Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.521
      1 /*	$NetBSD: kern_exec.c,v 1.521 2023/10/08 12:38:58 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     34  * Copyright (C) 1992 Wolfgang Solfrank.
     35  * Copyright (C) 1992 TooLs GmbH.
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *	This product includes software developed by TooLs GmbH.
     49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.521 2023/10/08 12:38:58 ad Exp $");
     66 
     67 #include "opt_exec.h"
     68 #include "opt_execfmt.h"
     69 #include "opt_ktrace.h"
     70 #include "opt_modular.h"
     71 #include "opt_syscall_debug.h"
     72 #include "veriexec.h"
     73 #include "opt_pax.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/proc.h>
     80 #include <sys/ptrace.h>
     81 #include <sys/mount.h>
     82 #include <sys/kmem.h>
     83 #include <sys/namei.h>
     84 #include <sys/vnode.h>
     85 #include <sys/file.h>
     86 #include <sys/filedesc.h>
     87 #include <sys/acct.h>
     88 #include <sys/atomic.h>
     89 #include <sys/exec.h>
     90 #include <sys/futex.h>
     91 #include <sys/ktrace.h>
     92 #include <sys/uidinfo.h>
     93 #include <sys/wait.h>
     94 #include <sys/mman.h>
     95 #include <sys/ras.h>
     96 #include <sys/signalvar.h>
     97 #include <sys/stat.h>
     98 #include <sys/syscall.h>
     99 #include <sys/kauth.h>
    100 #include <sys/lwpctl.h>
    101 #include <sys/pax.h>
    102 #include <sys/cpu.h>
    103 #include <sys/module.h>
    104 #include <sys/syscallvar.h>
    105 #include <sys/syscallargs.h>
    106 #include <sys/vfs_syscalls.h>
    107 #if NVERIEXEC > 0
    108 #include <sys/verified_exec.h>
    109 #endif /* NVERIEXEC > 0 */
    110 #include <sys/sdt.h>
    111 #include <sys/spawn.h>
    112 #include <sys/prot.h>
    113 #include <sys/cprng.h>
    114 
    115 #include <uvm/uvm_extern.h>
    116 
    117 #include <machine/reg.h>
    118 
    119 #include <compat/common/compat_util.h>
    120 
    121 #ifndef MD_TOPDOWN_INIT
    122 #ifdef __USE_TOPDOWN_VM
    123 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    124 #else
    125 #define	MD_TOPDOWN_INIT(epp)
    126 #endif
    127 #endif
    128 
    129 struct execve_data;
    130 
    131 extern int user_va0_disable;
    132 
    133 static size_t calcargs(struct execve_data * restrict, const size_t);
    134 static size_t calcstack(struct execve_data * restrict, const size_t);
    135 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    136     char * const);
    137 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    138 static int copyinargs(struct execve_data * restrict, char * const *,
    139     char * const *, execve_fetch_element_t, char **);
    140 static int copyinargstrs(struct execve_data * restrict, char * const *,
    141     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    142 static int exec_sigcode_map(struct proc *, const struct emul *);
    143 
    144 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    145 #define DEBUG_EXEC
    146 #endif
    147 #ifdef DEBUG_EXEC
    148 #define DPRINTF(a) printf a
    149 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    150     __LINE__, (s), (a), (b))
    151 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    152 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    153 #else
    154 #define DPRINTF(a)
    155 #define COPYPRINTF(s, a, b)
    156 #define DUMPVMCMDS(p, x, e) do {} while (0)
    157 #endif /* DEBUG_EXEC */
    158 
    159 /*
    160  * DTrace SDT provider definitions
    161  */
    162 SDT_PROVIDER_DECLARE(proc);
    163 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    164 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    165 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    166 
    167 /*
    168  * Exec function switch:
    169  *
    170  * Note that each makecmds function is responsible for loading the
    171  * exec package with the necessary functions for any exec-type-specific
    172  * handling.
    173  *
    174  * Functions for specific exec types should be defined in their own
    175  * header file.
    176  */
    177 static const struct execsw	**execsw = NULL;
    178 static int			nexecs;
    179 
    180 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    181 
    182 /* list of dynamically loaded execsw entries */
    183 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    184     LIST_HEAD_INITIALIZER(ex_head);
    185 struct exec_entry {
    186 	LIST_ENTRY(exec_entry)	ex_list;
    187 	SLIST_ENTRY(exec_entry)	ex_slist;
    188 	const struct execsw	*ex_sw;
    189 };
    190 
    191 #ifndef __HAVE_SYSCALL_INTERN
    192 void	syscall(void);
    193 #endif
    194 
    195 /* NetBSD autoloadable syscalls */
    196 #ifdef MODULAR
    197 #include <kern/syscalls_autoload.c>
    198 #endif
    199 
    200 /* NetBSD emul struct */
    201 struct emul emul_netbsd = {
    202 	.e_name =		"netbsd",
    203 #ifdef EMUL_NATIVEROOT
    204 	.e_path =		EMUL_NATIVEROOT,
    205 #else
    206 	.e_path =		NULL,
    207 #endif
    208 #ifndef __HAVE_MINIMAL_EMUL
    209 	.e_flags =		EMUL_HAS_SYS___syscall,
    210 	.e_errno =		NULL,
    211 	.e_nosys =		SYS_syscall,
    212 	.e_nsysent =		SYS_NSYSENT,
    213 #endif
    214 #ifdef MODULAR
    215 	.e_sc_autoload =	netbsd_syscalls_autoload,
    216 #endif
    217 	.e_sysent =		sysent,
    218 	.e_nomodbits =		sysent_nomodbits,
    219 #ifdef SYSCALL_DEBUG
    220 	.e_syscallnames =	syscallnames,
    221 #else
    222 	.e_syscallnames =	NULL,
    223 #endif
    224 	.e_sendsig =		sendsig,
    225 	.e_trapsignal =		trapsignal,
    226 	.e_sigcode =		NULL,
    227 	.e_esigcode =		NULL,
    228 	.e_sigobject =		NULL,
    229 	.e_setregs =		setregs,
    230 	.e_proc_exec =		NULL,
    231 	.e_proc_fork =		NULL,
    232 	.e_proc_exit =		NULL,
    233 	.e_lwp_fork =		NULL,
    234 	.e_lwp_exit =		NULL,
    235 #ifdef __HAVE_SYSCALL_INTERN
    236 	.e_syscall_intern =	syscall_intern,
    237 #else
    238 	.e_syscall =		syscall,
    239 #endif
    240 	.e_sysctlovly =		NULL,
    241 	.e_vm_default_addr =	uvm_default_mapaddr,
    242 	.e_usertrap =		NULL,
    243 	.e_ucsize =		sizeof(ucontext_t),
    244 	.e_startlwp =		startlwp
    245 };
    246 
    247 /*
    248  * Exec lock. Used to control access to execsw[] structures.
    249  * This must not be static so that netbsd32 can access it, too.
    250  */
    251 krwlock_t exec_lock __cacheline_aligned;
    252 
    253 /*
    254  * Data used between a loadvm and execve part of an "exec" operation
    255  */
    256 struct execve_data {
    257 	struct exec_package	ed_pack;
    258 	struct pathbuf		*ed_pathbuf;
    259 	struct vattr		ed_attr;
    260 	struct ps_strings	ed_arginfo;
    261 	char			*ed_argp;
    262 	const char		*ed_pathstring;
    263 	char			*ed_resolvedname;
    264 	size_t			ed_ps_strings_sz;
    265 	int			ed_szsigcode;
    266 	size_t			ed_argslen;
    267 	long			ed_argc;
    268 	long			ed_envc;
    269 };
    270 
    271 /*
    272  * data passed from parent lwp to child during a posix_spawn()
    273  */
    274 struct spawn_exec_data {
    275 	struct execve_data	sed_exec;
    276 	struct posix_spawn_file_actions
    277 				*sed_actions;
    278 	struct posix_spawnattr	*sed_attrs;
    279 	struct proc		*sed_parent;
    280 	kcondvar_t		sed_cv_child_ready;
    281 	kmutex_t		sed_mtx_child;
    282 	int			sed_error;
    283 	volatile uint32_t	sed_refcnt;
    284 };
    285 
    286 static struct vm_map *exec_map;
    287 static struct pool exec_pool;
    288 
    289 static void *
    290 exec_pool_alloc(struct pool *pp, int flags)
    291 {
    292 
    293 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    294 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    295 }
    296 
    297 static void
    298 exec_pool_free(struct pool *pp, void *addr)
    299 {
    300 
    301 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    302 }
    303 
    304 static struct pool_allocator exec_palloc = {
    305 	.pa_alloc = exec_pool_alloc,
    306 	.pa_free = exec_pool_free,
    307 	.pa_pagesz = NCARGS
    308 };
    309 
    310 static void
    311 exec_path_free(struct execve_data *data)
    312 {
    313 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    314 	pathbuf_destroy(data->ed_pathbuf);
    315 	if (data->ed_resolvedname)
    316 		PNBUF_PUT(data->ed_resolvedname);
    317 }
    318 
    319 static int
    320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
    321     char **rpath)
    322 {
    323 	int error;
    324 	char *p;
    325 
    326 	KASSERT(rpath != NULL);
    327 
    328 	*rpath = PNBUF_GET();
    329 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
    330 	if (error) {
    331 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
    332 		    __func__, epp->ep_kname, error));
    333 		PNBUF_PUT(*rpath);
    334 		*rpath = NULL;
    335 		return error;
    336 	}
    337 	epp->ep_resolvedname = *rpath;
    338 	if ((p = strrchr(*rpath, '/')) != NULL)
    339 		epp->ep_kname = p + 1;
    340 	return 0;
    341 }
    342 
    343 
    344 /*
    345  * check exec:
    346  * given an "executable" described in the exec package's namei info,
    347  * see what we can do with it.
    348  *
    349  * ON ENTRY:
    350  *	exec package with appropriate namei info
    351  *	lwp pointer of exec'ing lwp
    352  *	NO SELF-LOCKED VNODES
    353  *
    354  * ON EXIT:
    355  *	error:	nothing held, etc.  exec header still allocated.
    356  *	ok:	filled exec package, executable's vnode (unlocked).
    357  *
    358  * EXEC SWITCH ENTRY:
    359  * 	Locked vnode to check, exec package, proc.
    360  *
    361  * EXEC SWITCH EXIT:
    362  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    363  *	error:	destructive:
    364  *			everything deallocated execept exec header.
    365  *		non-destructive:
    366  *			error code, executable's vnode (unlocked),
    367  *			exec header unmodified.
    368  */
    369 int
    370 /*ARGSUSED*/
    371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
    372     char **rpath)
    373 {
    374 	int		error, i;
    375 	struct vnode	*vp;
    376 	size_t		resid;
    377 
    378 	if (epp->ep_resolvedname) {
    379 		struct nameidata nd;
    380 
    381 		// grab the absolute pathbuf here before namei() trashes it.
