kern_exec.c revision 1.504 1 /* $NetBSD: kern_exec.c,v 1.504 2020/12/05 18:17:01 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.504 2020/12/05 18:17:01 thorpej Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/ktrace.h>
91 #include <sys/uidinfo.h>
92 #include <sys/wait.h>
93 #include <sys/mman.h>
94 #include <sys/ras.h>
95 #include <sys/signalvar.h>
96 #include <sys/stat.h>
97 #include <sys/syscall.h>
98 #include <sys/kauth.h>
99 #include <sys/lwpctl.h>
100 #include <sys/pax.h>
101 #include <sys/cpu.h>
102 #include <sys/module.h>
103 #include <sys/syscallvar.h>
104 #include <sys/syscallargs.h>
105 #if NVERIEXEC > 0
106 #include <sys/verified_exec.h>
107 #endif /* NVERIEXEC > 0 */
108 #include <sys/sdt.h>
109 #include <sys/spawn.h>
110 #include <sys/prot.h>
111 #include <sys/cprng.h>
112
113 #include <uvm/uvm_extern.h>
114
115 #include <machine/reg.h>
116
117 #include <compat/common/compat_util.h>
118
119 #ifndef MD_TOPDOWN_INIT
120 #ifdef __USE_TOPDOWN_VM
121 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
122 #else
123 #define MD_TOPDOWN_INIT(epp)
124 #endif
125 #endif
126
127 struct execve_data;
128
129 extern int user_va0_disable;
130
131 static size_t calcargs(struct execve_data * restrict, const size_t);
132 static size_t calcstack(struct execve_data * restrict, const size_t);
133 static int copyoutargs(struct execve_data * restrict, struct lwp *,
134 char * const);
135 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
136 static int copyinargs(struct execve_data * restrict, char * const *,
137 char * const *, execve_fetch_element_t, char **);
138 static int copyinargstrs(struct execve_data * restrict, char * const *,
139 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
140 static int exec_sigcode_map(struct proc *, const struct emul *);
141
142 #if defined(DEBUG) && !defined(DEBUG_EXEC)
143 #define DEBUG_EXEC
144 #endif
145 #ifdef DEBUG_EXEC
146 #define DPRINTF(a) printf a
147 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
148 __LINE__, (s), (a), (b))
149 static void dump_vmcmds(const struct exec_package * const, size_t, int);
150 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
151 #else
152 #define DPRINTF(a)
153 #define COPYPRINTF(s, a, b)
154 #define DUMPVMCMDS(p, x, e) do {} while (0)
155 #endif /* DEBUG_EXEC */
156
157 /*
158 * DTrace SDT provider definitions
159 */
160 SDT_PROVIDER_DECLARE(proc);
161 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
162 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
163 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
164
165 /*
166 * Exec function switch:
167 *
168 * Note that each makecmds function is responsible for loading the
169 * exec package with the necessary functions for any exec-type-specific
170 * handling.
171 *
172 * Functions for specific exec types should be defined in their own
173 * header file.
174 */
175 static const struct execsw **execsw = NULL;
176 static int nexecs;
177
178 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
179
180 /* list of dynamically loaded execsw entries */
181 static LIST_HEAD(execlist_head, exec_entry) ex_head =
182 LIST_HEAD_INITIALIZER(ex_head);
183 struct exec_entry {
184 LIST_ENTRY(exec_entry) ex_list;
185 SLIST_ENTRY(exec_entry) ex_slist;
186 const struct execsw *ex_sw;
187 };
188
189 #ifndef __HAVE_SYSCALL_INTERN
190 void syscall(void);
191 #endif
192
193 /* NetBSD autoloadable syscalls */
194 #ifdef MODULAR
195 #include <kern/syscalls_autoload.c>
196 #endif
197
198 /* NetBSD emul struct */
199 struct emul emul_netbsd = {
200 .e_name = "netbsd",
201 #ifdef EMUL_NATIVEROOT
202 .e_path = EMUL_NATIVEROOT,
203 #else
204 .e_path = NULL,
205 #endif
206 #ifndef __HAVE_MINIMAL_EMUL
207 .e_flags = EMUL_HAS_SYS___syscall,
208 .e_errno = NULL,
209 .e_nosys = SYS_syscall,
210 .e_nsysent = SYS_NSYSENT,
211 #endif
212 #ifdef MODULAR
213 .e_sc_autoload = netbsd_syscalls_autoload,
214 #endif
215 .e_sysent = sysent,
216 .e_nomodbits = sysent_nomodbits,
217 #ifdef SYSCALL_DEBUG
218 .e_syscallnames = syscallnames,
219 #else
220 .e_syscallnames = NULL,
221 #endif
222 .e_sendsig = sendsig,
223 .e_trapsignal = trapsignal,
224 .e_sigcode = NULL,
225 .e_esigcode = NULL,
226 .e_sigobject = NULL,
227 .e_setregs = setregs,
228 .e_proc_exec = NULL,
229 .e_proc_fork = NULL,
230 .e_proc_exit = NULL,
231 .e_lwp_fork = NULL,
232 .e_lwp_exit = NULL,
233 #ifdef __HAVE_SYSCALL_INTERN
234 .e_syscall_intern = syscall_intern,
235 #else
236 .e_syscall = syscall,
237 #endif
238 .e_sysctlovly = NULL,
239 .e_vm_default_addr = uvm_default_mapaddr,
240 .e_usertrap = NULL,
241 .e_ucsize = sizeof(ucontext_t),
242 .e_startlwp = startlwp
243 };
244
245 /*
246 * Exec lock. Used to control access to execsw[] structures.
247 * This must not be static so that netbsd32 can access it, too.
248 */
249 krwlock_t exec_lock __cacheline_aligned;
250
251 static kmutex_t sigobject_lock __cacheline_aligned;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 __func__, epp->ep_kname, error));
333 PNBUF_PUT(*rpath);
334 *rpath = NULL;
335 return error;
336 }
337 epp->ep_resolvedname = *rpath;
338 if ((p = strrchr(*rpath, '/')) != NULL)
339 epp->ep_kname = p + 1;
340 return 0;
341 }
342
343
344 /*
345 * check exec:
346 * given an "executable" described in the exec package's namei info,
347 * see what we can do with it.
348 *
349 * ON ENTRY:
350 * exec package with appropriate namei info
351 * lwp pointer of exec'ing lwp
352 * NO SELF-LOCKED VNODES
353 *
354 * ON EXIT:
355 * error: nothing held, etc. exec header still allocated.
356 * ok: filled exec package, executable's vnode (unlocked).
357 *
358 * EXEC SWITCH ENTRY:
359 * Locked vnode to check, exec package, proc.
360 *
361 * EXEC SWITCH EXIT:
362 * ok: return 0, filled exec package, executable's vnode (unlocked).
363 * error: destructive:
364 * everything deallocated execept exec header.
365 * non-destructive:
366 * error code, executable's vnode (unlocked),
367 * exec header unmodified.
368 */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372 char **rpath)
373 {
374 int error, i;
375 struct vnode *vp;
376 size_t resid;
377
378 if (epp->ep_resolvedname) {
379 struct nameidata nd;
380
381 // grab the absolute pathbuf here before namei() trashes it.
382 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384
385 /* first get the vnode */
386 if ((error = namei(&nd)) != 0)
387 return error;
388
389 epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 /* paranoia (take this out once namei stuff stabilizes) */
392 memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 } else {
395 struct file *fp;
396
397 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 return error;
399 epp->ep_vp = vp = fp->f_vnode;
400 vref(vp);
401 fd_putfile(epp->ep_xfd);
402 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 return error;
404 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 }
406
407 /* check access and type */
408 if (vp->v_type != VREG) {
409 error = EACCES;
410 goto bad1;
411 }
412 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 goto bad1;
414
415 /* get attributes */
416 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 goto bad1;
419
420 /* Check mount point */
421 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 error = EACCES;
423 goto bad1;
424 }
425 if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427
428 /* try to open it */
429 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 goto bad1;
431
432 /* now we have the file, get the exec header */
433 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 if (error)
436 goto bad1;
437
438 /* unlock vp, since we need it unlocked from here on out. */
439 VOP_UNLOCK(vp);
440
441 #if NVERIEXEC > 0
442 error = veriexec_verify(l, vp,
443 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 NULL);
446 if (error)
447 goto bad2;
448 #endif /* NVERIEXEC > 0 */
449
450 #ifdef PAX_SEGVGUARD
451 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 if (error)
453 goto bad2;
454 #endif /* PAX_SEGVGUARD */
455
456 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457
458 /*
459 * Set up default address space limits. Can be overridden
460 * by individual exec packages.
461 */
462 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464
465 /*
466 * set up the vmcmds for creation of the process
467 * address space
468 */
469 error = ENOEXEC;
470 for (i = 0; i < nexecs; i++) {
471 int newerror;
472
473 epp->ep_esch = execsw[i];
474 newerror = (*execsw[i]->es_makecmds)(l, epp);
475
476 if (!newerror) {
477 /* Seems ok: check that entry point is not too high */
478 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 printf("%s: rejecting %p due to "
481 "too high entry address (>= %p)\n",
482 __func__, (void *)epp->ep_entry,
483 (void *)epp->ep_vm_maxaddr);
484 #endif
485 error = ENOEXEC;
486 break;
487 }
488 /* Seems ok: check that entry point is not too low */
489 if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 printf("%s: rejecting %p due to "
492 "too low entry address (< %p)\n",
493 __func__, (void *)epp->ep_entry,
494 (void *)epp->ep_vm_minaddr);
495 #endif
496 error = ENOEXEC;
497 break;
498 }
499
500 /* check limits */
501 #ifdef DIAGNOSTIC
502 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
503 #endif
504 #ifdef MAXTSIZ
505 if (epp->ep_tsize > MAXTSIZ) {
506 #ifdef DIAGNOSTIC
507 printf(LMSG, __func__, "text",
508 (uintmax_t)epp->ep_tsize,
509 (uintmax_t)MAXTSIZ);
510 #endif
511 error = ENOMEM;
512 break;
513 }
514 #endif
515 vsize_t dlimit =
516 (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
517 if (epp->ep_dsize > dlimit) {
518 #ifdef DIAGNOSTIC
519 printf(LMSG, __func__, "data",
520 (uintmax_t)epp->ep_dsize,
521 (uintmax_t)dlimit);
522 #endif
523 error = ENOMEM;
524 break;
525 }
526 return 0;
527 }
528
529 /*
530 * Reset all the fields that may have been modified by the
531 * loader.
