if (l2->l_cred != p2->p_cred) {
2647 kauth_cred_t ocred;
2648
2649 kauth_cred_hold(l2->l_cred);
2650 mutex_enter(p2->p_lock);
2651 ocred = p2->p_cred;
2652 p2->p_cred = l2->l_cred;
2653 mutex_exit(p2->p_lock);
2654 kauth_cred_free(ocred);
2655 }
2656
2657 *child_ok = true;
2658 spawn_data->sed_refcnt = 2; /* child gets it as well */
2659 #if 0
2660 l2->l_nopreempt = 1; /* start it non-preemptable */
2661 #endif
2662
2663 /*
2664 * It's now safe for the scheduler and other processes to see the
2665 * child process.
2666 */
2667 mutex_enter(&proc_lock);
2668
2669 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2670 p2->p_lflag |= PL_CONTROLT;
2671
2672 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2673 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2674
2675 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2676 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2677 proc_changeparent(p2, p1->p_pptr);
2678 SET(p2->p_slflag, PSL_TRACEDCHILD);
2679 }
2680
2681 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
2682
2683 LIST_INSERT_AFTER(p1, p2, p_pglist);
2684 LIST_INSERT_HEAD(&allproc, p2, p_list);
2685
2686 p2->p_trace_enabled = trace_is_enabled(p2);
2687 #ifdef __HAVE_SYSCALL_INTERN
2688 (*p2->p_emul->e_syscall_intern)(p2);
2689 #endif
2690
2691 /*
2692 * Make child runnable, set start time, and add to run queue except
2693 * if the parent requested the child to start in SSTOP state.
2694 */
2695 mutex_enter(p2->p_lock);
2696
2697 getmicrotime(&p2->p_stats->p_start);
2698
2699 lwp_lock(l2);
2700 KASSERT(p2->p_nrlwps == 1);
2701 KASSERT(l2->l_stat == LSIDL);
2702 p2->p_nrlwps = 1;
2703 p2->p_stat = SACTIVE;
2704 setrunnable(l2);
2705 /* LWP now unlocked */
2706
2707 mutex_exit(p2->p_lock);
2708 mutex_exit(&proc_lock);
2709
2710 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2711 error = spawn_data->sed_error;
2712 mutex_exit(&spawn_data->sed_mtx_child);
2713 spawn_exec_data_release(spawn_data);
2714
2715 rw_exit(&p1->p_reflock);
2716 rw_exit(&exec_lock);
2717 have_exec_lock = false;
2718
2719 *pid_res = pid;
2720
2721 if (error)
2722 return error;
2723
2724 if (p1->p_slflag & PSL_TRACED) {
2725 /* Paranoid check */
2726 mutex_enter(&proc_lock);
2727 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2728 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2729 mutex_exit(&proc_lock);
2730 return 0;
2731 }
2732
2733 mutex_enter(p1->p_lock);
2734 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2735 }
2736 return 0;
2737
2738 error_exit:
2739 if (have_exec_lock) {
2740 execve_free_data(&spawn_data->sed_exec);
2741 rw_exit(&p1->p_reflock);
2742 rw_exit(&exec_lock);
2743 }
2744 mutex_exit(&spawn_data->sed_mtx_child);
2745 spawn_exec_data_release(spawn_data);
2746
2747 return error;
2748 }
2749
2750 int
2751 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2752 register_t *retval)
2753 {
2754 /* {
2755 syscallarg(pid_t *) pid;
2756 syscallarg(const char *) path;
2757 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2758 syscallarg(const struct posix_spawnattr *) attrp;
2759 syscallarg(char *const *) argv;
2760 syscallarg(char *const *) envp;
2761 } */
2762
2763 int error;
2764 struct posix_spawn_file_actions *fa = NULL;
2765 struct posix_spawnattr *sa = NULL;
2766 pid_t pid;
2767 bool child_ok = false;
2768 rlim_t max_fileactions;
2769 proc_t *p = l1->l_proc;
2770
2771 /* check_posix_spawn() increments nprocs for us. */
2772 error = check_posix_spawn(l1);
2773 if (error) {
2774 *retval = error;
2775 return 0;
2776 }
2777
2778 /* copy in file_actions struct */
2779 if (SCARG(uap, file_actions) != NULL) {
2780 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2781 maxfiles);
2782 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2783 max_fileactions);
2784 if (error)
2785 goto error_exit;
2786 }
2787
2788 /* copyin posix_spawnattr struct */
2789 if (SCARG(uap, attrp) != NULL) {
2790 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2791 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2792 if (error)
2793 goto error_exit;
2794 }
2795
2796 /*
2797 * Do the spawn
2798 */
2799 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2800 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2801 if (error)
2802 goto error_exit;
2803
2804 if (error == 0 && SCARG(uap, pid) != NULL)
2805 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2806
2807 *retval = error;
2808 return 0;
2809
2810 error_exit:
2811 if (!child_ok) {
2812 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2813 atomic_dec_uint(&nprocs);
2814
2815 if (sa)
2816 kmem_free(sa, sizeof(*sa));
2817 if (fa)
2818 posix_spawn_fa_free(fa, fa->len);
2819 }
2820
2821 *retval = error;
2822 return 0;
2823 }
2824
2825 void
2826 exec_free_emul_arg(struct exec_package *epp)
2827 {
2828 if (epp->ep_emul_arg_free != NULL) {
2829 KASSERT(epp->ep_emul_arg != NULL);
2830 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2831 epp->ep_emul_arg_free = NULL;
2832 epp->ep_emul_arg = NULL;
2833 } else {
2834 KASSERT(epp->ep_emul_arg == NULL);
2835 }
2836 }
2837
2838 #ifdef DEBUG_EXEC
2839 static void
2840 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2841 {
2842 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2843 size_t j;
2844
2845 if (error == 0)
2846 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2847 else
2848 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2849 epp->ep_vmcmds.evs_used, error));
2850
2851 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2852 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2853 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2854 PRIxVSIZE" prot=0%o flags=%d\n", j,
2855 vp[j].ev_proc == vmcmd_map_pagedvn ?
2856 "pagedvn" :
2857 vp[j].ev_proc == vmcmd_map_readvn ?
2858 "readvn" :
2859 vp[j].ev_proc == vmcmd_map_zero ?
2860 "zero" : "*unknown*",
2861 vp[j].ev_addr, vp[j].ev_len,
2862 vp[j].ev_offset, vp[j].ev_prot,
2863 vp[j].ev_flags));
2864 if (error != 0 && j == x)
2865 DPRINTF((" ^--- failed\n"));
2866 }
2867 }
2868 #endif
2869