    382 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    383 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    384 
    385 		/* first get the vnode */
    386 		if ((error = namei(&nd)) != 0)
    387 			return error;
    388 
    389 		epp->ep_vp = vp = nd.ni_vp;
    390 #ifdef DIAGNOSTIC
    391 		/* paranoia (take this out once namei stuff stabilizes) */
    392 		memset(nd.ni_pnbuf, '~', PATH_MAX);
    393 #endif
    394 	} else {
    395 		struct file *fp;
    396 
    397 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
    398 			return error;
    399 		epp->ep_vp = vp = fp->f_vnode;
    400 		vref(vp);
    401 		fd_putfile(epp->ep_xfd);
    402 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
    403 			return error;
    404 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    405 	}
    406 
    407 	/* check access and type */
    408 	if (vp->v_type != VREG) {
    409 		error = EACCES;
    410 		goto bad1;
    411 	}
    412 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    413 		goto bad1;
    414 
    415 	/* get attributes */
    416 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
    417 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    418 		goto bad1;
    419 
    420 	/* Check mount point */
    421 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    422 		error = EACCES;
    423 		goto bad1;
    424 	}
    425 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    426 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    427 
    428 	/* try to open it */
    429 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    430 		goto bad1;
    431 
    432 	/* now we have the file, get the exec header */
    433 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    434 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
    435 	if (error)
    436 		goto bad1;
    437 
    438 	/* unlock vp, since we need it unlocked from here on out. */
    439 	VOP_UNLOCK(vp);
    440 
    441 #if NVERIEXEC > 0
    442 	error = veriexec_verify(l, vp,
    443 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
    444 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    445 	    NULL);
    446 	if (error)
    447 		goto bad2;
    448 #endif /* NVERIEXEC > 0 */
    449 
    450 #ifdef PAX_SEGVGUARD
    451 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    452 	if (error)
    453 		goto bad2;
    454 #endif /* PAX_SEGVGUARD */
    455 
    456 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    457 
    458 	/*
    459 	 * Set up default address space limits.  Can be overridden
    460 	 * by individual exec packages.
    461 	 */
    462 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    463 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    464 
    465 	/*
    466 	 * set up the vmcmds for creation of the process
    467 	 * address space
    468 	 */
    469 	error = ENOEXEC;
    470 	for (i = 0; i < nexecs; i++) {
    471 		int newerror;
    472 
    473 		epp->ep_esch = execsw[i];
    474 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    475 
    476 		if (!newerror) {
    477 			/* Seems ok: check that entry point is not too high */
    478 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    479 #ifdef DIAGNOSTIC
    480 				printf("%s: rejecting %p due to "
    481 				    "too high entry address (>= %p)\n",
    482 					 __func__, (void *)epp->ep_entry,
    483 					 (void *)epp->ep_vm_maxaddr);
    484 #endif
    485 				error = ENOEXEC;
    486 				break;
    487 			}
    488 			/* Seems ok: check that entry point is not too low */
    489 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    490 #ifdef DIAGNOSTIC
    491 				printf("%s: rejecting %p due to "
    492 				    "too low entry address (< %p)\n",
    493 				     __func__, (void *)epp->ep_entry,
    494 				     (void *)epp->ep_vm_minaddr);
    495 #endif
    496 				error = ENOEXEC;
    497 				break;
    498 			}
    499 
    500 			/* check limits */
    501 #ifdef DIAGNOSTIC
    502 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
    503 #endif
    504 #ifdef MAXTSIZ
    505 			if (epp->ep_tsize > MAXTSIZ) {
    506 #ifdef DIAGNOSTIC
    507 				printf(LMSG, __func__, "text",
    508 				    (uintmax_t)epp->ep_tsize,
    509 				    (uintmax_t)MAXTSIZ);
    510 #endif
    511 				error = ENOMEM;
    512 				break;
    513 			}
    514 #endif
    515 			vsize_t dlimit =
    516 			    (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
    517 			if (epp->ep_dsize > dlimit) {
    518 #ifdef DIAGNOSTIC
    519 				printf(LMSG, __func__, "data",
    520 				    (uintmax_t)epp->ep_dsize,
    521 				    (uintmax_t)dlimit);
    522 #endif
    523 				error = ENOMEM;
    524 				break;
    525 			}
    526 			return 0;
    527 		}
    528 
    529 		/*
    530 		 * Reset all the fields that may have been modified by the
    531 		 * loader.
    532 		 */
    533 		KASSERT(epp->ep_emul_arg == NULL);
    534 		if (epp->ep_emul_root != NULL) {
    535 			vrele(epp->ep_emul_root);
    536 			epp->ep_emul_root = NULL;
    537 		}
    538 		if (epp->ep_interp != NULL) {
    539 			vrele(epp->ep_interp);
    540 			epp->ep_interp = NULL;
    541 		}
    542 		epp->ep_pax_flags = 0;
    543 
    544 		/* make sure the first "interesting" error code is saved. */
    545 		if (error == ENOEXEC)
    546 			error = newerror;
    547 
    548 		if (epp->ep_flags & EXEC_DESTR)
    549 			/* Error from "#!" code, tidied up by recursive call */
    550 			return error;
    551 	}
    552 
    553 	/* not found, error */
    554 
    555 	/*
    556 	 * free any vmspace-creation commands,
    557 	 * and release their references
    558 	 */
    559 	kill_vmcmds(&epp->ep_vmcmds);
    560 
    561 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
    562 bad2:
    563 #endif
    564 	/*
    565 	 * close and release the vnode, restore the old one, free the
    566 	 * pathname buf, and punt.
    567 	 */
    568 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    569 	VOP_CLOSE(vp, FREAD, l->l_cred);
    570 	vput(vp);
    571 	return error;
    572 
    573 bad1:
    574 	/*
    575 	 * free the namei pathname buffer, and put the vnode
    576 	 * (which we don't yet have open).
    577 	 */
    578 	vput(vp);				/* was still locked */
    579 	return error;
    580 }
    581 
    582 #ifdef __MACHINE_STACK_GROWS_UP
    583 #define STACK_PTHREADSPACE NBPG
    584 #else
    585 #define STACK_PTHREADSPACE 0
    586 #endif
    587 
    588 static int
    589 execve_fetch_element(char * const *array, size_t index, char **value)
    590 {
    591 	return copyin(array + index, value, sizeof(*value));
    592 }
    593 
    594 /*
    595  * exec system call
    596  */
    597 int
    598 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    599 {
    600 	/* {
    601 		syscallarg(const char *)	path;
    602 		syscallarg(char * const *)	argp;
    603 		syscallarg(char * const *)	envp;
    604 	} */
    605 
    606 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
    607 	    SCARG(uap, envp), execve_fetch_element);
    608 }
    609 
    610 int
    611 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    612     register_t *retval)
    613 {
    614 	/* {
    615 		syscallarg(int)			fd;
    616 		syscallarg(char * const *)	argp;
    617 		syscallarg(char * const *)	envp;
    618 	} */
    619 
    620 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
    621 	    SCARG(uap, envp), execve_fetch_element);
    622 }
    623 
    624 /*
    625  * Load modules to try and execute an image that we do not understand.
    626  * If no execsw entries are present, we load those likely to be needed
    627  * in order to run native images only.  Otherwise, we autoload all
    628  * possible modules that could let us run the binary.  XXX lame
    629  */
    630 static void
    631 exec_autoload(void)
    632 {
    633 #ifdef MODULAR
    634 	static const char * const native[] = {
    635 		"exec_elf32",
    636 		"exec_elf64",
    637 		"exec_script",
    638 		NULL
    639 	};
    640 	static const char * const compat[] = {
    641 		"exec_elf32",
    642 		"exec_elf64",
    643 		"exec_script",
    644 		"exec_aout",
    645 		"exec_coff",
    646 		"exec_ecoff",
    647 		"compat_aoutm68k",
    648 		"compat_netbsd32",
    649 #if 0
    650 		"compat_linux",
    651 		"compat_linux32",
    652 #endif
    653 		"compat_sunos",
    654 		"compat_sunos32",
    655 		"compat_ultrix",
    656 		NULL
    657 	};
    658 	char const * const *list;
    659 	int i;
    660 
    661 	list = nexecs == 0 ? native : compat;
    662 	for (i = 0; list[i] != NULL; i++) {
    663 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    664 			continue;
    665 		}
    666 		yield();
    667 	}
    668 #endif
    669 }
    670 
    671 /*
    672  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
    673  * making it absolute in the process, by prepending the current working
    674  * directory if it is not. If offs is supplied it will contain the offset
    675  * where the original supplied copy of upath starts.
    676  */
    677 int
    678 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    679     struct pathbuf **pbp, size_t *offs)
    680 {
    681 	char *path, *bp;
    682 	size_t len, tlen;
    683 	int error;
    684 	struct cwdinfo *cwdi;
    685 
    686 	path = PNBUF_GET();
    687 	if (seg == UIO_SYSSPACE) {
    688 		error = copystr(upath, path, MAXPATHLEN, &len);
    689 	} else {
    690 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    691 	}
    692 	if (error)
    693 		goto err;
    694 
    695 	if (path[0] == '/') {
    696 		if (offs)
    697 			*offs = 0;
    698 		goto out;
    699 	}
    700 
    701 	len++;
    702 	if (len + 1 >= MAXPATHLEN) {
    703 		error = ENAMETOOLONG;
    704 		goto err;
    705 	}
    706 	bp = path + MAXPATHLEN - len;
    707 	memmove(bp, path, len);
    708 	*(--bp) = '/';
    709 
    710 	cwdi = l->l_proc->p_cwdi;
    711 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    712 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    713 	    GETCWD_CHECK_ACCESS, l);
    714 	rw_exit(&cwdi->cwdi_lock);
    715 
    716 	if (error)
    717 		goto err;
    718 	tlen = path + MAXPATHLEN - bp;
    719 
    720 	memmove(path, bp, tlen);
    721 	path[tlen - 1] = '\0';
    722 	if (offs)
    723 		*offs = tlen - len;
    724 out:
    725 	*pbp = pathbuf_assimilate(path);
    726 	return 0;
    727 err:
    728 	PNBUF_PUT(path);
    729 	return error;
    730 }
    731 
    732 vaddr_t
    733 exec_vm_minaddr(vaddr_t va_min)
    734 {
    735 	/*
    736 	 * Increase va_min if we don't want NULL to be mappable by the
    737 	 * process.
    738 	 */
    739 #define VM_MIN_GUARD	PAGE_SIZE
    740 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    741 		return VM_MIN_GUARD;
    742 	return va_min;
    743 }
    744 
    745 static int
    746 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
    747 	char * const *args, char * const *envs,
    748 	execve_fetch_element_t fetch_element,
    749 	struct execve_data * restrict data)
    750 {
    751 	struct exec_package	* const epp = &data->ed_pack;
    752 	int			error;
    753 	struct proc		*p;
    754 	char			*dp;
    755 	u_int			modgen;
    756 
    757 	KASSERT(data != NULL);
    758 
    759 	p = l->l_proc;
    760 	modgen = 0;
    761 
    762 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    763 
    764 	/*
    765 	 * Check if we have exceeded our number of processes limit.
    766 	 * This is so that we handle the case where a root daemon
    767 	 * forked, ran setuid to become the desired user and is trying
    768 	 * to exec. The obvious place to do the reference counting check
    769 	 * is setuid(), but we don't do the reference counting check there
    770 	 * like other OS's do because then all the programs that use setuid()
    771 	 * must be modified to check the return code of setuid() and exit().
    772 	 * It is dangerous to make setuid() fail, because it fails open and
    773 	 * the program will continue to run as root. If we make it succeed
    774 	 * and return an error code, again we are not enforcing the limit.
    775 	 * The best place to enforce the limit is here, when the process tries
    776 	 * to execute a new image, because eventually the process will need
    777 	 * to call exec in order to do something useful.
    778 	 */
    779  retry:
    780 	if (p->p_flag & PK_SUGID) {
    781 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    782 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    783 		     &p->p_rlimit[RLIMIT_NPROC],
    784 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    785 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    786 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    787 		return EAGAIN;
    788 	}
    789 
    790 	/*
    791 	 * Drain existing references and forbid new ones.  The process
    792 	 * should be left alone until we're done here.  This is necessary
    793 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    794 	 * a local user to illicitly obtain elevated privileges.
    795 	 */
    796 	rw_enter(&p->p_reflock, RW_WRITER);
    797 
    798 	if (has_path) {
    799 		size_t	offs;
    800 		/*
    801 		 * Init the namei data to point the file user's program name.
    802 		 * This is done here rather than in check_exec(), so that it's
    803 		 * possible to override this settings if any of makecmd/probe
    804 		 * functions call check_exec() recursively - for example,
    805 		 * see exec_script_makecmds().