532 */
533 KASSERT(epp->ep_emul_arg == NULL);
534 if (epp->ep_emul_root != NULL) {
535 vrele(epp->ep_emul_root);
536 epp->ep_emul_root = NULL;
537 }
538 if (epp->ep_interp != NULL) {
539 vrele(epp->ep_interp);
540 epp->ep_interp = NULL;
541 }
542 epp->ep_pax_flags = 0;
543
544 /* make sure the first "interesting" error code is saved. */
545 if (error == ENOEXEC)
546 error = newerror;
547
548 if (epp->ep_flags & EXEC_DESTR)
549 /* Error from "#!" code, tidied up by recursive call */
550 return error;
551 }
552
553 /* not found, error */
554
555 /*
556 * free any vmspace-creation commands,
557 * and release their references
558 */
559 kill_vmcmds(&epp->ep_vmcmds);
560
561 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
562 bad2:
563 #endif
564 /*
565 * close and release the vnode, restore the old one, free the
566 * pathname buf, and punt.
567 */
568 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
569 VOP_CLOSE(vp, FREAD, l->l_cred);
570 vput(vp);
571 return error;
572
573 bad1:
574 /*
575 * free the namei pathname buffer, and put the vnode
576 * (which we don't yet have open).
577 */
578 vput(vp); /* was still locked */
579 return error;
580 }
581
582 #ifdef __MACHINE_STACK_GROWS_UP
583 #define STACK_PTHREADSPACE NBPG
584 #else
585 #define STACK_PTHREADSPACE 0
586 #endif
587
588 static int
589 execve_fetch_element(char * const *array, size_t index, char **value)
590 {
591 return copyin(array + index, value, sizeof(*value));
592 }
593
594 /*
595 * exec system call
596 */
597 int
598 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
599 {
600 /* {
601 syscallarg(const char *) path;
602 syscallarg(char * const *) argp;
603 syscallarg(char * const *) envp;
604 } */
605
606 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
607 SCARG(uap, envp), execve_fetch_element);
608 }
609
610 int
611 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
612 register_t *retval)
613 {
614 /* {
615 syscallarg(int) fd;
616 syscallarg(char * const *) argp;
617 syscallarg(char * const *) envp;
618 } */
619
620 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
621 SCARG(uap, envp), execve_fetch_element);
622 }
623
624 /*
625 * Load modules to try and execute an image that we do not understand.
626 * If no execsw entries are present, we load those likely to be needed
627 * in order to run native images only. Otherwise, we autoload all
628 * possible modules that could let us run the binary. XXX lame
629 */
630 static void
631 exec_autoload(void)
632 {
633 #ifdef MODULAR
634 static const char * const native[] = {
635 "exec_elf32",
636 "exec_elf64",
637 "exec_script",
638 NULL
639 };
640 static const char * const compat[] = {
641 "exec_elf32",
642 "exec_elf64",
643 "exec_script",
644 "exec_aout",
645 "exec_coff",
646 "exec_ecoff",
647 "compat_aoutm68k",
648 "compat_netbsd32",
649 #if 0
650 "compat_linux",
651 "compat_linux32",
652 #endif
653 "compat_sunos",
654 "compat_sunos32",
655 "compat_ultrix",
656 NULL
657 };
658 char const * const *list;
659 int i;
660
661 list = nexecs == 0 ? native : compat;
662 for (i = 0; list[i] != NULL; i++) {
663 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
664 continue;
665 }
666 yield();
667 }
668 #endif
669 }
670
671 /*
672 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
673 * making it absolute in the process, by prepending the current working
674 * directory if it is not. If offs is supplied it will contain the offset
675 * where the original supplied copy of upath starts.
676 */
677 int
678 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
679 struct pathbuf **pbp, size_t *offs)
680 {
681 char *path, *bp;
682 size_t len, tlen;
683 int error;
684 struct cwdinfo *cwdi;
685
686 path = PNBUF_GET();
687 if (seg == UIO_SYSSPACE) {
688 error = copystr(upath, path, MAXPATHLEN, &len);
689 } else {
690 error = copyinstr(upath, path, MAXPATHLEN, &len);
691 }
692 if (error)
693 goto err;
694
695 if (path[0] == '/') {
696 if (offs)
697 *offs = 0;
698 goto out;
699 }
700
701 len++;
702 if (len + 1 >= MAXPATHLEN) {
703 error = ENAMETOOLONG;
704 goto err;
705 }
706 bp = path + MAXPATHLEN - len;
707 memmove(bp, path, len);
708 *(--bp) = '/';
709
710 cwdi = l->l_proc->p_cwdi;
711 rw_enter(&cwdi->cwdi_lock, RW_READER);
712 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
713 GETCWD_CHECK_ACCESS, l);
714 rw_exit(&cwdi->cwdi_lock);
715
716 if (error)
717 goto err;
718 tlen = path + MAXPATHLEN - bp;
719
720 memmove(path, bp, tlen);
721 path[tlen - 1] = '\0';
722 if (offs)
723 *offs = tlen - len;
724 out:
725 *pbp = pathbuf_assimilate(path);
726 return 0;
727 err:
728 PNBUF_PUT(path);
729 return error;
730 }
731
732 vaddr_t
733 exec_vm_minaddr(vaddr_t va_min)
734 {
735 /*
736 * Increase va_min if we don't want NULL to be mappable by the
737 * process.
738 */
739 #define VM_MIN_GUARD PAGE_SIZE
740 if (user_va0_disable && (va_min < VM_MIN_GUARD))
741 return VM_MIN_GUARD;
742 return va_min;
743 }
744
745 static int
746 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
747 char * const *args, char * const *envs,
748 execve_fetch_element_t fetch_element,
749 struct execve_data * restrict data)
750 {
751 struct exec_package * const epp = &data->ed_pack;
752 int error;
753 struct proc *p;
754 char *dp;
755 u_int modgen;
756
757 KASSERT(data != NULL);
758
759 p = l->l_proc;
760 modgen = 0;
761
762 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
763
764 /*
765 * Check if we have exceeded our number of processes limit.
766 * This is so that we handle the case where a root daemon
767 * forked, ran setuid to become the desired user and is trying
768 * to exec. The obvious place to do the reference counting check
769 * is setuid(), but we don't do the reference counting check there
770 * like other OS's do because then all the programs that use setuid()
771 * must be modified to check the return code of setuid() and exit().
772 * It is dangerous to make setuid() fail, because it fails open and
773 * the program will continue to run as root. If we make it succeed
774 * and return an error code, again we are not enforcing the limit.
775 * The best place to enforce the limit is here, when the process tries
776 * to execute a new image, because eventually the process will need
777 * to call exec in order to do something useful.
778 */
779 retry:
780 if (p->p_flag & PK_SUGID) {
781 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
782 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
783 &p->p_rlimit[RLIMIT_NPROC],
784 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
785 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
786 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
787 return EAGAIN;
788 }
789
790 /*
791 * Drain existing references and forbid new ones. The process
792 * should be left alone until we're done here. This is necessary
793 * to avoid race conditions - e.g. in ptrace() - that might allow
794 * a local user to illicitly obtain elevated privileges.
795 */
796 rw_enter(&p->p_reflock, RW_WRITER);
797
798 if (has_path) {
799 size_t offs;
800 /*
801 * Init the namei data to point the file user's program name.
802 * This is done here rather than in check_exec(), so that it's
803 * possible to override this settings if any of makecmd/probe
804 * functions call check_exec() recursively - for example,
805 * see exec_script_makecmds().
806 */
807 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
808 &data->ed_pathbuf, &offs)) != 0)
809 goto clrflg;
810 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
811 epp->ep_kname = data->ed_pathstring + offs;
812 data->ed_resolvedname = PNBUF_GET();
813 epp->ep_resolvedname = data->ed_resolvedname;
814 epp->ep_xfd = -1;
815 } else {
816 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
817 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
818 epp->ep_kname = "*fexecve*";
819 data->ed_resolvedname = NULL;
820 epp->ep_resolvedname = NULL;
821 epp->ep_xfd = fd;
822 }
823
824
825 /*
826 * initialize the fields of the exec package.
827 */
828 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
829 epp->ep_hdrlen = exec_maxhdrsz;
830 epp->ep_hdrvalid = 0;
831 epp->ep_emul_arg = NULL;
832 epp->ep_emul_arg_free = NULL;
833 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
834 epp->ep_vap = &data->ed_attr;
835 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
836 MD_TOPDOWN_INIT(epp);
837 epp->ep_emul_root = NULL;
838 epp->ep_interp = NULL;
839 epp->ep_esch = NULL;
840 epp->ep_pax_flags = 0;
841 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
842
843 rw_enter(&exec_lock, RW_READER);
844
845 /* see if we can run it. */
846 if ((error = check_exec(l, epp, data->ed_pathbuf,
847 &data->ed_resolvedname)) != 0) {
848 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
849 DPRINTF(("%s: check exec failed for %s, error %d\n",
850 __func__, epp->ep_kname, error));
851 }
852 goto freehdr;
853 }
854
855 /* allocate an argument buffer */
856 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
857 KASSERT(data->ed_argp != NULL);
858 dp = data->ed_argp;
859
860 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
861 goto bad;
862 }
863
864 /*
865 * Calculate the new stack size.
866 */
867
868 #ifdef __MACHINE_STACK_GROWS_UP
869 /*
870 * copyargs() fills argc/argv/envp from the lower address even on
871 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
872 * so that _rtld() use it.