    806 		 */
    807 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    808 		    &data->ed_pathbuf, &offs)) != 0)
    809 			goto clrflg;
    810 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    811 		epp->ep_kname = data->ed_pathstring + offs;
    812 		data->ed_resolvedname = PNBUF_GET();
    813 		epp->ep_resolvedname = data->ed_resolvedname;
    814 		epp->ep_xfd = -1;
    815 	} else {
    816 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
    817 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    818 		epp->ep_kname = "*fexecve*";
    819 		data->ed_resolvedname = NULL;
    820 		epp->ep_resolvedname = NULL;
    821 		epp->ep_xfd = fd;
    822 	}
    823 
    824 
    825 	/*
    826 	 * initialize the fields of the exec package.
    827 	 */
    828 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    829 	epp->ep_hdrlen = exec_maxhdrsz;
    830 	epp->ep_hdrvalid = 0;
    831 	epp->ep_emul_arg = NULL;
    832 	epp->ep_emul_arg_free = NULL;
    833 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    834 	epp->ep_vap = &data->ed_attr;
    835 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    836 	MD_TOPDOWN_INIT(epp);
    837 	epp->ep_emul_root = NULL;
    838 	epp->ep_interp = NULL;
    839 	epp->ep_esch = NULL;
    840 	epp->ep_pax_flags = 0;
    841 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    842 
    843 	rw_enter(&exec_lock, RW_READER);
    844 
    845 	/* see if we can run it. */
    846 	if ((error = check_exec(l, epp, data->ed_pathbuf,
    847 	    &data->ed_resolvedname)) != 0) {
    848 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    849 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    850 			    __func__, epp->ep_kname, error));
    851 		}
    852 		goto freehdr;
    853 	}
    854 
    855 	/* allocate an argument buffer */
    856 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    857 	KASSERT(data->ed_argp != NULL);
    858 	dp = data->ed_argp;
    859 
    860 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    861 		goto bad;
    862 	}
    863 
    864 	/*
    865 	 * Calculate the new stack size.
    866 	 */
    867 
    868 #ifdef __MACHINE_STACK_GROWS_UP
    869 /*
    870  * copyargs() fills argc/argv/envp from the lower address even on
    871  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    872  * so that _rtld() use it.
    873  */
    874 #define	RTLD_GAP	32
    875 #else
    876 #define	RTLD_GAP	0
    877 #endif
    878 
    879 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    880 
    881 	data->ed_argslen = calcargs(data, argenvstrlen);
    882 
    883 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    884 
    885 	if (len > epp->ep_ssize) {
    886 		/* in effect, compare to initial limit */
    887 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    888 		error = ENOMEM;
    889 		goto bad;
    890 	}
    891 	/* adjust "active stack depth" for process VSZ */
    892 	epp->ep_ssize = len;
    893 
    894 	return 0;
    895 
    896  bad:
    897 	/* free the vmspace-creation commands, and release their references */
    898 	kill_vmcmds(&epp->ep_vmcmds);
    899 	/* kill any opened file descriptor, if necessary */
    900 	if (epp->ep_flags & EXEC_HASFD) {
    901 		epp->ep_flags &= ~EXEC_HASFD;
    902 		fd_close(epp->ep_fd);
    903 	}
    904 	/* close and put the exec'd file */
    905 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    906 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    907 	vput(epp->ep_vp);
    908 	pool_put(&exec_pool, data->ed_argp);
    909 
    910  freehdr:
    911 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    912 	if (epp->ep_emul_root != NULL)
    913 		vrele(epp->ep_emul_root);
    914 	if (epp->ep_interp != NULL)
    915 		vrele(epp->ep_interp);
    916 
    917 	rw_exit(&exec_lock);
    918 
    919 	exec_path_free(data);
    920 
    921  clrflg:
    922 	rw_exit(&p->p_reflock);
    923 
    924 	if (modgen != module_gen && error == ENOEXEC) {
    925 		modgen = module_gen;
    926 		exec_autoload();
    927 		goto retry;
    928 	}
    929 
    930 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    931 	return error;
    932 }
    933 
    934 static int
    935 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    936 {
    937 	struct exec_package	* const epp = &data->ed_pack;
    938 	struct proc		*p = l->l_proc;
    939 	struct exec_vmcmd	*base_vcp;
    940 	int			error = 0;
    941 	size_t			i;
    942 
    943 	/* record proc's vnode, for use by procfs and others */
    944 	if (p->p_textvp)
    945 		vrele(p->p_textvp);
    946 	vref(epp->ep_vp);
    947 	p->p_textvp = epp->ep_vp;
    948 
    949 	/* create the new process's VM space by running the vmcmds */
    950 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    951 
    952 #ifdef TRACE_EXEC
    953 	DUMPVMCMDS(epp, 0, 0);
    954 #endif
    955 
    956 	base_vcp = NULL;
    957 
    958 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    959 		struct exec_vmcmd *vcp;
    960 
    961 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    962 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    963 			KASSERTMSG(base_vcp != NULL,
    964 			    "%s: relative vmcmd with no base", __func__);
    965 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    966 			    "%s: illegal base & relative vmcmd", __func__);
    967 			vcp->ev_addr += base_vcp->ev_addr;
    968 		}
    969 		error = (*vcp->ev_proc)(l, vcp);
    970 		if (error)
    971 			DUMPVMCMDS(epp, i, error);
    972 		if (vcp->ev_flags & VMCMD_BASE)
    973 			base_vcp = vcp;
    974 	}
    975 
    976 	/* free the vmspace-creation commands, and release their references */
    977 	kill_vmcmds(&epp->ep_vmcmds);
    978 
    979 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    980 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    981 	vput(epp->ep_vp);
    982 
    983 	/* if an error happened, deallocate and punt */
    984 	if (error != 0) {
    985 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    986 	}
    987 	return error;
    988 }
    989 
    990 static void
    991 execve_free_data(struct execve_data *data)
    992 {
    993 	struct exec_package	* const epp = &data->ed_pack;
    994 
    995 	/* free the vmspace-creation commands, and release their references */
    996 	kill_vmcmds(&epp->ep_vmcmds);
    997 	/* kill any opened file descriptor, if necessary */
    998 	if (epp->ep_flags & EXEC_HASFD) {
    999 		epp->ep_flags &= ~EXEC_HASFD;
   1000 		fd_close(epp->ep_fd);
   1001 	}
   1002 
   1003 	/* close and put the exec'd file */
   1004 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1005 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
   1006 	vput(epp->ep_vp);
   1007 	pool_put(&exec_pool, data->ed_argp);
   1008 
   1009 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1010 	if (epp->ep_emul_root != NULL)
   1011 		vrele(epp->ep_emul_root);
   1012 	if (epp->ep_interp != NULL)
   1013 		vrele(epp->ep_interp);
   1014 
   1015 	exec_path_free(data);
   1016 }
   1017 
   1018 static void
   1019 pathexec(struct proc *p, const char *resolvedname)
   1020 {
   1021 	/* set command name & other accounting info */
   1022 	const char *cmdname;
   1023 
   1024 	if (resolvedname == NULL) {
   1025 		cmdname = "*fexecve*";
   1026 		resolvedname = "/";
   1027 	} else {
   1028 		cmdname = strrchr(resolvedname, '/') + 1;
   1029 	}
   1030 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
   1031 	    resolvedname);
   1032 
   1033 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
   1034 
   1035 	kmem_strfree(p->p_path);
   1036 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
   1037 }
   1038 
   1039 /* XXX elsewhere */
   1040 static int
   1041 credexec(struct lwp *l, struct execve_data *data)
   1042 {
   1043 	struct proc *p = l->l_proc;
   1044 	struct vattr *attr = &data->ed_attr;
   1045 	int error;
   1046 
   1047 	/*
   1048 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1049 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1050 	 * out additional references on the process for the moment.
   1051 	 */
   1052 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1053 
   1054 	    (((attr->va_mode & S_ISUID) != 0 &&
   1055 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
   1056 
   1057 	     ((attr->va_mode & S_ISGID) != 0 &&
   1058 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
   1059 		/*
   1060 		 * Mark the process as SUGID before we do
   1061 		 * anything that might block.
   1062 		 */
   1063 		proc_crmod_enter();
   1064 		proc_crmod_leave(NULL, NULL, true);
   1065 		if (data->ed_argc == 0) {
   1066 			DPRINTF((
   1067 			    "%s: not executing set[ug]id binary with no args\n",
   1068 			    __func__));
   1069 			return EINVAL;
   1070 		}
   1071 
   1072 		/* Make sure file descriptors 0..2 are in use. */
   1073 		if ((error = fd_checkstd()) != 0) {
   1074 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1075 			    __func__, error));
   1076 			return error;
   1077 		}
   1078 
   1079 		/*
   1080 		 * Copy the credential so other references don't see our
   1081 		 * changes.
   1082 		 */
   1083 		l->l_cred = kauth_cred_copy(l->l_cred);
   1084 #ifdef KTRACE
   1085 		/*
   1086 		 * If the persistent trace flag isn't set, turn off.
   1087 		 */
   1088 		if (p->p_tracep) {
   1089 			mutex_enter(&ktrace_lock);
   1090 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1091 				ktrderef(p);
   1092 			mutex_exit(&ktrace_lock);
   1093 		}
   1094 #endif
   1095 		if (attr->va_mode & S_ISUID)
   1096 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1097 		if (attr->va_mode & S_ISGID)
   1098 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1099 	} else {
   1100 		if (kauth_cred_geteuid(l->l_cred) ==
   1101 		    kauth_cred_getuid(l->l_cred) &&
   1102 		    kauth_cred_getegid(l->l_cred) ==
   1103 		    kauth_cred_getgid(l->l_cred))
   1104 			p->p_flag &= ~PK_SUGID;
   1105 	}
   1106 
   1107 	/*
   1108 	 * Copy the credential so other references don't see our changes.
   1109 	 * Test to see if this is necessary first, since in the common case
   1110 	 * we won't need a private reference.
   1111 	 */
   1112 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1113 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1114 		l->l_cred = kauth_cred_copy(l->l_cred);
   1115 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1116 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1117 	}
   1118 
   1119 	/* Update the master credentials. */
   1120 	if (l->l_cred != p->p_cred) {
   1121 		kauth_cred_t ocred;
   1122 		mutex_enter(p->p_lock);
   1123 		ocred = p->p_cred;
   1124 		p->p_cred = kauth_cred_hold(l->l_cred);
   1125 		mutex_exit(p->p_lock);
   1126 		kauth_cred_free(ocred);
   1127 	}
   1128 
   1129 	return 0;
   1130 }
   1131 
   1132 static void
   1133 emulexec(struct lwp *l, struct exec_package *epp)
   1134 {
   1135 	struct proc		*p = l->l_proc;
   1136 
   1137 	/* The emulation root will usually have been found when we looked
   1138 	 * for the elf interpreter (or similar), if not look now. */
   1139 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1140 	    epp->ep_emul_root == NULL)
   1141 		emul_find_root(l, epp);
   1142 
   1143 	/* Any old emulation root got removed by fdcloseexec */
   1144 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1145 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1146 	rw_exit(&p->p_cwdi->cwdi_lock);
   1147 	epp->ep_emul_root = NULL;
   1148 	if (epp->ep_interp != NULL)
   1149 		vrele(epp->ep_interp);
   1150 
   1151 	/*
   1152 	 * Call emulation specific exec hook. This can setup per-process
   1153 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1154 	 *
   1155 	 * If we are executing process of different emulation than the
   1156 	 * original forked process, call e_proc_exit() of the old emulation
   1157 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1158 	 * same, the exec hook code should deallocate any old emulation
   1159 	 * resources held previously by this process.
   1160 	 */
   1161 	if (p->p_emul && p->p_emul->e_proc_exit
   1162 	    && p->p_emul != epp->ep_esch->es_emul)
   1163 		(*p->p_emul->e_proc_exit)(p);
   1164 
   1165 	/*
   1166 	 * Call exec hook. Emulation code may NOT store reference to anything
   1167 	 * from &pack.