873 */
874 #define RTLD_GAP 32
875 #else
876 #define RTLD_GAP 0
877 #endif
878
879 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
880
881 data->ed_argslen = calcargs(data, argenvstrlen);
882
883 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
884
885 if (len > epp->ep_ssize) {
886 /* in effect, compare to initial limit */
887 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
888 error = ENOMEM;
889 goto bad;
890 }
891 /* adjust "active stack depth" for process VSZ */
892 epp->ep_ssize = len;
893
894 return 0;
895
896 bad:
897 /* free the vmspace-creation commands, and release their references */
898 kill_vmcmds(&epp->ep_vmcmds);
899 /* kill any opened file descriptor, if necessary */
900 if (epp->ep_flags & EXEC_HASFD) {
901 epp->ep_flags &= ~EXEC_HASFD;
902 fd_close(epp->ep_fd);
903 }
904 /* close and put the exec'd file */
905 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
906 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
907 vput(epp->ep_vp);
908 pool_put(&exec_pool, data->ed_argp);
909
910 freehdr:
911 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
912 if (epp->ep_emul_root != NULL)
913 vrele(epp->ep_emul_root);
914 if (epp->ep_interp != NULL)
915 vrele(epp->ep_interp);
916
917 rw_exit(&exec_lock);
918
919 exec_path_free(data);
920
921 clrflg:
922 rw_exit(&p->p_reflock);
923
924 if (modgen != module_gen && error == ENOEXEC) {
925 modgen = module_gen;
926 exec_autoload();
927 goto retry;
928 }
929
930 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
931 return error;
932 }
933
934 static int
935 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
936 {
937 struct exec_package * const epp = &data->ed_pack;
938 struct proc *p = l->l_proc;
939 struct exec_vmcmd *base_vcp;
940 int error = 0;
941 size_t i;
942
943 /* record proc's vnode, for use by procfs and others */
944 if (p->p_textvp)
945 vrele(p->p_textvp);
946 vref(epp->ep_vp);
947 p->p_textvp = epp->ep_vp;
948
949 /* create the new process's VM space by running the vmcmds */
950 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
951
952 #ifdef TRACE_EXEC
953 DUMPVMCMDS(epp, 0, 0);
954 #endif
955
956 base_vcp = NULL;
957
958 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
959 struct exec_vmcmd *vcp;
960
961 vcp = &epp->ep_vmcmds.evs_cmds[i];
962 if (vcp->ev_flags & VMCMD_RELATIVE) {
963 KASSERTMSG(base_vcp != NULL,
964 "%s: relative vmcmd with no base", __func__);
965 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
966 "%s: illegal base & relative vmcmd", __func__);
967 vcp->ev_addr += base_vcp->ev_addr;
968 }
969 error = (*vcp->ev_proc)(l, vcp);
970 if (error)
971 DUMPVMCMDS(epp, i, error);
972 if (vcp->ev_flags & VMCMD_BASE)
973 base_vcp = vcp;
974 }
975
976 /* free the vmspace-creation commands, and release their references */
977 kill_vmcmds(&epp->ep_vmcmds);
978
979 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
980 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
981 vput(epp->ep_vp);
982
983 /* if an error happened, deallocate and punt */
984 if (error != 0) {
985 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
986 }
987 return error;
988 }
989
990 static void
991 execve_free_data(struct execve_data *data)
992 {
993 struct exec_package * const epp = &data->ed_pack;
994
995 /* free the vmspace-creation commands, and release their references */
996 kill_vmcmds(&epp->ep_vmcmds);
997 /* kill any opened file descriptor, if necessary */
998 if (epp->ep_flags & EXEC_HASFD) {
999 epp->ep_flags &= ~EXEC_HASFD;
1000 fd_close(epp->ep_fd);
1001 }
1002
1003 /* close and put the exec'd file */
1004 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1005 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1006 vput(epp->ep_vp);
1007 pool_put(&exec_pool, data->ed_argp);
1008
1009 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1010 if (epp->ep_emul_root != NULL)
1011 vrele(epp->ep_emul_root);
1012 if (epp->ep_interp != NULL)
1013 vrele(epp->ep_interp);
1014
1015 exec_path_free(data);
1016 }
1017
1018 static void
1019 pathexec(struct proc *p, const char *resolvedname)
1020 {
1021 /* set command name & other accounting info */
1022 const char *cmdname;
1023
1024 if (resolvedname == NULL) {
1025 cmdname = "*fexecve*";
1026 resolvedname = "/";
1027 } else {
1028 cmdname = strrchr(resolvedname, '/') + 1;
1029 }
1030 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1031 resolvedname);
1032
1033 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1034
1035 kmem_strfree(p->p_path);
1036 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1037 }
1038
1039 /* XXX elsewhere */
1040 static int
1041 credexec(struct lwp *l, struct vattr *attr)
1042 {
1043 struct proc *p = l->l_proc;
1044 int error;
1045
1046 /*
1047 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1048 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1049 * out additional references on the process for the moment.
1050 */
1051 if ((p->p_slflag & PSL_TRACED) == 0 &&
1052
1053 (((attr->va_mode & S_ISUID) != 0 &&
1054 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1055
1056 ((attr->va_mode & S_ISGID) != 0 &&
1057 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1058 /*
1059 * Mark the process as SUGID before we do
1060 * anything that might block.
1061 */
1062 proc_crmod_enter();
1063 proc_crmod_leave(NULL, NULL, true);
1064
1065 /* Make sure file descriptors 0..2 are in use. */
1066 if ((error = fd_checkstd()) != 0) {
1067 DPRINTF(("%s: fdcheckstd failed %d\n",
1068 __func__, error));
1069 return error;
1070 }
1071
1072 /*
1073 * Copy the credential so other references don't see our
1074 * changes.
1075 */
1076 l->l_cred = kauth_cred_copy(l->l_cred);
1077 #ifdef KTRACE
1078 /*
1079 * If the persistent trace flag isn't set, turn off.
1080 */
1081 if (p->p_tracep) {
1082 mutex_enter(&ktrace_lock);
1083 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1084 ktrderef(p);
1085 mutex_exit(&ktrace_lock);
1086 }
1087 #endif
1088 if (attr->va_mode & S_ISUID)
1089 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1090 if (attr->va_mode & S_ISGID)
1091 kauth_cred_setegid(l->l_cred, attr->va_gid);
1092 } else {
1093 if (kauth_cred_geteuid(l->l_cred) ==
1094 kauth_cred_getuid(l->l_cred) &&
1095 kauth_cred_getegid(l->l_cred) ==
1096 kauth_cred_getgid(l->l_cred))
1097 p->p_flag &= ~PK_SUGID;
1098 }
1099
1100 /*
1101 * Copy the credential so other references don't see our changes.
1102 * Test to see if this is necessary first, since in the common case
1103 * we won't need a private reference.
1104 */
1105 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1106 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1107 l->l_cred = kauth_cred_copy(l->l_cred);
1108 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1109 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1110 }
1111
1112 /* Update the master credentials. */
1113 if (l->l_cred != p->p_cred) {
1114 kauth_cred_t ocred;
1115
1116 kauth_cred_hold(l->l_cred);
1117 mutex_enter(p->p_lock);
1118 ocred = p->p_cred;
1119 p->p_cred = l->l_cred;
1120 mutex_exit(p->p_lock);
1121 kauth_cred_free(ocred);
1122 }
1123
1124 return 0;
1125 }
1126
1127 static void
1128 emulexec(struct lwp *l, struct exec_package *epp)
1129 {
1130 struct proc *p = l->l_proc;
1131
1132 /* The emulation root will usually have been found when we looked
1133 * for the elf interpreter (or similar), if not look now. */
1134 if (epp->ep_esch->es_emul->e_path != NULL &&
1135 epp->ep_emul_root == NULL)
1136 emul_find_root(l, epp);
1137
1138 /* Any old emulation root got removed by fdcloseexec */
1139 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1140 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1141 rw_exit(&p->p_cwdi->cwdi_lock);
1142 epp->ep_emul_root = NULL;
1143 if (epp->ep_interp != NULL)
1144 vrele(epp->ep_interp);
1145
1146 /*
1147 * Call emulation specific exec hook. This can setup per-process
1148 * p->p_emuldata or do any other per-process stuff an emulation needs.
1149 *
1150 * If we are executing process of different emulation than the
1151 * original forked process, call e_proc_exit() of the old emulation
1152 * first, then e_proc_exec() of new emulation. If the emulation is
1153 * same, the exec hook code should deallocate any old emulation
1154 * resources held previously by this process.
1155 */
1156 if (p->p_emul && p->p_emul->e_proc_exit
1157 && p->p_emul != epp->ep_esch->es_emul)
1158 (*p->p_emul->e_proc_exit)(p);
1159
1160 /*
1161 * Call exec hook. Emulation code may NOT store reference to anything
1162 * from &pack.
1163 */
1164 if (epp->ep_esch->es_emul->e_proc_exec)
1165 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1166
1167 /* update p_emul, the old value is no longer needed */
1168 p->p_emul = epp->ep_esch->es_emul;
1169
1170 /* ...and the same for p_execsw */
1171 p->p_execsw = epp->ep_esch;
1172
1173 #ifdef __HAVE_SYSCALL_INTERN
1174 (*p->p_emul->e_syscall_intern)(p);
1175 #endif
1176 ktremul();
1177 }
1178
1179 static int
1180 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1181 bool no_local_exec_lock, bool is_spawn)
1182 {
1183 struct exec_package * const epp = &data->ed_pack;
1184 int error = 0;
1185 struct proc *p;
1186 struct vmspace *vm;
1187
1188 /*
1189 * In case of a posix_spawn operation, the child doing the exec
1190 * might not hold the reader lock on exec_lock, but the parent
1191 * will do this instead.
1192 */
1193 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1194 KASSERT(!no_local_exec_lock || is_spawn);
1195 KASSERT(data != NULL);
1196
1197 p = l->l_proc;
1198
1199 /* Get rid of other LWPs. */
1200 if (p->p_nlwps > 1) {
1201 mutex_enter(p->p_lock);
1202 exit_lwps(l);
1203 mutex_exit(p->p_lock);
1204 }
1205 KDASSERT(p->p_nlwps == 1);
1206
1207 /* Destroy any lwpctl info. */
1208 if (p->p_lwpctl != NULL)
1209 lwp_ctl_exit();
1210
1211 /* Remove POSIX timers */
1212 ptimers_free(p, TIMERS_POSIX);
1213
1214 /* Set the PaX flags. */
1215 pax_set_flags(epp, p);
1216
1217 /*
1218 * Do whatever is necessary to prepare the address space
1219 * for remapping. Note that this might replace the current
1220 * vmspace with another!
1221 *
1222 * vfork(): do not touch any user space data in the new child
1223 * until we have awoken the parent below, or it will defeat
1224 * lazy pmap switching (on x86).
1225 */
1226 if (is_spawn)
1227 uvmspace_spawn(l, epp->ep_vm_minaddr,
1228 epp->ep_vm_maxaddr,
1229 epp->ep_flags & EXEC_TOPDOWN_VM);
1230 else
1231 uvmspace_exec(l, epp->ep_vm_minaddr,
1232 epp->ep_vm_maxaddr,
1233 epp->ep_flags & EXEC_TOPDOWN_VM);
1234 vm = p->p_vmspace;
1235
1236 vm->vm_taddr = (void *)epp->ep_taddr;
1237 vm->vm_tsize = btoc(epp->ep_tsize);
1238 vm->vm_daddr = (void*)epp->ep_daddr;
1239 vm->vm_dsize = btoc(epp->ep_dsize);
1240 vm->vm_ssize = btoc(epp->ep_ssize);
1241 vm->vm_issize = 0;
1242 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1243 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1244
1245 pax_aslr_init_vm(l, vm, epp);
1246
1247 cwdexec(p);
1248 fd_closeexec(); /* handle close on exec */
1249
1250 if (__predict_false(ktrace_on))
1251 fd_ktrexecfd();
1252
1253 execsigs(p); /* reset caught signals */
1254
1255 mutex_enter(p->p_lock);
1256 l->l_ctxlink = NULL; /* reset ucontext link */
1257 p->p_acflag &= ~AFORK;
1258 p->p_flag |= PK_EXEC;
1259 mutex_exit(p->p_lock);
1260
1261 error = credexec(l, &data->ed_attr);
1262 if (error)
1263 goto exec_abort;
1264
1265 #if defined(__HAVE_RAS)
1266 /*
1267 * Remove all RASs from the address space.
1268 */
1269 ras_purgeall();
1270 #endif
1271
1272 /*
1273 * Stop profiling.
1274 */
1275 if ((p->p_stflag & PST_PROFIL) != 0) {
1276 mutex_spin_enter(&p->p_stmutex);
1277 stopprofclock(p);
1278 mutex_spin_exit(&p->p_stmutex);
1279 }
1280
1281 /*
1282 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1283 * exited and exec()/exit() are the only places it will be cleared.
1284 *
1285 * Once the parent has been awoken, curlwp may teleport to a new CPU
1286 * in sched_vforkexec(), and it's then OK to start messing with user
1287 * data. See comment above.
1288 */
1289 if ((p->p_lflag & PL_PPWAIT) != 0) {
1290 bool samecpu;
1291 lwp_t *lp;
1292
1293 mutex_enter(&proc_lock);
1294 lp = p->p_vforklwp;
1295 p->p_vforklwp = NULL;
1296 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1297 cv_broadcast(&lp->l_waitcv);
1298
1299 /* Clear flags after cv_broadcast() (scheduler needs them). */
1300 p->p_lflag &= ~PL_PPWAIT;
1301 lp->l_vforkwaiting = false;
1302
1303 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1304 samecpu = (lp->l_cpu == curlwp->l_cpu);
1305 mutex_exit(&proc_lock);
1306
1307 /* Give the parent its CPU back - find a new home. */
1308 KASSERT(!is_spawn);
1309 sched_vforkexec(l, samecpu);
1310 }
1311
1312 /* Now map address space. */
1313 error = execve_dovmcmds(l, data);
1314 if (error != 0)
1315 goto exec_abort;
1316
1317 pathexec(p, epp->ep_resolvedname);
1318
1319 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1320
1321 error = copyoutargs(data, l, newstack);
1322 if (error != 0)
1323 goto exec_abort;
1324
1325 doexechooks(p);
1326
1327 /*
1328 * Set initial SP at the top of the stack.
1329 *
1330 * Note that on machines where stack grows up (e.g. hppa), SP points to
1331 * the end of arg/env strings. Userland guesses the address of argc
1332 * via ps_strings::ps_argvstr.
1333 */
1334
1335 /* Setup new registers and do misc. setup. */
1336 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1337 if (epp->ep_esch->es_setregs)
1338 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1339
1340 /* Provide a consistent LWP private setting */
1341 (void)lwp_setprivate(l, NULL);
1342
1343 /* Discard all PCU state; need to start fresh */
1344 pcu_discard_all(l);
1345
1346 /* map the process's signal trampoline code */
1347 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1348 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1349 goto exec_abort;
1350 }
1351
1352 pool_put(&exec_pool, data->ed_argp);
1353
1354 /* notify others that we exec'd */
1355 KNOTE(&p->p_klist, NOTE_EXEC);
1356
1357 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1358
1359 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1360
1361 emulexec(l, epp);
1362
1363 /* Allow new references from the debugger/procfs. */
1364 rw_exit(&p->p_reflock);
1365 if (!no_local_exec_lock)
1366 rw_exit(&exec_lock);
1367
1368 mutex_enter(&proc_lock);
1369
1370 /* posix_spawn(3) reports a single event with implied exec(3) */
1371 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1372 mutex_enter(p->p_lock);
1373 eventswitch(TRAP_EXEC, 0, 0);
1374 mutex_enter(&proc_lock);
1375 }
1376
1377 if (p->p_sflag & PS_STOPEXEC) {
1378 ksiginfoq_t kq;
1379
1380 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1381 p->p_pptr->p_nstopchild++;
1382 p->p_waited = 0;
1383 mutex_enter(p->p_lock);
1384 ksiginfo_queue_init(&kq);
1385 sigclearall(p, &contsigmask, &kq);
1386 lwp_lock(l);
1387 l->l_stat = LSSTOP;
1388 p->p_stat = SSTOP;
1389 p->p_nrlwps--;
1390 lwp_unlock(l);
1391 mutex_exit(p->p_lock);
1392 mutex_exit(&proc_lock);
1393 lwp_lock(l);
1394 spc_lock(l->l_cpu);
1395 mi_switch(l);
1396 ksiginfo_queue_drain(&kq);
1397 } else {
1398 mutex_exit(&proc_lock);
1399 }
1400
1401 exec_path_free(data);
1402 #ifdef TRACE_EXEC
1403 DPRINTF(("%s finished\n", __func__));
1404 #endif
1405 return EJUSTRETURN;
1406
1407 exec_abort:
1408 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1409 rw_exit(&p->p_reflock);
1410 if (!no_local_exec_lock)
1411 rw_exit(&exec_lock);
1412
1413 exec_path_free(data);
1414
1415 /*
1416 * the old process doesn't exist anymore. exit gracefully.
1417 * get rid of the (new) address space we have created, if any, get rid
1418 * of our namei data and vnode, and exit noting failure
1419 */
1420 if (vm != NULL) {
1421 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1422 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1423 }
1424
1425 exec_free_emul_arg(epp);
1426 pool_put(&exec_pool, data->ed_argp);
1427 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1428 if (epp->ep_emul_root != NULL)
1429 vrele(epp->ep_emul_root);
1430 if (epp->ep_interp != NULL)
1431 vrele(epp->ep_interp);
1432
1433 /* Acquire the sched-state mutex (exit1() will release it). */
1434 if (!is_spawn) {
1435 mutex_enter(p->p_lock);
1436 exit1(l, error, SIGABRT);
1437 }
1438
1439 return error;
1440 }
1441
1442 int
1443 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1444 char * const *args, char * const *envs,
1445 execve_fetch_element_t fetch_element)
1446 {
1447 struct execve_data data;
1448 int error;
1449
1450 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1451 &data);
1452 if (error)
1453 return error;
1454 error = execve_runproc(l, &data, false, false);
1455 return error;
1456 }
1457
1458 static size_t
1459 fromptrsz(const struct exec_package *epp)
1460 {
1461 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1462 }
1463
1464 static size_t
1465 ptrsz(const struct exec_package *epp)
1466 {
1467 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1468 }
1469
1470 static size_t
1471 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1472 {
1473 struct exec_package * const epp = &data->ed_pack;
1474
1475 const size_t nargenvptrs =
1476 1 + /* long argc */
1477 data->ed_argc + /* char *argv[] */
1478 1 + /* \0 */
1479 data->ed_envc + /* char *env[] */
1480 1; /* \0 */
1481
1482 return (nargenvptrs * ptrsz(epp)) /* pointers */
1483 + argenvstrlen /* strings */
1484 + epp->ep_esch->es_arglen; /* auxinfo */
1485 }
1486
1487 static size_t
1488 calcstack(struct execve_data * restrict data, const size_t gaplen)
1489 {
1490 struct exec_package * const epp = &data->ed_pack;
1491
1492 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1493 epp->ep_esch->es_emul->e_sigcode;
1494
1495 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1496 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1497
1498 const size_t sigcode_psstr_sz =
1499 data->ed_szsigcode + /* sigcode */
1500 data->ed_ps_strings_sz + /* ps_strings */
1501 STACK_PTHREADSPACE; /* pthread space */
1502
1503 const size_t stacklen =
1504 data->ed_argslen +
1505 gaplen +
1506 sigcode_psstr_sz;
1507
1508 /* make the stack "safely" aligned */
1509 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1510 }
1511
1512 static int
1513 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1514 char * const newstack)
1515 {
1516 struct exec_package * const epp = &data->ed_pack;
1517 struct proc *p = l->l_proc;
1518 int error;
1519
1520 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1521
1522 /* remember information about the process */
1523 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1524 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1525
1526 /*
1527 * Allocate the stack address passed to the newly execve()'ed process.