   1168 	 */
   1169 	if (epp->ep_esch->es_emul->e_proc_exec)
   1170 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1171 
   1172 	/* update p_emul, the old value is no longer needed */
   1173 	p->p_emul = epp->ep_esch->es_emul;
   1174 
   1175 	/* ...and the same for p_execsw */
   1176 	p->p_execsw = epp->ep_esch;
   1177 
   1178 #ifdef __HAVE_SYSCALL_INTERN
   1179 	(*p->p_emul->e_syscall_intern)(p);
   1180 #endif
   1181 	ktremul();
   1182 }
   1183 
   1184 static int
   1185 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1186 	bool no_local_exec_lock, bool is_spawn)
   1187 {
   1188 	struct exec_package	* const epp = &data->ed_pack;
   1189 	int error = 0;
   1190 	struct proc		*p;
   1191 	struct vmspace		*vm;
   1192 
   1193 	/*
   1194 	 * In case of a posix_spawn operation, the child doing the exec
   1195 	 * might not hold the reader lock on exec_lock, but the parent
   1196 	 * will do this instead.
   1197 	 */
   1198 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1199 	KASSERT(!no_local_exec_lock || is_spawn);
   1200 	KASSERT(data != NULL);
   1201 
   1202 	p = l->l_proc;
   1203 
   1204 	/* Get rid of other LWPs. */
   1205 	if (p->p_nlwps > 1) {
   1206 		mutex_enter(p->p_lock);
   1207 		exit_lwps(l);
   1208 		mutex_exit(p->p_lock);
   1209 	}
   1210 	KDASSERT(p->p_nlwps == 1);
   1211 
   1212 	/*
   1213 	 * All of the other LWPs got rid of their robust futexes
   1214 	 * when they exited above, but we might still have some
   1215 	 * to dispose of.  Do that now.
   1216 	 */
   1217 	if (__predict_false(l->l_robust_head != 0)) {
   1218 		futex_release_all_lwp(l);
   1219 		/*
   1220 		 * Since this LWP will live on with a different
   1221 		 * program image, we need to clear the robust
   1222 		 * futex list pointer here.
   1223 		 */
   1224 		l->l_robust_head = 0;
   1225 	}
   1226 
   1227 	/* Destroy any lwpctl info. */
   1228 	if (p->p_lwpctl != NULL)
   1229 		lwp_ctl_exit();
   1230 
   1231 	/* Remove POSIX timers */
   1232 	ptimers_free(p, TIMERS_POSIX);
   1233 
   1234 	/* Set the PaX flags. */
   1235 	pax_set_flags(epp, p);
   1236 
   1237 	/*
   1238 	 * Do whatever is necessary to prepare the address space
   1239 	 * for remapping.  Note that this might replace the current
   1240 	 * vmspace with another!
   1241 	 *
   1242 	 * vfork(): do not touch any user space data in the new child
   1243 	 * until we have awoken the parent below, or it will defeat
   1244 	 * lazy pmap switching (on x86).
   1245 	 */
   1246 	if (is_spawn)
   1247 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1248 		    epp->ep_vm_maxaddr,
   1249 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1250 	else
   1251 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1252 		    epp->ep_vm_maxaddr,
   1253 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1254 	vm = p->p_vmspace;
   1255 
   1256 	vm->vm_taddr = (void *)epp->ep_taddr;
   1257 	vm->vm_tsize = btoc(epp->ep_tsize);
   1258 	vm->vm_daddr = (void*)epp->ep_daddr;
   1259 	vm->vm_dsize = btoc(epp->ep_dsize);
   1260 	vm->vm_ssize = btoc(epp->ep_ssize);
   1261 	vm->vm_issize = 0;
   1262 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1263 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1264 
   1265 	pax_aslr_init_vm(l, vm, epp);
   1266 
   1267 	cwdexec(p);
   1268 	fd_closeexec();		/* handle close on exec */
   1269 
   1270 	if (__predict_false(ktrace_on))
   1271 		fd_ktrexecfd();
   1272 
   1273 	execsigs(p);		/* reset caught signals */
   1274 
   1275 	mutex_enter(p->p_lock);
   1276 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1277 	p->p_acflag &= ~AFORK;
   1278 	p->p_flag |= PK_EXEC;
   1279 	mutex_exit(p->p_lock);
   1280 
   1281 	error = credexec(l, data);
   1282 	if (error)
   1283 		goto exec_abort;
   1284 
   1285 #if defined(__HAVE_RAS)
   1286 	/*
   1287 	 * Remove all RASs from the address space.
   1288 	 */
   1289 	ras_purgeall();
   1290 #endif
   1291 
   1292 	/*
   1293 	 * Stop profiling.
   1294 	 */
   1295 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1296 		mutex_spin_enter(&p->p_stmutex);
   1297 		stopprofclock(p);
   1298 		mutex_spin_exit(&p->p_stmutex);
   1299 	}
   1300 
   1301 	/*
   1302 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1303 	 * exited and exec()/exit() are the only places it will be cleared.
   1304 	 *
   1305 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
   1306 	 * in sched_vforkexec(), and it's then OK to start messing with user
   1307 	 * data.  See comment above.
   1308 	 */
   1309 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1310 		bool samecpu;
   1311 		lwp_t *lp;
   1312 
   1313 		mutex_enter(&proc_lock);
   1314 		lp = p->p_vforklwp;
   1315 		p->p_vforklwp = NULL;
   1316 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1317 
   1318 		/* Clear flags after cv_broadcast() (scheduler needs them). */
   1319 		p->p_lflag &= ~PL_PPWAIT;
   1320 		lp->l_vforkwaiting = false;
   1321 
   1322 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
   1323 		samecpu = (lp->l_cpu == curlwp->l_cpu);
   1324 		cv_broadcast(&lp->l_waitcv);
   1325 		mutex_exit(&proc_lock);
   1326 
   1327 		/* Give the parent its CPU back - find a new home. */
   1328 		KASSERT(!is_spawn);
   1329 		sched_vforkexec(l, samecpu);
   1330 	}
   1331 
   1332 	/* Now map address space. */
   1333 	error = execve_dovmcmds(l, data);
   1334 	if (error != 0)
   1335 		goto exec_abort;
   1336 
   1337 	pathexec(p, epp->ep_resolvedname);
   1338 
   1339 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1340 
   1341 	error = copyoutargs(data, l, newstack);
   1342 	if (error != 0)
   1343 		goto exec_abort;
   1344 
   1345 	doexechooks(p);
   1346 
   1347 	/*
   1348 	 * Set initial SP at the top of the stack.
   1349 	 *
   1350 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1351 	 * the end of arg/env strings.  Userland guesses the address of argc
   1352 	 * via ps_strings::ps_argvstr.
   1353 	 */
   1354 
   1355 	/* Setup new registers and do misc. setup. */
   1356 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1357 	if (epp->ep_esch->es_setregs)
   1358 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1359 
   1360 	/* Provide a consistent LWP private setting */
   1361 	(void)lwp_setprivate(l, NULL);
   1362 
   1363 	/* Discard all PCU state; need to start fresh */
   1364 	pcu_discard_all(l);
   1365 
   1366 	/* map the process's signal trampoline code */
   1367 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1368 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1369 		goto exec_abort;
   1370 	}
   1371 
   1372 	pool_put(&exec_pool, data->ed_argp);
   1373 
   1374 	/*
   1375 	 * Notify anyone who might care that we've exec'd.
   1376 	 *
   1377 	 * This is slightly racy; someone could sneak in and
   1378 	 * attach a knote after we've decided not to notify,
   1379 	 * or vice-versa, but that's not particularly bothersome.
   1380 	 * knote_proc_exec() will acquire p->p_lock as needed.
   1381 	 */
   1382 	if (!SLIST_EMPTY(&p->p_klist)) {
   1383 		knote_proc_exec(p);
   1384 	}
   1385 
   1386 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1387 
   1388 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1389 
   1390 	emulexec(l, epp);
   1391 
   1392 	/* Allow new references from the debugger/procfs. */
   1393 	rw_exit(&p->p_reflock);
   1394 	if (!no_local_exec_lock)
   1395 		rw_exit(&exec_lock);
   1396 
   1397 	mutex_enter(&proc_lock);
   1398 
   1399 	/* posix_spawn(3) reports a single event with implied exec(3) */
   1400 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
   1401 		mutex_enter(p->p_lock);
   1402 		eventswitch(TRAP_EXEC, 0, 0);
   1403 		mutex_enter(&proc_lock);
   1404 	}
   1405 
   1406 	if (p->p_sflag & PS_STOPEXEC) {
   1407 		ksiginfoq_t kq;
   1408 
   1409 		KASSERT(l->l_blcnt == 0);
   1410 		p->p_pptr->p_nstopchild++;
   1411 		p->p_waited = 0;
   1412 		mutex_enter(p->p_lock);
   1413 		ksiginfo_queue_init(&kq);
   1414 		sigclearall(p, &contsigmask, &kq);
   1415 		lwp_lock(l);
   1416 		l->l_stat = LSSTOP;
   1417 		p->p_stat = SSTOP;
   1418 		p->p_nrlwps--;
   1419 		lwp_unlock(l);
   1420 		mutex_exit(p->p_lock);
   1421 		mutex_exit(&proc_lock);
   1422 		lwp_lock(l);
   1423 		spc_lock(l->l_cpu);
   1424 		mi_switch(l);
   1425 		ksiginfo_queue_drain(&kq);
   1426 	} else {
   1427 		mutex_exit(&proc_lock);
   1428 	}
   1429 
   1430 	exec_path_free(data);
   1431 #ifdef TRACE_EXEC
   1432 	DPRINTF(("%s finished\n", __func__));
   1433 #endif
   1434 	return EJUSTRETURN;
   1435 
   1436  exec_abort:
   1437 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1438 	rw_exit(&p->p_reflock);
   1439 	if (!no_local_exec_lock)
   1440 		rw_exit(&exec_lock);
   1441 
   1442 	exec_path_free(data);
   1443 
   1444 	/*
   1445 	 * the old process doesn't exist anymore.  exit gracefully.
   1446 	 * get rid of the (new) address space we have created, if any, get rid
   1447 	 * of our namei data and vnode, and exit noting failure
   1448 	 */
   1449 	if (vm != NULL) {
   1450 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1451 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1452 	}
   1453 
   1454 	exec_free_emul_arg(epp);
   1455 	pool_put(&exec_pool, data->ed_argp);
   1456 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1457 	if (epp->ep_emul_root != NULL)
   1458 		vrele(epp->ep_emul_root);
   1459 	if (epp->ep_interp != NULL)
   1460 		vrele(epp->ep_interp);
   1461 
   1462 	/* Acquire the sched-state mutex (exit1() will release it). */
   1463 	if (!is_spawn) {
   1464 		mutex_enter(p->p_lock);
   1465 		exit1(l, error, SIGABRT);
   1466 	}
   1467 
   1468 	return error;
   1469 }
   1470 
   1471 int
   1472 execve1(struct lwp *l, bool has_path, const char *path, int fd,
   1473     char * const *args, char * const *envs,
   1474     execve_fetch_element_t fetch_element)
   1475 {
   1476 	struct execve_data data;
   1477 	int error;
   1478 
   1479 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
   1480 	    &data);
   1481 	if (error)
   1482 		return error;
   1483 	error = execve_runproc(l, &data, false, false);
   1484 	return error;
   1485 }
   1486 
   1487 static size_t
   1488 fromptrsz(const struct exec_package *epp)
   1489 {
   1490 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1491 }
   1492 
   1493 static size_t
   1494 ptrsz(const struct exec_package *epp)
   1495 {
   1496 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1497 }
   1498 
   1499 static size_t
   1500 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1501 {
   1502 	struct exec_package	* const epp = &data->ed_pack;
   1503 
   1504 	const size_t nargenvptrs =
   1505 	    1 +				/* long argc */
   1506 	    data->ed_argc +		/* char *argv[] */
   1507 	    1 +				/* \0 */
   1508 	    data->ed_envc +		/* char *env[] */
   1509 	    1;				/* \0 */
   1510 
   1511 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1512 	    + argenvstrlen			/* strings */
   1513 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1514 }
   1515 
   1516 static size_t
   1517 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1518 {
   1519 	struct exec_package	* const epp = &data->ed_pack;
   1520 
   1521 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1522 	    epp->ep_esch->es_emul->e_sigcode;
   1523 
   1524 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1525 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1526 
   1527 	const size_t sigcode_psstr_sz =
   1528 	    data->ed_szsigcode +	/* sigcode */
   1529 	    data->ed_ps_strings_sz +	/* ps_strings */
   1530 	    STACK_PTHREADSPACE;		/* pthread space */
   1531 
   1532 	const size_t stacklen =
   1533 	    data->ed_argslen +
   1534 	    gaplen +
   1535 	    sigcode_psstr_sz;
   1536 
   1537 	/* make the stack "safely" aligned */
   1538 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1539 }
   1540 
   1541 static int
   1542 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1543     char * const newstack)
   1544 {
   1545 	struct exec_package	* const epp = &data->ed_pack;
   1546 	struct proc		*p = l->l_proc;
   1547 	int			error;
   1548 
   1549 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1550 
   1551 	/* remember information about the process */
   1552 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1553 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1554 
   1555 	/*
   1556 	 * Allocate the stack address passed to the newly execve()'ed process.