1528 *
1529 * The new stack address will be set to the SP (stack pointer) register
1530 * in setregs().
1531 */
1532
1533 char *newargs = STACK_ALLOC(
1534 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1535
1536 error = (*epp->ep_esch->es_copyargs)(l, epp,
1537 &data->ed_arginfo, &newargs, data->ed_argp);
1538
1539 if (error) {
1540 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1541 return error;
1542 }
1543
1544 error = copyoutpsstrs(data, p);
1545 if (error != 0)
1546 return error;
1547
1548 return 0;
1549 }
1550
1551 static int
1552 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1553 {
1554 struct exec_package * const epp = &data->ed_pack;
1555 struct ps_strings32 arginfo32;
1556 void *aip;
1557 int error;
1558
1559 /* fill process ps_strings info */
1560 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1561 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1562
1563 if (epp->ep_flags & EXEC_32) {
1564 aip = &arginfo32;
1565 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1566 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1567 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1568 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1569 } else
1570 aip = &data->ed_arginfo;
1571
1572 /* copy out the process's ps_strings structure */
1573 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1574 != 0) {
1575 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1576 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1577 return error;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int
1584 copyinargs(struct execve_data * restrict data, char * const *args,
1585 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1586 {
1587 struct exec_package * const epp = &data->ed_pack;
1588 char *dp;
1589 size_t i;
1590 int error;
1591
1592 dp = *dpp;
1593
1594 data->ed_argc = 0;
1595
1596 /* copy the fake args list, if there's one, freeing it as we go */
1597 if (epp->ep_flags & EXEC_HASARGL) {
1598 struct exec_fakearg *fa = epp->ep_fa;
1599
1600 while (fa->fa_arg != NULL) {
1601 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1602 size_t len;
1603
1604 len = strlcpy(dp, fa->fa_arg, maxlen);
1605 /* Count NUL into len. */
1606 if (len < maxlen)
1607 len++;
1608 else {
1609 while (fa->fa_arg != NULL) {
1610 kmem_free(fa->fa_arg, fa->fa_len);
1611 fa++;
1612 }
1613 kmem_free(epp->ep_fa, epp->ep_fa_len);
1614 epp->ep_flags &= ~EXEC_HASARGL;
1615 return E2BIG;
1616 }
1617 ktrexecarg(fa->fa_arg, len - 1);
1618 dp += len;
1619
1620 kmem_free(fa->fa_arg, fa->fa_len);
1621 fa++;
1622 data->ed_argc++;
1623 }
1624 kmem_free(epp->ep_fa, epp->ep_fa_len);
1625 epp->ep_flags &= ~EXEC_HASARGL;
1626 }
1627
1628 /*
1629 * Read and count argument strings from user.
1630 */
1631
1632 if (args == NULL) {
1633 DPRINTF(("%s: null args\n", __func__));
1634 return EINVAL;
1635 }
1636 if (epp->ep_flags & EXEC_SKIPARG)
1637 args = (const void *)((const char *)args + fromptrsz(epp));
1638 i = 0;
1639 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1640 if (error != 0) {
1641 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1642 return error;
1643 }
1644 data->ed_argc += i;
1645
1646 /*
1647 * Read and count environment strings from user.
1648 */
1649
1650 data->ed_envc = 0;
1651 /* environment need not be there */
1652 if (envs == NULL)
1653 goto done;
1654 i = 0;
1655 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1656 if (error != 0) {
1657 DPRINTF(("%s: copyin env %d\n", __func__, error));
1658 return error;
1659 }
1660 data->ed_envc += i;
1661
1662 done:
1663 *dpp = dp;
1664
1665 return 0;
1666 }
1667
1668 static int
1669 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1670 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1671 void (*ktr)(const void *, size_t))
1672 {
1673 char *dp, *sp;
1674 size_t i;
1675 int error;
1676
1677 dp = *dpp;
1678
1679 i = 0;
1680 while (1) {
1681 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1682 size_t len;
1683
1684 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1685 return error;
1686 }
1687 if (!sp)
1688 break;
1689 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1690 if (error == ENAMETOOLONG)
1691 error = E2BIG;
1692 return error;
1693 }
1694 if (__predict_false(ktrace_on))
1695 (*ktr)(dp, len - 1);
1696 dp += len;
1697 i++;
1698 }
1699
1700 *dpp = dp;
1701 *ip = i;
1702
1703 return 0;
1704 }
1705
1706 /*
1707 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1708 * Those strings are located just after auxinfo.
1709 */
1710 int
1711 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1712 char **stackp, void *argp)
1713 {
1714 char **cpp, *dp, *sp;
1715 size_t len;
1716 void *nullp;
1717 long argc, envc;
1718 int error;
1719
1720 cpp = (char **)*stackp;
1721 nullp = NULL;
1722 argc = arginfo->ps_nargvstr;
1723 envc = arginfo->ps_nenvstr;
1724
1725 /* argc on stack is long */
1726 CTASSERT(sizeof(*cpp) == sizeof(argc));
1727
1728 dp = (char *)(cpp +
1729 1 + /* long argc */
1730 argc + /* char *argv[] */
1731 1 + /* \0 */
1732 envc + /* char *env[] */
1733 1) + /* \0 */
1734 pack->ep_esch->es_arglen; /* auxinfo */
1735 sp = argp;
1736
1737 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1738 COPYPRINTF("", cpp - 1, sizeof(argc));
1739 return error;
1740 }
1741
1742 /* XXX don't copy them out, remap them! */
1743 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1744
1745 for (; --argc >= 0; sp += len, dp += len) {
1746 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1747 COPYPRINTF("", cpp - 1, sizeof(dp));
1748 return error;
1749 }
1750 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1751 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1752 return error;
1753 }
1754 }
1755
1756 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1757 COPYPRINTF("", cpp - 1, sizeof(nullp));
1758 return error;
1759 }
1760
1761 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1762
1763 for (; --envc >= 0; sp += len, dp += len) {
1764 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1765 COPYPRINTF("", cpp - 1, sizeof(dp));
1766 return error;
1767 }
1768 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1769 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1770 return error;
1771 }
1772
1773 }
1774
1775 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1776 COPYPRINTF("", cpp - 1, sizeof(nullp));
1777 return error;
1778 }
1779
1780 *stackp = (char *)cpp;
1781 return 0;
1782 }
1783
1784
1785 /*
1786 * Add execsw[] entries.
1787 */
1788 int
1789 exec_add(struct execsw *esp, int count)
1790 {
1791 struct exec_entry *it;
1792 int i;
1793
1794 if (count == 0) {
1795 return 0;
1796 }
1797
1798 /* Check for duplicates. */
1799 rw_enter(&exec_lock, RW_WRITER);
1800 for (i = 0; i < count; i++) {
1801 LIST_FOREACH(it, &ex_head, ex_list) {
1802 /* assume unique (makecmds, probe_func, emulation) */
1803 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1804 it->ex_sw->u.elf_probe_func ==
1805 esp[i].u.elf_probe_func &&
1806 it->ex_sw->es_emul == esp[i].es_emul) {
1807 rw_exit(&exec_lock);
1808 return EEXIST;
1809 }
1810 }
1811 }
1812
1813 /* Allocate new entries. */
1814 for (i = 0; i < count; i++) {
1815 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1816 it->ex_sw = &esp[i];
1817 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1818 }
1819
1820 /* update execsw[] */
1821 exec_init(0);
1822 rw_exit(&exec_lock);
1823 return 0;
1824 }
1825
1826 /*
1827 * Remove execsw[] entry.
1828 */
1829 int
1830 exec_remove(struct execsw *esp, int count)
1831 {
1832 struct exec_entry *it, *next;
1833 int i;
1834 const struct proclist_desc *pd;
1835 proc_t *p;
1836
1837 if (count == 0) {
1838 return 0;
1839 }
1840
1841 /* Abort if any are busy. */
1842 rw_enter(&exec_lock, RW_WRITER);
1843 for (i = 0; i < count; i++) {
1844 mutex_enter(&proc_lock);
1845 for (pd = proclists; pd->pd_list != NULL; pd++) {
1846 PROCLIST_FOREACH(p, pd->pd_list) {
1847 if (p->p_execsw == &esp[i]) {
1848 mutex_exit(&proc_lock);
1849 rw_exit(&exec_lock);
1850 return EBUSY;
1851 }
1852 }
1853 }
1854 mutex_exit(&proc_lock);
1855 }
1856
1857 /* None are busy, so remove them all. */
1858 for (i = 0; i < count; i++) {
1859 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1860 next = LIST_NEXT(it, ex_list);
1861 if (it->ex_sw == &esp[i]) {
1862 LIST_REMOVE(it, ex_list);
1863 kmem_free(it, sizeof(*it));
1864 break;
1865 }
1866 }
1867 }
1868
1869 /* update execsw[] */
1870 exec_init(0);
1871 rw_exit(&exec_lock);
1872 return 0;
1873 }
1874
1875 /*
1876 * Initialize exec structures. If init_boot is true, also does necessary
1877 * one-time initialization (it's called from main() that way).
1878 * Once system is multiuser, this should be called with exec_lock held,
1879 * i.e. via exec_{add|remove}().