   1557 	 *
   1558 	 * The new stack address will be set to the SP (stack pointer) register
   1559 	 * in setregs().
   1560 	 */
   1561 
   1562 	char *newargs = STACK_ALLOC(
   1563 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1564 
   1565 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1566 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1567 
   1568 	if (error) {
   1569 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1570 		return error;
   1571 	}
   1572 
   1573 	error = copyoutpsstrs(data, p);
   1574 	if (error != 0)
   1575 		return error;
   1576 
   1577 	return 0;
   1578 }
   1579 
   1580 static int
   1581 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1582 {
   1583 	struct exec_package	* const epp = &data->ed_pack;
   1584 	struct ps_strings32	arginfo32;
   1585 	void			*aip;
   1586 	int			error;
   1587 
   1588 	/* fill process ps_strings info */
   1589 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1590 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1591 
   1592 	if (epp->ep_flags & EXEC_32) {
   1593 		aip = &arginfo32;
   1594 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1595 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1596 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1597 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1598 	} else
   1599 		aip = &data->ed_arginfo;
   1600 
   1601 	/* copy out the process's ps_strings structure */
   1602 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1603 	    != 0) {
   1604 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1605 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1606 		return error;
   1607 	}
   1608 
   1609 	return 0;
   1610 }
   1611 
   1612 static int
   1613 copyinargs(struct execve_data * restrict data, char * const *args,
   1614     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1615 {
   1616 	struct exec_package	* const epp = &data->ed_pack;
   1617 	char			*dp;
   1618 	size_t			i;
   1619 	int			error;
   1620 
   1621 	dp = *dpp;
   1622 
   1623 	data->ed_argc = 0;
   1624 
   1625 	/* copy the fake args list, if there's one, freeing it as we go */
   1626 	if (epp->ep_flags & EXEC_HASARGL) {
   1627 		struct exec_fakearg	*fa = epp->ep_fa;
   1628 
   1629 		while (fa->fa_arg != NULL) {
   1630 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1631 			size_t len;
   1632 
   1633 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1634 			/* Count NUL into len. */
   1635 			if (len < maxlen)
   1636 				len++;
   1637 			else {
   1638 				while (fa->fa_arg != NULL) {
   1639 					kmem_free(fa->fa_arg, fa->fa_len);
   1640 					fa++;
   1641 				}
   1642 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1643 				epp->ep_flags &= ~EXEC_HASARGL;
   1644 				return E2BIG;
   1645 			}
   1646 			ktrexecarg(fa->fa_arg, len - 1);
   1647 			dp += len;
   1648 
   1649 			kmem_free(fa->fa_arg, fa->fa_len);
   1650 			fa++;
   1651 			data->ed_argc++;
   1652 		}
   1653 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1654 		epp->ep_flags &= ~EXEC_HASARGL;
   1655 	}
   1656 
   1657 	/*
   1658 	 * Read and count argument strings from user.
   1659 	 */
   1660 
   1661 	if (args == NULL) {
   1662 		DPRINTF(("%s: null args\n", __func__));
   1663 		return EINVAL;
   1664 	}
   1665 	if (epp->ep_flags & EXEC_SKIPARG)
   1666 		args = (const void *)((const char *)args + fromptrsz(epp));
   1667 	i = 0;
   1668 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1669 	if (error != 0) {
   1670 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1671 		return error;
   1672 	}
   1673 	data->ed_argc += i;
   1674 
   1675 	/*
   1676 	 * Read and count environment strings from user.
   1677 	 */
   1678 
   1679 	data->ed_envc = 0;
   1680 	/* environment need not be there */
   1681 	if (envs == NULL)
   1682 		goto done;
   1683 	i = 0;
   1684 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1685 	if (error != 0) {
   1686 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1687 		return error;
   1688 	}
   1689 	data->ed_envc += i;
   1690 
   1691 done:
   1692 	*dpp = dp;
   1693 
   1694 	return 0;
   1695 }
   1696 
   1697 static int
   1698 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1699     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1700     void (*ktr)(const void *, size_t))
   1701 {
   1702 	char			*dp, *sp;
   1703 	size_t			i;
   1704 	int			error;
   1705 
   1706 	dp = *dpp;
   1707 
   1708 	i = 0;
   1709 	while (1) {
   1710 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1711 		size_t len;
   1712 
   1713 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1714 			return error;
   1715 		}
   1716 		if (!sp)
   1717 			break;
   1718 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1719 			if (error == ENAMETOOLONG)
   1720 				error = E2BIG;
   1721 			return error;
   1722 		}
   1723 		if (__predict_false(ktrace_on))
   1724 			(*ktr)(dp, len - 1);
   1725 		dp += len;
   1726 		i++;
   1727 	}
   1728 
   1729 	*dpp = dp;
   1730 	*ip = i;
   1731 
   1732 	return 0;
   1733 }
   1734 
   1735 /*
   1736  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1737  * Those strings are located just after auxinfo.
   1738  */
   1739 int
   1740 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1741     char **stackp, void *argp)
   1742 {
   1743 	char	**cpp, *dp, *sp;
   1744 	size_t	len;
   1745 	void	*nullp;
   1746 	long	argc, envc;
   1747 	int	error;
   1748 
   1749 	cpp = (char **)*stackp;
   1750 	nullp = NULL;
   1751 	argc = arginfo->ps_nargvstr;
   1752 	envc = arginfo->ps_nenvstr;
   1753 
   1754 	/* argc on stack is long */
   1755 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1756 
   1757 	dp = (char *)(cpp +
   1758 	    1 +				/* long argc */
   1759 	    argc +			/* char *argv[] */
   1760 	    1 +				/* \0 */
   1761 	    envc +			/* char *env[] */
   1762 	    1) +			/* \0 */
   1763 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1764 	sp = argp;
   1765 
   1766 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1767 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1768 		return error;
   1769 	}
   1770 
   1771 	/* XXX don't copy them out, remap them! */
   1772 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1773 
   1774 	for (; --argc >= 0; sp += len, dp += len) {
   1775 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1776 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1777 			return error;
   1778 		}
   1779 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1780 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1781 			return error;
   1782 		}
   1783 	}
   1784 
   1785 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1786 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1787 		return error;
   1788 	}
   1789 
   1790 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1791 
   1792 	for (; --envc >= 0; sp += len, dp += len) {
   1793 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1794 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1795 			return error;
   1796 		}
   1797 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1798 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1799 			return error;
   1800 		}
   1801 
   1802 	}
   1803 
   1804 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1805 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1806 		return error;
   1807 	}
   1808 
   1809 	*stackp = (char *)cpp;
   1810 	return 0;
   1811 }
   1812 
   1813 
   1814 /*
   1815  * Add execsw[] entries.
   1816  */
   1817 int
   1818 exec_add(struct execsw *esp, int count)
   1819 {
   1820 	struct exec_entry	*it;
   1821 	int			i, error = 0;
   1822 
   1823 	if (count == 0) {
   1824 		return 0;
   1825 	}
   1826 
   1827 	/* Check for duplicates. */
   1828 	rw_enter(&exec_lock, RW_WRITER);
   1829 	for (i = 0; i < count; i++) {
   1830 		LIST_FOREACH(it, &ex_head, ex_list) {
   1831 			/* assume unique (makecmds, probe_func, emulation) */
   1832 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1833 			    it->ex_sw->u.elf_probe_func ==
   1834 			    esp[i].u.elf_probe_func &&
   1835 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1836 				rw_exit(&exec_lock);
   1837 				return EEXIST;
   1838 			}
   1839 		}
   1840 	}
   1841 
   1842 	/* Allocate new entries. */
   1843 	for (i = 0; i < count; i++) {
   1844 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1845 		it->ex_sw = &esp[i];
   1846 		error = exec_sigcode_alloc(it->ex_sw->es_emul);
   1847 		if (error != 0) {
   1848 			kmem_free(it, sizeof(*it));
   1849 			break;
   1850 		}
   1851 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1852 	}
   1853 	/* If even one fails, remove them all back. */
   1854 	if (error != 0) {
   1855 		for (i--; i >= 0; i--) {
   1856 			it = LIST_FIRST(&ex_head);
   1857 			LIST_REMOVE(it, ex_list);
   1858 			exec_sigcode_free(it->ex_sw->es_emul);
   1859 			kmem_free(it, sizeof(*it));
   1860 		}
   1861 		return error;
   1862 	}
   1863 
   1864 	/* update execsw[] */
   1865 	exec_init(0);
   1866 	rw_exit(&exec_lock);
   1867 	return 0;
   1868 }
   1869 
   1870 /*
   1871  * Remove execsw[] entry.
   1872  */
   1873 int
   1874 exec_remove(struct execsw *esp, int count)
   1875 {
   1876 	struct exec_entry	*it, *next;
   1877 	int			i;
   1878 	const struct proclist_desc *pd;
   1879 	proc_t			*p;
   1880 
   1881 	if (count == 0) {
   1882 		return 0;
   1883 	}
   1884 
   1885 	/* Abort if any are busy. */
   1886 	rw_enter(&exec_lock, RW_WRITER);
   1887 	for (i = 0; i < count; i++) {
   1888 		mutex_enter(&proc_lock);
   1889 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1890 			PROCLIST_FOREACH(p, pd->pd_list) {
   1891 				if (p->p_execsw == &esp[i]) {
   1892 					mutex_exit(&proc_lock);
   1893 					rw_exit(&exec_lock);
   1894 					return EBUSY;
   1895 				}
   1896 			}
   1897 		}
   1898 		mutex_exit(&proc_lock);
   1899 	}
   1900 
   1901 	/* None are busy, so remove them all. */
   1902 	for (i = 0; i < count; i++) {
   1903 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1904 			next = LIST_NEXT(it, ex_list);
   1905 			if (it->ex_sw == &esp[i]) {
   1906 				LIST_REMOVE(it, ex_list);
   1907 				exec_sigcode_free(it->ex_sw->es_emul);
   1908 				kmem_free(it, sizeof(*it));
   1909 				break;
   1910 			}
   1911 		}
   1912 	}
   1913 
   1914 	/* update execsw[] */
   1915 	exec_init(0);
   1916 	rw_exit(&exec_lock);
   1917 	return 0;
   1918 }
   1919 
   1920 /*
   1921  * Initialize exec structures. If init_boot is true, also does necessary
   1922  * one-time initialization (it's called from main() that way).
   1923  * Once system is multiuser, this should be called with exec_lock held,
   1924  * i.e. via exec_{add|remove}().