1880 */
1881 int
1882 exec_init(int init_boot)
1883 {
1884 const struct execsw **sw;
1885 struct exec_entry *ex;
1886 SLIST_HEAD(,exec_entry) first;
1887 SLIST_HEAD(,exec_entry) any;
1888 SLIST_HEAD(,exec_entry) last;
1889 int i, sz;
1890
1891 if (init_boot) {
1892 /* do one-time initializations */
1893 vaddr_t vmin = 0, vmax;
1894
1895 rw_init(&exec_lock);
1896 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1897 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1898 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1899 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1900 "execargs", &exec_palloc, IPL_NONE);
1901 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1902 } else {
1903 KASSERT(rw_write_held(&exec_lock));
1904 }
1905
1906 /* Sort each entry onto the appropriate queue. */
1907 SLIST_INIT(&first);
1908 SLIST_INIT(&any);
1909 SLIST_INIT(&last);
1910 sz = 0;
1911 LIST_FOREACH(ex, &ex_head, ex_list) {
1912 switch(ex->ex_sw->es_prio) {
1913 case EXECSW_PRIO_FIRST:
1914 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1915 break;
1916 case EXECSW_PRIO_ANY:
1917 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1918 break;
1919 case EXECSW_PRIO_LAST:
1920 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1921 break;
1922 default:
1923 panic("%s", __func__);
1924 break;
1925 }
1926 sz++;
1927 }
1928
1929 /*
1930 * Create new execsw[]. Ensure we do not try a zero-sized
1931 * allocation.
1932 */
1933 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1934 i = 0;
1935 SLIST_FOREACH(ex, &first, ex_slist) {
1936 sw[i++] = ex->ex_sw;
1937 }
1938 SLIST_FOREACH(ex, &any, ex_slist) {
1939 sw[i++] = ex->ex_sw;
1940 }
1941 SLIST_FOREACH(ex, &last, ex_slist) {
1942 sw[i++] = ex->ex_sw;
1943 }
1944
1945 /* Replace old execsw[] and free used memory. */
1946 if (execsw != NULL) {
1947 kmem_free(__UNCONST(execsw),
1948 nexecs * sizeof(struct execsw *) + 1);
1949 }
1950 execsw = sw;
1951 nexecs = sz;
1952
1953 /* Figure out the maximum size of an exec header. */
1954 exec_maxhdrsz = sizeof(int);
1955 for (i = 0; i < nexecs; i++) {
1956 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1957 exec_maxhdrsz = execsw[i]->es_hdrsz;
1958 }
1959
1960 return 0;
1961 }
1962
1963 static int
1964 exec_sigcode_map(struct proc *p, const struct emul *e)
1965 {
1966 vaddr_t va;
1967 vsize_t sz;
1968 int error;
1969 struct uvm_object *uobj;
1970
1971 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1972
1973 if (e->e_sigobject == NULL || sz == 0) {
1974 return 0;
1975 }
1976
1977 /*
1978 * If we don't have a sigobject for this emulation, create one.
1979 *
1980 * sigobject is an anonymous memory object (just like SYSV shared
1981 * memory) that we keep a permanent reference to and that we map
1982 * in all processes that need this sigcode. The creation is simple,
1983 * we create an object, add a permanent reference to it, map it in
1984 * kernel space, copy out the sigcode to it and unmap it.
1985 * We map it with PROT_READ|PROT_EXEC into the process just
1986 * the way sys_mmap() would map it.
1987 */
1988
1989 uobj = *e->e_sigobject;
1990 if (uobj == NULL) {
1991 mutex_enter(&sigobject_lock);
1992 if ((uobj = *e->e_sigobject) == NULL) {
1993 uobj = uao_create(sz, 0);
1994 (*uobj->pgops->pgo_reference)(uobj);
1995 va = vm_map_min(kernel_map);
1996 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1997 uobj, 0, 0,
1998 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1999 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
2000 printf("kernel mapping failed %d\n", error);
2001 (*uobj->pgops->pgo_detach)(uobj);
2002 mutex_exit(&sigobject_lock);
2003 return error;
2004 }
2005 memcpy((void *)va, e->e_sigcode, sz);
2006 #ifdef PMAP_NEED_PROCWR
2007 pmap_procwr(&proc0, va, sz);
2008 #endif
2009 uvm_unmap(kernel_map, va, va + round_page(sz));
2010 *e->e_sigobject = uobj;
2011 }
2012 mutex_exit(&sigobject_lock);
2013 }
2014
2015 /* Just a hint to uvm_map where to put it. */
2016 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2017 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2018
2019 #ifdef __alpha__
2020 /*
2021 * Tru64 puts /sbin/loader at the end of user virtual memory,
2022 * which causes the above calculation to put the sigcode at
2023 * an invalid address. Put it just below the text instead.
2024 */
2025 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2026 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2027 }
2028 #endif
2029
2030 (*uobj->pgops->pgo_reference)(uobj);
2031 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2032 uobj, 0, 0,
2033 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2034 UVM_ADV_RANDOM, 0));
2035 if (error) {
2036 DPRINTF(("%s, %d: map %p "
2037 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2038 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2039 va, error));
2040 (*uobj->pgops->pgo_detach)(uobj);
2041 return error;
2042 }
2043 p->p_sigctx.ps_sigcode = (void *)va;
2044 return 0;
2045 }
2046
2047 /*
2048 * Release a refcount on spawn_exec_data and destroy memory, if this
2049 * was the last one.
2050 */
2051 static void
2052 spawn_exec_data_release(struct spawn_exec_data *data)
2053 {
2054 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2055 return;
2056
2057 cv_destroy(&data->sed_cv_child_ready);
2058 mutex_destroy(&data->sed_mtx_child);
2059
2060 if (data->sed_actions)
2061 posix_spawn_fa_free(data->sed_actions,
2062 data->sed_actions->len);
2063 if (data->sed_attrs)
2064 kmem_free(data->sed_attrs,
2065 sizeof(*data->sed_attrs));
2066 kmem_free(data, sizeof(*data));
2067 }
2068
2069 static int
2070 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2071 {
2072 struct lwp *l = curlwp;
2073 register_t retval;
2074 int error, newfd;
2075
2076 if (actions == NULL)
2077 return 0;
2078
2079 for (size_t i = 0; i < actions->len; i++) {
2080 const struct posix_spawn_file_actions_entry *fae =
2081 &actions->fae[i];
2082 switch (fae->fae_action) {
2083 case FAE_OPEN:
2084 if (fd_getfile(fae->fae_fildes) != NULL) {
2085 error = fd_close(fae->fae_fildes);
2086 if (error)
2087 return error;
2088 }
2089 error = fd_open(fae->fae_path, fae->fae_oflag,
2090 fae->fae_mode, &newfd);
2091 if (error)
2092 return error;
2093 if (newfd != fae->fae_fildes) {
2094 error = dodup(l, newfd,
2095 fae->fae_fildes, 0, &retval);
2096 if (fd_getfile(newfd) != NULL)
2097 fd_close(newfd);
2098 }
2099 break;
2100 case FAE_DUP2:
2101 error = dodup(l, fae->fae_fildes,
2102 fae->fae_newfildes, 0, &retval);
2103 break;
2104 case FAE_CLOSE:
2105 if (fd_getfile(fae->fae_fildes) == NULL) {
2106 return EBADF;
2107 }
2108 error = fd_close(fae->fae_fildes);
2109 break;
2110 }
2111 if (error)
2112 return error;
2113 }
2114 return 0;
2115 }
2116
2117 static int
2118 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2119 {
2120 struct sigaction sigact;
2121 int error;
2122 struct proc *p = curproc;
2123 struct lwp *l = curlwp;
2124
2125 if (attrs == NULL)
2126 return 0;
2127
2128 memset(&sigact, 0, sizeof(sigact));
2129 sigact._sa_u._sa_handler = SIG_DFL;
2130 sigact.sa_flags = 0;
2131
2132 /*
2133 * set state to SSTOP so that this proc can be found by pid.
2134 * see proc_enterprp, do_sched_setparam below
2135 */
2136 mutex_enter(&proc_lock);
2137 /*
2138 * p_stat should be SACTIVE, so we need to adjust the
2139 * parent's p_nstopchild here. For safety, just make
2140 * we're on the good side of SDEAD before we adjust.
2141 */
2142 int ostat = p->p_stat;
2143 KASSERT(ostat < SSTOP);
2144 p->p_stat = SSTOP;
2145 p->p_waited = 0;
2146 p->p_pptr->p_nstopchild++;
2147 mutex_exit(&proc_lock);
2148
2149 /* Set process group */
2150 if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2151 pid_t mypid = p->p_pid;
2152 pid_t pgrp = attrs->sa_pgroup;
2153
2154 if (pgrp == 0)
2155 pgrp = mypid;
2156
2157 error = proc_enterpgrp(parent, mypid, pgrp, false);
2158 if (error)
2159 goto out;
2160 }
2161
2162 /* Set scheduler policy */
2163 if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2164 error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2165 &attrs->sa_schedparam);
2166 else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2167 error = do_sched_setparam(parent->p_pid, 0,
2168 SCHED_NONE, &attrs->sa_schedparam);
2169 }
2170 if (error)
2171 goto out;
2172
2173 /* Reset user ID's */
2174 if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2175 error = do_setresuid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2176 ID_E_EQ_R | ID_E_EQ_S);
2177 if (error)
2178 return error;
2179 error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2180 ID_E_EQ_R | ID_E_EQ_S);
2181 if (error)
2182 goto out;
2183 }
2184
2185 /* Set signal masks/defaults */
2186 if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2187 mutex_enter(p->p_lock);
2188 error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2189 mutex_exit(p->p_lock);
2190 if (error)
2191 goto out;
2192 }
2193
2194 if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2195 /*
2196 * The following sigaction call is using a sigaction
2197 * version 0 trampoline which is in the compatibility
2198 * code only. This is not a problem because for SIG_DFL
2199 * and SIG_IGN, the trampolines are now ignored. If they
2200 * were not, this would be a problem because we are
2201 * holding the exec_lock, and the compat code needs
2202 * to do the same in order to replace the trampoline
2203 * code of the process.
2204 */
2205 for (int i = 1; i <= NSIG; i++) {
2206 if (sigismember(&attrs->sa_sigdefault, i))
2207 sigaction1(l, i, &sigact, NULL, NULL, 0);
2208 }
2209 }
2210 error = 0;
2211 out:
2212 mutex_enter(&proc_lock);
2213 p->p_stat = ostat;
2214 p->p_pptr->p_nstopchild--;
2215 mutex_exit(&proc_lock);
2216 return error;
2217 }
2218
2219 /*
2220 * A child lwp of a posix_spawn operation starts here and ends up in
2221 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2222 * manipulations in between.