   1925  */
   1926 int
   1927 exec_init(int init_boot)
   1928 {
   1929 	const struct execsw 	**sw;
   1930 	struct exec_entry	*ex;
   1931 	SLIST_HEAD(,exec_entry)	first;
   1932 	SLIST_HEAD(,exec_entry)	any;
   1933 	SLIST_HEAD(,exec_entry)	last;
   1934 	int			i, sz;
   1935 
   1936 	if (init_boot) {
   1937 		/* do one-time initializations */
   1938 		vaddr_t vmin = 0, vmax;
   1939 
   1940 		rw_init(&exec_lock);
   1941 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1942 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1943 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1944 		    "execargs", &exec_palloc, IPL_NONE);
   1945 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1946 	} else {
   1947 		KASSERT(rw_write_held(&exec_lock));
   1948 	}
   1949 
   1950 	/* Sort each entry onto the appropriate queue. */
   1951 	SLIST_INIT(&first);
   1952 	SLIST_INIT(&any);
   1953 	SLIST_INIT(&last);
   1954 	sz = 0;
   1955 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1956 		switch(ex->ex_sw->es_prio) {
   1957 		case EXECSW_PRIO_FIRST:
   1958 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1959 			break;
   1960 		case EXECSW_PRIO_ANY:
   1961 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1962 			break;
   1963 		case EXECSW_PRIO_LAST:
   1964 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1965 			break;
   1966 		default:
   1967 			panic("%s", __func__);
   1968 			break;
   1969 		}
   1970 		sz++;
   1971 	}
   1972 
   1973 	/*
   1974 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1975 	 * allocation.
   1976 	 */
   1977 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1978 	i = 0;
   1979 	SLIST_FOREACH(ex, &first, ex_slist) {
   1980 		sw[i++] = ex->ex_sw;
   1981 	}
   1982 	SLIST_FOREACH(ex, &any, ex_slist) {
   1983 		sw[i++] = ex->ex_sw;
   1984 	}
   1985 	SLIST_FOREACH(ex, &last, ex_slist) {
   1986 		sw[i++] = ex->ex_sw;
   1987 	}
   1988 
   1989 	/* Replace old execsw[] and free used memory. */
   1990 	if (execsw != NULL) {
   1991 		kmem_free(__UNCONST(execsw),
   1992 		    nexecs * sizeof(struct execsw *) + 1);
   1993 	}
   1994 	execsw = sw;
   1995 	nexecs = sz;
   1996 
   1997 	/* Figure out the maximum size of an exec header. */
   1998 	exec_maxhdrsz = sizeof(int);
   1999 	for (i = 0; i < nexecs; i++) {
   2000 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   2001 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   2002 	}
   2003 
   2004 	return 0;
   2005 }
   2006 
   2007 int
   2008 exec_sigcode_alloc(const struct emul *e)
   2009 {
   2010 	vaddr_t va;
   2011 	vsize_t sz;
   2012 	int error;
   2013 	struct uvm_object *uobj;
   2014 
   2015 	KASSERT(rw_lock_held(&exec_lock));
   2016 
   2017 	if (e == NULL || e->e_sigobject == NULL)
   2018 		return 0;
   2019 
   2020 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   2021 	if (sz == 0)
   2022 		return 0;
   2023 
   2024 	/*
   2025 	 * Create a sigobject for this emulation.
   2026 	 *
   2027 	 * sigobject is an anonymous memory object (just like SYSV shared
   2028 	 * memory) that we keep a permanent reference to and that we map
   2029 	 * in all processes that need this sigcode. The creation is simple,
   2030 	 * we create an object, add a permanent reference to it, map it in
   2031 	 * kernel space, copy out the sigcode to it and unmap it.
   2032 	 * We map it with PROT_READ|PROT_EXEC into the process just
   2033 	 * the way sys_mmap() would map it.
   2034 	 */
   2035 	if (*e->e_sigobject == NULL) {
   2036 		uobj = uao_create(sz, 0);
   2037 		(*uobj->pgops->pgo_reference)(uobj);
   2038 		va = vm_map_min(kernel_map);
   2039 		if ((error = uvm_map(kernel_map, &va, round_page(sz),
   2040 		    uobj, 0, 0,
   2041 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   2042 		    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   2043 			printf("sigcode kernel mapping failed %d\n", error);
   2044 			(*uobj->pgops->pgo_detach)(uobj);
   2045 			return error;
   2046 		}
   2047 		memcpy((void *)va, e->e_sigcode, sz);
   2048 #ifdef PMAP_NEED_PROCWR
   2049 		pmap_procwr(&proc0, va, sz);
   2050 #endif
   2051 		uvm_unmap(kernel_map, va, va + round_page(sz));
   2052 		*e->e_sigobject = uobj;
   2053 		KASSERT(uobj->uo_refs == 1);
   2054 	} else {
   2055 		/* if already created, reference++ */
   2056 		uobj = *e->e_sigobject;
   2057 		(*uobj->pgops->pgo_reference)(uobj);
   2058 	}
   2059 
   2060 	return 0;
   2061 }
   2062 
   2063 void
   2064 exec_sigcode_free(const struct emul *e)
   2065 {
   2066 	struct uvm_object *uobj;
   2067 
   2068 	KASSERT(rw_lock_held(&exec_lock));
   2069 
   2070 	if (e == NULL || e->e_sigobject == NULL)
   2071 		return;
   2072 
   2073 	uobj = *e->e_sigobject;
   2074 	if (uobj == NULL)
   2075 		return;
   2076 
   2077 	if (uobj->uo_refs == 1)
   2078 		*e->e_sigobject = NULL;	/* I'm the last person to reference. */
   2079 	(*uobj->pgops->pgo_detach)(uobj);
   2080 }
   2081 
   2082 static int
   2083 exec_sigcode_map(struct proc *p, const struct emul *e)
   2084 {
   2085 	vaddr_t va;
   2086 	vsize_t sz;
   2087 	int error;
   2088 	struct uvm_object *uobj;
   2089 
   2090 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   2091 	if (e->e_sigobject == NULL || sz == 0)
   2092 		return 0;
   2093 
   2094 	uobj = *e->e_sigobject;
   2095 	if (uobj == NULL)
   2096 		return 0;
   2097 
   2098 	/* Just a hint to uvm_map where to put it. */
   2099 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   2100 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   2101 
   2102 #ifdef __alpha__
   2103 	/*
   2104 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   2105 	 * which causes the above calculation to put the sigcode at
   2106 	 * an invalid address.  Put it just below the text instead.
   2107 	 */
   2108 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   2109 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   2110 	}
   2111 #endif
   2112 
   2113 	(*uobj->pgops->pgo_reference)(uobj);
   2114 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   2115 			uobj, 0, 0,
   2116 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   2117 				    UVM_ADV_RANDOM, 0));
   2118 	if (error) {
   2119 		DPRINTF(("%s, %d: map %p "
   2120 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   2121 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   2122 		    va, error));
   2123 		(*uobj->pgops->pgo_detach)(uobj);
   2124 		return error;
   2125 	}
   2126 	p->p_sigctx.ps_sigcode = (void *)va;
   2127 	return 0;
   2128 }
   2129 
   2130 /*
   2131  * Release a refcount on spawn_exec_data and destroy memory, if this
   2132  * was the last one.
   2133  */
   2134 static void
   2135 spawn_exec_data_release(struct spawn_exec_data *data)
   2136 {
   2137 
   2138 	membar_release();
   2139 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   2140 		return;
   2141 	membar_acquire();
   2142 
   2143 	cv_destroy(&data->sed_cv_child_ready);
   2144 	mutex_destroy(&data->sed_mtx_child);
   2145 
   2146 	if (data->sed_actions)
   2147 		posix_spawn_fa_free(data->sed_actions,
   2148 		    data->sed_actions->len);
   2149 	if (data->sed_attrs)
   2150 		kmem_free(data->sed_attrs,
   2151 		    sizeof(*data->sed_attrs));
   2152 	kmem_free(data, sizeof(*data));
   2153 }
   2154 
   2155 static int
   2156 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
   2157 {
   2158 	struct lwp *l = curlwp;
   2159 	register_t retval;
   2160 	int error, newfd;
   2161 
   2162 	if (actions == NULL)
   2163 		return 0;
   2164 
   2165 	for (size_t i = 0; i < actions->len; i++) {
   2166 		const struct posix_spawn_file_actions_entry *fae =
   2167 		    &actions->fae[i];
   2168 		switch (fae->fae_action) {
   2169 		case FAE_OPEN:
   2170 			if (fd_getfile(fae->fae_fildes) != NULL) {
   2171 				error = fd_close(fae->fae_fildes);
   2172 				if (error)
   2173 					return error;
   2174 			}
   2175 			error = fd_open(fae->fae_path, fae->fae_oflag,
   2176 			    fae->fae_mode, &newfd);
   2177 			if (error)
   2178 				return error;
   2179 			if (newfd != fae->fae_fildes) {
   2180 				error = dodup(l, newfd,
   2181 				    fae->fae_fildes, 0, &retval);
   2182 				if (fd_getfile(newfd) != NULL)
   2183 					fd_close(newfd);
   2184 			}
   2185 			break;
   2186 		case FAE_DUP2:
   2187 			error = dodup(l, fae->fae_fildes,
   2188 			    fae->fae_newfildes, 0, &retval);
   2189 			break;
   2190 		case FAE_CLOSE:
   2191 			if (fd_getfile(fae->fae_fildes) == NULL) {
   2192 				return EBADF;
   2193 			}
   2194 			error = fd_close(fae->fae_fildes);
   2195 			break;
   2196 		case FAE_CHDIR:
   2197 			error = do_sys_chdir(l, fae->fae_chdir_path,
   2198 			    UIO_SYSSPACE, &retval);
   2199 			break;
   2200 		case FAE_FCHDIR:
   2201 			error = do_sys_fchdir(l, fae->fae_fildes, &retval);
   2202 			break;
   2203 		}
   2204 		if (error)
   2205 			return error;
   2206 	}
   2207 	return 0;
   2208 }
   2209 
   2210 static int
   2211 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
   2212 {
   2213 	struct sigaction sigact;
   2214 	int error;
   2215 	struct proc *p = curproc;
   2216 	struct lwp *l = curlwp;
   2217 
   2218 	if (attrs == NULL)
   2219 		return 0;
   2220 
   2221 	memset(&sigact, 0, sizeof(sigact));
   2222 	sigact._sa_u._sa_handler = SIG_DFL;
   2223 	sigact.sa_flags = 0;
   2224 
   2225 	/*
   2226 	 * set state to SSTOP so that this proc can be found by pid.
   2227 	 * see proc_enterprp, do_sched_setparam below
   2228 	 */
   2229 	mutex_enter(&proc_lock);
   2230 	/*
   2231 	 * p_stat should be SACTIVE, so we need to adjust the
   2232 	 * parent's p_nstopchild here.  For safety, just make
   2233 	 * we're on the good side of SDEAD before we adjust.
   2234 	 */
   2235 	int ostat = p->p_stat;
   2236 	KASSERT(ostat < SSTOP);
   2237 	p->p_stat = SSTOP;
   2238 	p->p_waited = 0;
   2239 	p->p_pptr->p_nstopchild++;
   2240 	mutex_exit(&proc_lock);
   2241 
   2242 	/* Set process group */
   2243 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2244 		pid_t mypid = p->p_pid;
   2245 		pid_t pgrp = attrs->sa_pgroup;
   2246 
   2247 		if (pgrp == 0)
   2248 			pgrp = mypid;
   2249 
   2250 		error = proc_enterpgrp(parent, mypid, pgrp, false);
   2251 		if (error)
   2252 			goto out;
   2253 	}
   2254 
   2255 	/* Set scheduler policy */
   2256 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2257 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
   2258 		    &attrs->sa_schedparam);
   2259 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
   2260 		error = do_sched_setparam(parent->p_pid, 0,
   2261 		    SCHED_NONE, &attrs->sa_schedparam);
   2262 	}
   2263 	if (error)
   2264 		goto out;
   2265 
   2266 	/* Reset user ID's */
   2267 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2268 		error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
   2269 		     ID_E_EQ_R | ID_E_EQ_S);
   2270 		if (error)
   2271 			return error;
   2272 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
   2273 		    ID_E_EQ_R | ID_E_EQ_S);
   2274 		if (error)
   2275 			goto out;
   2276 	}
   2277 
   2278 	/* Set signal masks/defaults */
   2279 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2280 		mutex_enter(p->p_lock);
   2281 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
   2282 		mutex_exit(p->p_lock);
   2283 		if (error)
   2284 			goto out;
   2285 	}
   2286 
   2287 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2288 		/*
   2289 		 * The following sigaction call is using a sigaction
   2290 		 * version 0 trampoline which is in the compatibility
   2291 		 * code only. This is not a problem because for SIG_DFL
   2292 		 * and SIG_IGN, the trampolines are now ignored. If they
   2293 		 * were not, this would be a problem because we are
   2294 		 * holding the exec_lock, and the compat code needs
   2295 		 * to do the same in order to replace the trampoline
   2296 		 * code of the process.
   2297 		 */
   2298 		for (int i = 1; i <= NSIG; i++) {
   2299 			if (sigismember(&attrs->sa_sigdefault, i))
   2300 				sigaction1(l, i, &sigact, NULL, NULL, 0);
   2301 		}
   2302 	}
   2303 	error = 0;
   2304 out:
   2305 	mutex_enter(&proc_lock);
   2306 	p->p_stat = ostat;
   2307 	p->p_pptr->p_nstopchild--;
   2308 	mutex_exit(&proc_lock);
   2309 	return error;
   2310 }
   2311 
   2312 /*
   2313  * A child lwp of a posix_spawn operation starts here and ends up in
   2314  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   2315  * manipulations in between.
   2316  * The parent waits for the child, as it is not clear whether the child
   2317  * will be able to acquire its own exec_lock. If it can, the parent can
   2318  * be released early and continue running in parallel. If not (or if the
   2319  * magic debug flag is passed in the scheduler attribute struct), the
   2320  * child rides on the parent's exec lock until it is ready to return to
   2321  * to userland - and only then releases the parent. This method loses
   2322  * concurrency, but improves error reporting.
   2323  */
   2324 static void
   2325 spawn_return(void *arg)
   2326 {
   2327 	struct spawn_exec_data *spawn_data = arg;
   2328 	struct lwp *l = curlwp;
   2329 	struct proc *p = l->l_proc;
   2330 	int error;
   2331 	bool have_reflock;
   2332 	bool parent_is_waiting = true;
   2333 
   2334 	/*
   2335 	 * Check if we can release parent early.
   2336 	 * We either need to have no sed_attrs, or sed_attrs does not
   2337 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2338 	 * safe access to the parent proc (passed in sed_parent).
   2339 	 * We then try to get the exec_lock, and only if that works, we can
   2340 	 * release the parent here already.
   2341 	 */
   2342 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
   2343 	if ((!attrs || (attrs->sa_flags
   2344 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2345 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2346 		parent_is_waiting = false;
   2347 		mutex_enter(&spawn_data->sed_mtx_child);
   2348 		cv_signal(&spawn_data->sed_cv_child_ready);
   2349 		mutex_exit(&spawn_data->sed_mtx_child);
   2350 	}
   2351 
   2352 	/* don't allow debugger access yet */
   2353 	rw_enter(&p->p_reflock, RW_WRITER);
   2354 	have_reflock = true;
   2355 
   2356 	/* handle posix_spawnattr */
   2357 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
   2358 	if (error)
   2359 		goto report_error;
   2360 
   2361 	/* handle posix_spawn_file_actions */
   2362 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
   2363 	if (error)
   2364 		goto report_error;
   2365 
   2366 	/* now do the real exec */
   2367 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2368 	    true);
   2369 	have_reflock = false;
   2370 	if (error == EJUSTRETURN)
   2371 		error = 0;
   2372 	else if (error)
   2373 		goto report_error;
   2374 
   2375 	if (parent_is_waiting) {
   2376 		mutex_enter(&spawn_data->sed_mtx_child);
   2377 		cv_signal(&spawn_data->sed_cv_child_ready);
   2378 		mutex_exit(&spawn_data->sed_mtx_child);
   2379 	}
   2380 
   2381 	/* release our refcount on the data */
   2382 	spawn_exec_data_release(spawn_data);
   2383 
   2384 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
   2385 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   2386 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
   2387 	}
   2388 
   2389 	/* and finally: leave to userland for the first time */
   2390 	cpu_spawn_return(l);
   2391 
   2392 	/* NOTREACHED */
   2393 	return;
   2394 
   2395  report_error:
   2396 	if (have_reflock) {
   2397 		/*
   2398 		 * We have not passed through execve_runproc(),
   2399 		 * which would have released the p_reflock and also
   2400 		 * taken ownership of the sed_exec part of spawn_data,
   2401 		 * so release/free both here.
   2402 		 */
   2403 		rw_exit(&p->p_reflock);
   2404 		execve_free_data(&spawn_data->sed_exec);
   2405 	}
   2406 
   2407 	if (parent_is_waiting) {
   2408 		/* pass error to parent */
   2409 		mutex_enter(&spawn_data->sed_mtx_child);
   2410 		spawn_data->sed_error = error;
   2411 		cv_signal(&spawn_data->sed_cv_child_ready);
   2412 		mutex_exit(&spawn_data->sed_mtx_child);
   2413 	} else {
   2414 		rw_exit(&exec_lock);
   2415 	}
   2416 
   2417 	/* release our refcount on the data */
   2418 	spawn_exec_data_release(spawn_data);
   2419 
   2420 	/* done, exit */
   2421 	mutex_enter(p->p_lock);
   2422 	/*
   2423 	 * Posix explicitly asks for an exit code of 127 if we report
   2424 	 * errors from the child process - so, unfortunately, there
   2425 	 * is no way to report a more exact error code.
   2426 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2427 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2428 	 */
   2429 	exit1(l, 127, 0);
   2430 }
   2431 
   2432 static __inline char **
   2433 posix_spawn_fae_path(struct posix_spawn_file_actions_entry *fae)
   2434 {
   2435 	switch (fae->fae_action) {
   2436 	case FAE_OPEN:
   2437 		return &fae->fae_path;
   2438 	case FAE_CHDIR:
   2439 		return &fae->fae_chdir_path;
   2440 	default:
   2441 		return NULL;
   2442 	}
   2443 }
   2444 
   2445 void
   2446 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2447 {
   2448 
   2449 	for (size_t i = 0; i < len; i++) {
   2450 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
   2451 		if (pathp)
   2452 			kmem_strfree(*pathp);
   2453 	}
   2454 	if (fa->len > 0)
   2455 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2456 	kmem_free(fa, sizeof(*fa));
   2457 }
   2458 
   2459 static int
   2460 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2461     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2462 {
   2463 	struct posix_spawn_file_actions *fa;
   2464 	struct posix_spawn_file_actions_entry *fae;
   2465 	char *pbuf = NULL;
   2466 	int error;
   2467 	size_t i = 0;
   2468 
   2469 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2470 	error = copyin(ufa, fa, sizeof(*fa));
   2471 	if (error || fa->len == 0) {
   2472 		kmem_free(fa, sizeof(*fa));
   2473 		return error;	/* 0 if not an error, and len == 0 */
   2474 	}
   2475 
   2476 	if (fa->len > lim) {
   2477 		kmem_free(fa, sizeof(*fa));
   2478 		return EINVAL;
   2479 	}
   2480 
   2481 	fa->size = fa->len;
   2482 	size_t fal = fa->len * sizeof(*fae);
   2483 	fae = fa->fae;
   2484 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2485 	error = copyin(fae, fa->fae, fal);
   2486 	if (error)
   2487 		goto out;
   2488 
   2489 	pbuf = PNBUF_GET();
   2490 	for (; i < fa->len; i++) {
   2491 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
   2492 		if (pathp == NULL)
   2493 			continue;
   2494 		error = copyinstr(*pathp, pbuf, MAXPATHLEN, &fal);
   2495 		if (error)
   2496 			goto out;
   2497 		*pathp = kmem_alloc(fal, KM_SLEEP);
   2498 		memcpy(*pathp, pbuf, fal);
   2499 	}
   2500 	PNBUF_PUT(pbuf);
   2501 
   2502 	*fap = fa;
   2503 	return 0;
   2504 out:
   2505 	if (pbuf)
   2506 		PNBUF_PUT(pbuf);
   2507 	posix_spawn_fa_free(fa, i);
   2508 	return error;
   2509 }
   2510 
   2511 /*
   2512  * N.B. increments nprocs upon success.  Callers need to drop nprocs if
   2513  * they fail for some other reason.
   2514  */
   2515 int
   2516 check_posix_spawn(struct lwp *l1)
   2517 {
   2518 	int error, tnprocs, count;
   2519 	uid_t uid;
   2520 	struct proc *p1;
   2521 
   2522 	p1 = l1->l_proc;
   2523 	uid = kauth_cred_getuid(l1->l_cred);
   2524 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2525 
   2526 	/*
   2527 	 * Although process entries are dynamically created, we still keep
   2528 	 * a global limit on the maximum number we will create.
   2529 	 */
   2530 	if (__predict_false(tnprocs >= maxproc))
   2531 		error = -1;
   2532 	else
   2533 		error = kauth_authorize_process(l1->l_cred,
   2534 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2535 
   2536 	if (error) {
   2537 		atomic_dec_uint(&nprocs);
   2538 		return EAGAIN;
   2539 	}
   2540 
   2541 	/*
   2542 	 * Enforce limits.
   2543 	 */
   2544 	count = chgproccnt(uid, 1);
   2545 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2546 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2547 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2548 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2549 		(void)chgproccnt(uid, -1);
   2550 		atomic_dec_uint(&nprocs);
   2551 		return EAGAIN;
   2552 	}
   2553 
   2554 	return 0;
   2555 }
   2556 
   2557 int
   2558 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2559 	struct posix_spawn_file_actions *fa,
   2560 	struct posix_spawnattr *sa,
   2561 	char *const *argv, char *const *envp,
   2562 	execve_fetch_element_t fetch)
   2563 {
   2564 
   2565 	struct proc *p1, *p2;
   2566 	struct lwp *l2;
   2567 	int error;
   2568 	struct spawn_exec_data *spawn_data;
   2569 	vaddr_t uaddr = 0;
   2570 	pid_t pid;
   2571 	bool have_exec_lock = false;
   2572 
   2573 	p1 = l1->l_proc;
   2574 
   2575 	/* Allocate and init spawn_data */
   2576 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2577 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2578 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2579 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2580 	mutex_enter(&spawn_data->sed_mtx_child);
   2581 
   2582 	/*
   2583 	 * Do the first part of the exec now, collect state
   2584 	 * in spawn_data.
   2585 	 */
   2586 	error = execve_loadvm(l1, true, path, -1, argv,
   2587 	    envp, fetch, &spawn_data->sed_exec);
   2588 	if (error == EJUSTRETURN)
   2589 		error = 0;
   2590 	else if (error)
   2591 		goto error_exit;
   2592 
   2593 	have_exec_lock = true;
   2594 
   2595 	/*
   2596 	 * Allocate virtual address space for the U-area now, while it
   2597 	 * is still easy to abort the fork operation if we're out of
   2598 	 * kernel virtual address space.
   2599 	 */
   2600 	uaddr = uvm_uarea_alloc();
   2601 	if (__predict_false(uaddr == 0)) {
   2602 		error = ENOMEM;
   2603 		goto error_exit;
   2604 	}
   2605 
   2606 	/*
   2607 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2608 	 * replace it with its own before returning to userland
   2609 	 * in the child.