2223 * The parent waits for the child, as it is not clear whether the child
2224 * will be able to acquire its own exec_lock. If it can, the parent can
2225 * be released early and continue running in parallel. If not (or if the
2226 * magic debug flag is passed in the scheduler attribute struct), the
2227 * child rides on the parent's exec lock until it is ready to return to
2228 * to userland - and only then releases the parent. This method loses
2229 * concurrency, but improves error reporting.
2230 */
2231 static void
2232 spawn_return(void *arg)
2233 {
2234 struct spawn_exec_data *spawn_data = arg;
2235 struct lwp *l = curlwp;
2236 struct proc *p = l->l_proc;
2237 int error;
2238 bool have_reflock;
2239 bool parent_is_waiting = true;
2240
2241 /*
2242 * Check if we can release parent early.
2243 * We either need to have no sed_attrs, or sed_attrs does not
2244 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2245 * safe access to the parent proc (passed in sed_parent).
2246 * We then try to get the exec_lock, and only if that works, we can
2247 * release the parent here already.
2248 */
2249 struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2250 if ((!attrs || (attrs->sa_flags
2251 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2252 && rw_tryenter(&exec_lock, RW_READER)) {
2253 parent_is_waiting = false;
2254 mutex_enter(&spawn_data->sed_mtx_child);
2255 cv_signal(&spawn_data->sed_cv_child_ready);
2256 mutex_exit(&spawn_data->sed_mtx_child);
2257 }
2258
2259 /* don't allow debugger access yet */
2260 rw_enter(&p->p_reflock, RW_WRITER);
2261 have_reflock = true;
2262
2263 /* handle posix_spawn_file_actions */
2264 error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2265 if (error)
2266 goto report_error;
2267
2268 /* handle posix_spawnattr */
2269 error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2270 if (error)
2271 goto report_error;
2272
2273 /* now do the real exec */
2274 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2275 true);
2276 have_reflock = false;
2277 if (error == EJUSTRETURN)
2278 error = 0;
2279 else if (error)
2280 goto report_error;
2281
2282 if (parent_is_waiting) {
2283 mutex_enter(&spawn_data->sed_mtx_child);
2284 cv_signal(&spawn_data->sed_cv_child_ready);
2285 mutex_exit(&spawn_data->sed_mtx_child);
2286 }
2287
2288 /* release our refcount on the data */
2289 spawn_exec_data_release(spawn_data);
2290
2291 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2292 (PSL_TRACED|PSL_TRACEDCHILD)) {
2293 eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2294 }
2295
2296 /* and finally: leave to userland for the first time */
2297 cpu_spawn_return(l);
2298
2299 /* NOTREACHED */
2300 return;
2301
2302 report_error:
2303 if (have_reflock) {
2304 /*
2305 * We have not passed through execve_runproc(),
2306 * which would have released the p_reflock and also
2307 * taken ownership of the sed_exec part of spawn_data,
2308 * so release/free both here.
2309 */
2310 rw_exit(&p->p_reflock);
2311 execve_free_data(&spawn_data->sed_exec);
2312 }
2313
2314 if (parent_is_waiting) {
2315 /* pass error to parent */
2316 mutex_enter(&spawn_data->sed_mtx_child);
2317 spawn_data->sed_error = error;
2318 cv_signal(&spawn_data->sed_cv_child_ready);
2319 mutex_exit(&spawn_data->sed_mtx_child);
2320 } else {
2321 rw_exit(&exec_lock);
2322 }
2323
2324 /* release our refcount on the data */
2325 spawn_exec_data_release(spawn_data);
2326
2327 /* done, exit */
2328 mutex_enter(p->p_lock);
2329 /*
2330 * Posix explicitly asks for an exit code of 127 if we report
2331 * errors from the child process - so, unfortunately, there
2332 * is no way to report a more exact error code.
2333 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2334 * flag bit in the attrp argument to posix_spawn(2), see above.
2335 */
2336 exit1(l, 127, 0);
2337 }
2338
2339 void
2340 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2341 {
2342
2343 for (size_t i = 0; i < len; i++) {
2344 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2345 if (fae->fae_action != FAE_OPEN)
2346 continue;
2347 kmem_strfree(fae->fae_path);
2348 }
2349 if (fa->len > 0)
2350 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2351 kmem_free(fa, sizeof(*fa));
2352 }
2353
2354 static int
2355 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2356 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2357 {
2358 struct posix_spawn_file_actions *fa;
2359 struct posix_spawn_file_actions_entry *fae;
2360 char *pbuf = NULL;
2361 int error;
2362 size_t i = 0;
2363
2364 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2365 error = copyin(ufa, fa, sizeof(*fa));
2366 if (error || fa->len == 0) {
2367 kmem_free(fa, sizeof(*fa));
2368 return error; /* 0 if not an error, and len == 0 */
2369 }
2370
2371 if (fa->len > lim) {
2372 kmem_free(fa, sizeof(*fa));
2373 return EINVAL;
2374 }
2375
2376 fa->size = fa->len;
2377 size_t fal = fa->len * sizeof(*fae);
2378 fae = fa->fae;
2379 fa->fae = kmem_alloc(fal, KM_SLEEP);
2380 error = copyin(fae, fa->fae, fal);
2381 if (error)
2382 goto out;
2383
2384 pbuf = PNBUF_GET();
2385 for (; i < fa->len; i++) {
2386 fae = &fa->fae[i];
2387 if (fae->fae_action != FAE_OPEN)
2388 continue;
2389 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2390 if (error)
2391 goto out;
2392 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2393 memcpy(fae->fae_path, pbuf, fal);
2394 }
2395 PNBUF_PUT(pbuf);
2396
2397 *fap = fa;
2398 return 0;
2399 out:
2400 if (pbuf)
2401 PNBUF_PUT(pbuf);
2402 posix_spawn_fa_free(fa, i);
2403 return error;
2404 }
2405
2406 /*
2407 * N.B. increments nprocs upon success. Callers need to drop nprocs if
2408 * they fail for some other reason.
2409 */
2410 int
2411 check_posix_spawn(struct lwp *l1)
2412 {
2413 int error, tnprocs, count;
2414 uid_t uid;
2415 struct proc *p1;
2416
2417 p1 = l1->l_proc;
2418 uid = kauth_cred_getuid(l1->l_cred);
2419 tnprocs = atomic_inc_uint_nv(&nprocs);
2420
2421 /*
2422 * Although process entries are dynamically created, we still keep
2423 * a global limit on the maximum number we will create.
2424 */
2425 if (__predict_false(tnprocs >= maxproc))
2426 error = -1;
2427 else
2428 error = kauth_authorize_process(l1->l_cred,
2429 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2430
2431 if (error) {
2432 atomic_dec_uint(&nprocs);
2433 return EAGAIN;
2434 }
2435
2436 /*
2437 * Enforce limits.
2438 */
2439 count = chgproccnt(uid, 1);
2440 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2441 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2442 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2443 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2444 (void)chgproccnt(uid, -1);
2445 atomic_dec_uint(&nprocs);
2446 return EAGAIN;
2447 }
2448
2449 return 0;
2450 }
2451
2452 int
2453 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2454 struct posix_spawn_file_actions *fa,
2455 struct posix_spawnattr *sa,
2456 char *const *argv, char *const *envp,
2457 execve_fetch_element_t fetch)
2458 {
2459
2460 struct proc *p1, *p2;
2461 struct lwp *l2;
2462 int error;
2463 struct spawn_exec_data *spawn_data;
2464 vaddr_t uaddr;
2465 pid_t pid;
2466 bool have_exec_lock = false;
2467
2468 p1 = l1->l_proc;
2469
2470 /* Allocate and init spawn_data */
2471 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2472 spawn_data->sed_refcnt = 1; /* only parent so far */
2473 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2474 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2475 mutex_enter(&spawn_data->sed_mtx_child);
2476
2477 /*
2478 * Do the first part of the exec now, collect state
2479 * in spawn_data.
2480 */
2481 error = execve_loadvm(l1, true, path, -1, argv,
2482 envp, fetch, &spawn_data->sed_exec);
2483 if (error == EJUSTRETURN)
2484 error = 0;
2485 else if (error)
2486 goto error_exit;
2487
2488 have_exec_lock = true;
2489
2490 /*
2491 * Allocate virtual address space for the U-area now, while it
2492 * is still easy to abort the fork operation if we're out of
2493 * kernel virtual address space.
2494 */
2495 uaddr = uvm_uarea_alloc();
2496 if (__predict_false(uaddr == 0)) {
2497 error = ENOMEM;
2498 goto error_exit;
2499 }
2500
2501 /*
2502 * Allocate new proc. Borrow proc0 vmspace for it, we will
2503 * replace it with its own before returning to userland
2504 * in the child.
2505 */
2506 p2 = proc_alloc();
2507 if (p2 == NULL) {
2508 /* We were unable to allocate a process ID. */
2509 error = EAGAIN;
2510 goto error_exit;
2511 }
2512
2513 /*
2514 * This is a point of no return, we will have to go through
2515 * the child proc to properly clean it up past this point.
2516 */
2517 pid = p2->p_pid;
2518
2519 /*
2520 * Make a proc table entry for the new process.
2521 * Start by zeroing the section of proc that is zero-initialized,
2522 * then copy the section that is copied directly from the parent.
2523 */
2524 memset(&p2->p_startzero, 0,
2525 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2526 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2527 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2528 p2->p_vmspace = proc0.p_vmspace;
2529
2530 TAILQ_INIT(&p2->p_sigpend.sp_info);
2531
2532 LIST_INIT(&p2->p_lwps);
2533 LIST_INIT(&p2->p_sigwaiters);
2534
2535 /*
2536 * Duplicate sub-structures as needed.
2537 * Increase reference counts on shared objects.
2538 * Inherit flags we want to keep. The flags related to SIGCHLD
2539 * handling are important in order to keep a consistent behaviour
2540 * for the child after the fork. If we are a 32-bit process, the
2541 * child will be too.
2542 */
2543 p2->p_flag =
2544 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2545 p2->p_emul = p1->p_emul;
2546 p2->p_execsw = p1->p_execsw;
2547
2548 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2549 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2550 rw_init(&p2->p_reflock);
2551 cv_init(&p2->p_waitcv, "wait");
2552 cv_init(&p2->p_lwpcv, "lwpwait");
2553
2554 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2555
2556 kauth_proc_fork(p1, p2);
2557
2558 p2->p_raslist = NULL;
2559 p2->p_fd = fd_copy();
2560
2561 /* XXX racy */
2562 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2563
2564 p2->p_cwdi = cwdinit();
2565
2566 /*
2567 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2568 * we just need increase pl_refcnt.
2569 */
2570 if (!p1->p_limit->pl_writeable) {
2571 lim_addref(p1->p_limit);
2572 p2->p_limit = p1->p_limit;
2573 } else {
2574 p2->p_limit = lim_copy(p1->p_limit);
2575 }
2576
2577 p2->p_lflag = 0;
2578 l1->l_vforkwaiting = false;
2579 p2->p_sflag = 0;
2580 p2->p_slflag = 0;
2581 p2->p_pptr = p1;
2582 p2->p_ppid = p1->p_pid;
2583 LIST_INIT(&p2->p_children);
2584
2585 p2->p_aio = NULL;
2586
2587 #ifdef KTRACE
2588 /*
2589 * Copy traceflag and tracefile if enabled.
2590 * If not inherited, these were zeroed above.
2591 */
2592 if (p1->p_traceflag & KTRFAC_INHERIT) {
2593 mutex_enter(&ktrace_lock);
2594 p2->p_traceflag = p1->p_traceflag;
2595 if ((p2->p_tracep = p1->p_tracep) != NULL)
2596 ktradref(p2);
2597 mutex_exit(&ktrace_lock);
2598 }
2599 #endif
2600
2601 /*
2602 * Create signal actions for the child process.
2603 */
2604 p2->p_sigacts = sigactsinit(p1, 0);
2605 mutex_enter(p1->p_lock);
2606 p2->p_sflag |=
2607 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2608 sched_proc_fork(p1, p2);
2609 mutex_exit(p1->p_lock);
2610
2611 p2->p_stflag = p1->p_stflag;
2612
2613 /*
2614 * p_stats.
2615 * Copy parts of p_stats, and zero out the rest.
2616 */
2617 p2->p_stats = pstatscopy(p1->p_stats);
2618
2619 /* copy over machdep flags to the new proc */
2620 cpu_proc_fork(p1, p2);
2621
2622 /*
2623 * Prepare remaining parts of spawn data
2624 */
2625 spawn_data->sed_actions = fa;
2626 spawn_data->sed_attrs = sa;
2627
2628 spawn_data->sed_parent = p1;
2629
2630 /* create LWP */
2631 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2632 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2633 l2->l_ctxlink = NULL; /* reset ucontext link */
2634
2635 /*
2636 * Copy the credential so other references don't see our changes.
2637 * Test to see if this is necessary first, since in the common case
2638 * we won't need a private reference.
2639 */
2640 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2641 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2642 l2->l_cred = kauth_cred_copy(l2->l_cred);
2643 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2644 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2645 }
2646
2647 /* Update the master credentials. */
2648 if (l2->l_cred != p2->p_cred) {
2649 kauth_cred_t ocred;
2650
2651 kauth_cred_hold(l2->l_cred);
2652 mutex_enter(p2->p_lock);
2653 ocred = p2->p_cred;
2654 p2->p_cred = l2->l_cred;
2655 mutex_exit(p2->p_lock);
2656 kauth_cred_free(ocred);
2657 }
2658
2659 *child_ok = true;
2660 spawn_data->sed_refcnt = 2; /* child gets it as well */
2661 #if 0
2662 l2->l_nopreempt = 1; /* start it non-preemptable */
2663 #endif
2664
2665 /*
2666 * It's now safe for the scheduler and other processes to see the
2667 * child process.
2668 */
2669 mutex_enter(&proc_lock);
2670
2671 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2672 p2->p_lflag |= PL_CONTROLT;
2673
2674 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2675 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2676
2677 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2678 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2679 proc_changeparent(p2, p1->p_pptr);
2680 SET(p2->p_slflag, PSL_TRACEDCHILD);
2681 }
2682
2683 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
2684
2685 LIST_INSERT_AFTER(p1, p2, p_pglist);
2686 LIST_INSERT_HEAD(&allproc, p2, p_list);
2687
2688 p2->p_trace_enabled = trace_is_enabled(p2);
2689 #ifdef __HAVE_SYSCALL_INTERN
2690 (*p2->p_emul->e_syscall_intern)(p2);
2691 #endif
2692
2693 /*
2694 * Make child runnable, set start time, and add to run queue except
2695 * if the parent requested the child to start in SSTOP state.
2696 */
2697 mutex_enter(p2->p_lock);
2698
2699 getmicrotime(&p2->p_stats->p_start);
2700
2701 lwp_lock(l2);
2702 KASSERT(p2->p_nrlwps == 1);
2703 KASSERT(l2->l_stat == LSIDL);
2704 p2->p_nrlwps = 1;
2705 p2->p_stat = SACTIVE;
2706 setrunnable(l2);
2707 /* LWP now unlocked */
2708
2709 mutex_exit(p2->p_lock);
2710 mutex_exit(&proc_lock);
2711
2712 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2713 error = spawn_data->sed_error;
2714 mutex_exit(&spawn_data->sed_mtx_child);
2715 spawn_exec_data_release(spawn_data);
2716
2717 rw_exit(&p1->p_reflock);
2718 rw_exit(&exec_lock);
2719 have_exec_lock = false;
2720
2721 *pid_res = pid;
2722
2723 if (error)
2724 return error;
2725
2726 if (p1->p_slflag & PSL_TRACED) {
2727 /* Paranoid check */
2728 mutex_enter(&proc_lock);
2729 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2730 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2731 mutex_exit(&proc_lock);
2732 return 0;
2733 }
2734
2735 mutex_enter(p1->p_lock);
2736 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2737 }
2738 return 0;
2739
2740 error_exit:
2741 if (have_exec_lock) {
2742 execve_free_data(&spawn_data->sed_exec);
2743 rw_exit(&p1->p_reflock);
2744 rw_exit(&exec_lock);
2745 }
2746 mutex_exit(&spawn_data->sed_mtx_child);
2747 spawn_exec_data_release(spawn_data);
2748
2749 return error;
2750 }
2751
2752 int
2753 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2754 register_t *retval)
2755 {
2756 /* {
2757 syscallarg(pid_t *) pid;
2758 syscallarg(const char *) path;
2759 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2760 syscallarg(const struct posix_spawnattr *) attrp;
2761 syscallarg(char *const *) argv;
2762 syscallarg(char *const *) envp;
2763 } */
2764
2765 int error;
2766 struct posix_spawn_file_actions *fa = NULL;
2767 struct posix_spawnattr *sa = NULL;
2768 pid_t pid;
2769 bool child_ok = false;
2770 rlim_t max_fileactions;
2771 proc_t *p = l1->l_proc;
2772
2773 /* check_posix_spawn() increments nprocs for us. */
2774 error = check_posix_spawn(l1);
2775 if (error) {
2776 *retval = error;
2777 return 0;
2778 }
2779
2780 /* copy in file_actions struct */
2781 if (SCARG(uap, file_actions) != NULL) {
2782 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2783 maxfiles);
2784 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2785 max_fileactions);
2786 if (error)
2787 goto error_exit;
2788 }
2789
2790 /* copyin posix_spawnattr struct */
2791 if (SCARG(uap, attrp) != NULL) {
2792 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2793 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2794 if (error)
2795 goto error_exit;
2796 }
2797
2798 /*
2799 * Do the spawn
2800 */
2801 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2802 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2803 if (error)
2804 goto error_exit;
2805
2806 if (error == 0 && SCARG(uap, pid) != NULL)
2807 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2808
2809 *retval = error;
2810 return 0;
2811
2812 error_exit:
2813 if (!child_ok) {
2814 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2815 atomic_dec_uint(&nprocs);
2816
2817 if (sa)
2818 kmem_free(sa, sizeof(*sa));
2819 if (fa)
2820 posix_spawn_fa_free(fa, fa->len);
2821 }
2822
2823 *retval = error;
2824 return 0;
2825 }
2826
2827 void
2828 exec_free_emul_arg(struct exec_package *epp)
2829 {
2830 if (epp->ep_emul_arg_free != NULL) {
2831 KASSERT(epp->ep_emul_arg != NULL);
2832 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2833 epp->ep_emul_arg_free = NULL;
2834 epp->ep_emul_arg = NULL;
2835 } else {
2836 KASSERT(epp->ep_emul_arg == NULL);
2837 }
2838 }
2839
2840 #ifdef DEBUG_EXEC
2841 static void
2842 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2843 {
2844 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2845 size_t j;
2846
2847 if (error == 0)
2848 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2849 else
2850 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2851 epp->ep_vmcmds.evs_used, error));
2852
2853 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2854 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2855 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2856 PRIxVSIZE" prot=0%o flags=%d\n", j,
2857 vp[j].ev_proc == vmcmd_map_pagedvn ?
2858 "pagedvn" :
2859 vp[j].ev_proc == vmcmd_map_readvn ?
2860 "readvn" :
2861 vp[j].ev_proc == vmcmd_map_zero ?
2862 "zero" : "*unknown*",
2863 vp[j].ev_addr, vp[j].ev_len,
2864 vp[j].ev_offset, vp[j].ev_prot,
2865 vp[j].ev_flags));
2866 if (error != 0 && j == x)
2867 DPRINTF((" ^--- failed\n"));
2868 }
2869 }
2870 #endif
2871