   2610 	 */
   2611 	p2 = proc_alloc();
   2612 	if (p2 == NULL) {
   2613 		/* We were unable to allocate a process ID. */
   2614 		error = EAGAIN;
   2615 		goto error_exit;
   2616 	}
   2617 
   2618 	/*
   2619 	 * This is a point of no return, we will have to go through
   2620 	 * the child proc to properly clean it up past this point.
   2621 	 */
   2622 	pid = p2->p_pid;
   2623 
   2624 	/*
   2625 	 * Make a proc table entry for the new process.
   2626 	 * Start by zeroing the section of proc that is zero-initialized,
   2627 	 * then copy the section that is copied directly from the parent.
   2628 	 */
   2629 	memset(&p2->p_startzero, 0,
   2630 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2631 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2632 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2633 	p2->p_vmspace = proc0.p_vmspace;
   2634 
   2635 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2636 
   2637 	LIST_INIT(&p2->p_lwps);
   2638 	LIST_INIT(&p2->p_sigwaiters);
   2639 
   2640 	/*
   2641 	 * Duplicate sub-structures as needed.
   2642 	 * Increase reference counts on shared objects.
   2643 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2644 	 * handling are important in order to keep a consistent behaviour
   2645 	 * for the child after the fork.  If we are a 32-bit process, the
   2646 	 * child will be too.
   2647 	 */
   2648 	p2->p_flag =
   2649 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2650 	p2->p_emul = p1->p_emul;
   2651 	p2->p_execsw = p1->p_execsw;
   2652 
   2653 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2654 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2655 	rw_init(&p2->p_reflock);
   2656 	cv_init(&p2->p_waitcv, "wait");
   2657 	cv_init(&p2->p_lwpcv, "lwpwait");
   2658 
   2659 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2660 
   2661 	kauth_proc_fork(p1, p2);
   2662 
   2663 	p2->p_raslist = NULL;
   2664 	p2->p_fd = fd_copy();
   2665 
   2666 	/* XXX racy */
   2667 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2668 
   2669 	p2->p_cwdi = cwdinit();
   2670 
   2671 	/*
   2672 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2673 	 * we just need increase pl_refcnt.
   2674 	 */
   2675 	if (!p1->p_limit->pl_writeable) {
   2676 		lim_addref(p1->p_limit);
   2677 		p2->p_limit = p1->p_limit;
   2678 	} else {
   2679 		p2->p_limit = lim_copy(p1->p_limit);
   2680 	}
   2681 
   2682 	p2->p_lflag = 0;
   2683 	l1->l_vforkwaiting = false;
   2684 	p2->p_sflag = 0;
   2685 	p2->p_slflag = 0;
   2686 	p2->p_pptr = p1;
   2687 	p2->p_ppid = p1->p_pid;
   2688 	LIST_INIT(&p2->p_children);
   2689 
   2690 	p2->p_aio = NULL;
   2691 
   2692 #ifdef KTRACE
   2693 	/*
   2694 	 * Copy traceflag and tracefile if enabled.
   2695 	 * If not inherited, these were zeroed above.
   2696 	 */
   2697 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2698 		mutex_enter(&ktrace_lock);
   2699 		p2->p_traceflag = p1->p_traceflag;
   2700 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2701 			ktradref(p2);
   2702 		mutex_exit(&ktrace_lock);
   2703 	}
   2704 #endif
   2705 
   2706 	/*
   2707 	 * Create signal actions for the child process.
   2708 	 */
   2709 	p2->p_sigacts = sigactsinit(p1, 0);
   2710 	mutex_enter(p1->p_lock);
   2711 	p2->p_sflag |=
   2712 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2713 	sched_proc_fork(p1, p2);
   2714 	mutex_exit(p1->p_lock);
   2715 
   2716 	p2->p_stflag = p1->p_stflag;
   2717 
   2718 	/*
   2719 	 * p_stats.
   2720 	 * Copy parts of p_stats, and zero out the rest.
   2721 	 */
   2722 	p2->p_stats = pstatscopy(p1->p_stats);
   2723 
   2724 	/* copy over machdep flags to the new proc */
   2725 	cpu_proc_fork(p1, p2);
   2726 
   2727 	/*
   2728 	 * Prepare remaining parts of spawn data
   2729 	 */
   2730 	spawn_data->sed_actions = fa;
   2731 	spawn_data->sed_attrs = sa;
   2732 
   2733 	spawn_data->sed_parent = p1;
   2734 
   2735 	/* create LWP */
   2736 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2737 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2738 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2739 
   2740 	/*
   2741 	 * Copy the credential so other references don't see our changes.
   2742 	 * Test to see if this is necessary first, since in the common case
   2743 	 * we won't need a private reference.
   2744 	 */
   2745 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2746 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2747 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2748 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2749 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2750 	}
   2751 
   2752 	/* Update the master credentials. */
   2753 	if (l2->l_cred != p2->p_cred) {
   2754 		kauth_cred_t ocred;
   2755 		mutex_enter(p2->p_lock);
   2756 		ocred = p2->p_cred;
   2757 		p2->p_cred = kauth_cred_hold(l2->l_cred);
   2758 		mutex_exit(p2->p_lock);
   2759 		kauth_cred_free(ocred);
   2760 	}
   2761 
   2762 	*child_ok = true;
   2763 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2764 #if 0
   2765 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2766 #endif
   2767 
   2768 	/*
   2769 	 * It's now safe for the scheduler and other processes to see the
   2770 	 * child process.
   2771 	 */
   2772 	mutex_enter(&proc_lock);
   2773 
   2774 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2775 		p2->p_lflag |= PL_CONTROLT;
   2776 
   2777 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2778 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2779 
   2780 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
   2781 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2782 		proc_changeparent(p2, p1->p_pptr);
   2783 		SET(p2->p_slflag, PSL_TRACEDCHILD);
   2784 	}
   2785 
   2786 	p2->p_oppid = p1->p_pid;  /* Remember the original parent id. */
   2787 
   2788 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2789 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2790 
   2791 	p2->p_trace_enabled = trace_is_enabled(p2);
   2792 #ifdef __HAVE_SYSCALL_INTERN
   2793 	(*p2->p_emul->e_syscall_intern)(p2);
   2794 #endif
   2795 
   2796 	/*
   2797 	 * Make child runnable, set start time, and add to run queue except
   2798 	 * if the parent requested the child to start in SSTOP state.
   2799 	 */
   2800 	mutex_enter(p2->p_lock);
   2801 
   2802 	getmicrotime(&p2->p_stats->p_start);
   2803 
   2804 	lwp_lock(l2);
   2805 	KASSERT(p2->p_nrlwps == 1);
   2806 	KASSERT(l2->l_stat == LSIDL);
   2807 	p2->p_nrlwps = 1;
   2808 	p2->p_stat = SACTIVE;
   2809 	setrunnable(l2);
   2810 	/* LWP now unlocked */
   2811 
   2812 	mutex_exit(p2->p_lock);
   2813 	mutex_exit(&proc_lock);
   2814 
   2815 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2816 	error = spawn_data->sed_error;
   2817 	mutex_exit(&spawn_data->sed_mtx_child);
   2818 	spawn_exec_data_release(spawn_data);
   2819 
   2820 	rw_exit(&p1->p_reflock);
   2821 	rw_exit(&exec_lock);
   2822 	have_exec_lock = false;
   2823 
   2824 	*pid_res = pid;
   2825 
   2826 	if (error)
   2827 		return error;
   2828 
   2829 	if (p1->p_slflag & PSL_TRACED) {
   2830 		/* Paranoid check */
   2831 		mutex_enter(&proc_lock);
   2832 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
   2833 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2834 			mutex_exit(&proc_lock);
   2835 			return 0;
   2836 		}
   2837 
   2838 		mutex_enter(p1->p_lock);
   2839 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
   2840 	}
   2841 	return 0;
   2842 
   2843  error_exit:
   2844 	if (have_exec_lock) {
   2845 		execve_free_data(&spawn_data->sed_exec);
   2846 		rw_exit(&p1->p_reflock);
   2847 		rw_exit(&exec_lock);
   2848 	}
   2849 	mutex_exit(&spawn_data->sed_mtx_child);
   2850 	spawn_exec_data_release(spawn_data);
   2851 	if (uaddr != 0)
   2852 		uvm_uarea_free(uaddr);
   2853 
   2854 	return error;
   2855 }
   2856 
   2857 int
   2858 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2859     register_t *retval)
   2860 {
   2861 	/* {
   2862 		syscallarg(pid_t *) pid;
   2863 		syscallarg(const char *) path;
   2864 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2865 		syscallarg(const struct posix_spawnattr *) attrp;
   2866 		syscallarg(char *const *) argv;
   2867 		syscallarg(char *const *) envp;
   2868 	} */
   2869 
   2870 	int error;
   2871 	struct posix_spawn_file_actions *fa = NULL;
   2872 	struct posix_spawnattr *sa = NULL;
   2873 	pid_t pid;
   2874 	bool child_ok = false;
   2875 	rlim_t max_fileactions;
   2876 	proc_t *p = l1->l_proc;
   2877 
   2878 	/* check_posix_spawn() increments nprocs for us. */
   2879 	error = check_posix_spawn(l1);
   2880 	if (error) {
   2881 		*retval = error;
   2882 		return 0;
   2883 	}
   2884 
   2885 	/* copy in file_actions struct */
   2886 	if (SCARG(uap, file_actions) != NULL) {
   2887 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2888 		    maxfiles);
   2889 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2890 		    max_fileactions);
   2891 		if (error)
   2892 			goto error_exit;
   2893 	}
   2894 
   2895 	/* copyin posix_spawnattr struct */
   2896 	if (SCARG(uap, attrp) != NULL) {
   2897 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2898 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2899 		if (error)
   2900 			goto error_exit;
   2901 	}
   2902 
   2903 	/*
   2904 	 * Do the spawn
   2905 	 */
   2906 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2907 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2908 	if (error)
   2909 		goto error_exit;
   2910 
   2911 	if (error == 0 && SCARG(uap, pid) != NULL)
   2912 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2913 
   2914 	*retval = error;
   2915 	return 0;
   2916 
   2917  error_exit:
   2918 	if (!child_ok) {
   2919 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2920 		atomic_dec_uint(&nprocs);
   2921 
   2922 		if (sa)
   2923 			kmem_free(sa, sizeof(*sa));
   2924 		if (fa)
   2925 			posix_spawn_fa_free(fa, fa->len);
   2926 	}
   2927 
   2928 	*retval = error;
   2929 	return 0;
   2930 }
   2931 
   2932 void
   2933 exec_free_emul_arg(struct exec_package *epp)
   2934 {
   2935 	if (epp->ep_emul_arg_free != NULL) {
   2936 		KASSERT(epp->ep_emul_arg != NULL);
   2937 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2938 		epp->ep_emul_arg_free = NULL;
   2939 		epp->ep_emul_arg = NULL;
   2940 	} else {
   2941 		KASSERT(epp->ep_emul_arg == NULL);
   2942 	}
   2943 }
   2944 
   2945 #ifdef DEBUG_EXEC
   2946 static void
   2947 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2948 {
   2949 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2950 	size_t j;
   2951 
   2952 	if (error == 0)
   2953 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2954 	else
   2955 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2956 		    epp->ep_vmcmds.evs_used, error));
   2957 
   2958 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2959 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2960 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2961 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2962 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2963 		    "pagedvn" :
   2964 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2965 		    "readvn" :
   2966 		    vp[j].ev_proc == vmcmd_map_zero ?
   2967 		    "zero" : "*unknown*",
   2968 		    vp[j].ev_addr, vp[j].ev_len,
   2969 		    vp[j].ev_offset, vp[j].ev_prot,
   2970 		    vp[j].ev_flags));
   2971 		if (error != 0 && j == x)
   2972 			DPRINTF(("     ^--- failed\n"));
   2973 	}
   2974 }
   2975 #endif
   2976