kern_exec.c revision 1.521 1 /* $NetBSD: kern_exec.c,v 1.521 2023/10/08 12:38:58 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.521 2023/10/08 12:38:58 ad Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_syscall_debug.h"
72 #include "veriexec.h"
73 #include "opt_pax.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/ptrace.h>
81 #include <sys/mount.h>
82 #include <sys/kmem.h>
83 #include <sys/namei.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/filedesc.h>
87 #include <sys/acct.h>
88 #include <sys/atomic.h>
89 #include <sys/exec.h>
90 #include <sys/futex.h>
91 #include <sys/ktrace.h>
92 #include <sys/uidinfo.h>
93 #include <sys/wait.h>
94 #include <sys/mman.h>
95 #include <sys/ras.h>
96 #include <sys/signalvar.h>
97 #include <sys/stat.h>
98 #include <sys/syscall.h>
99 #include <sys/kauth.h>
100 #include <sys/lwpctl.h>
101 #include <sys/pax.h>
102 #include <sys/cpu.h>
103 #include <sys/module.h>
104 #include <sys/syscallvar.h>
105 #include <sys/syscallargs.h>
106 #include <sys/vfs_syscalls.h>
107 #if NVERIEXEC > 0
108 #include <sys/verified_exec.h>
109 #endif /* NVERIEXEC > 0 */
110 #include <sys/sdt.h>
111 #include <sys/spawn.h>
112 #include <sys/prot.h>
113 #include <sys/cprng.h>
114
115 #include <uvm/uvm_extern.h>
116
117 #include <machine/reg.h>
118
119 #include <compat/common/compat_util.h>
120
121 #ifndef MD_TOPDOWN_INIT
122 #ifdef __USE_TOPDOWN_VM
123 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
124 #else
125 #define MD_TOPDOWN_INIT(epp)
126 #endif
127 #endif
128
129 struct execve_data;
130
131 extern int user_va0_disable;
132
133 static size_t calcargs(struct execve_data * restrict, const size_t);
134 static size_t calcstack(struct execve_data * restrict, const size_t);
135 static int copyoutargs(struct execve_data * restrict, struct lwp *,
136 char * const);
137 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
138 static int copyinargs(struct execve_data * restrict, char * const *,
139 char * const *, execve_fetch_element_t, char **);
140 static int copyinargstrs(struct execve_data * restrict, char * const *,
141 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
142 static int exec_sigcode_map(struct proc *, const struct emul *);
143
144 #if defined(DEBUG) && !defined(DEBUG_EXEC)
145 #define DEBUG_EXEC
146 #endif
147 #ifdef DEBUG_EXEC
148 #define DPRINTF(a) printf a
149 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
150 __LINE__, (s), (a), (b))
151 static void dump_vmcmds(const struct exec_package * const, size_t, int);
152 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
153 #else
154 #define DPRINTF(a)
155 #define COPYPRINTF(s, a, b)
156 #define DUMPVMCMDS(p, x, e) do {} while (0)
157 #endif /* DEBUG_EXEC */
158
159 /*
160 * DTrace SDT provider definitions
161 */
162 SDT_PROVIDER_DECLARE(proc);
163 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
164 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
165 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
166
167 /*
168 * Exec function switch:
169 *
170 * Note that each makecmds function is responsible for loading the
171 * exec package with the necessary functions for any exec-type-specific
172 * handling.
173 *
174 * Functions for specific exec types should be defined in their own
175 * header file.
176 */
177 static const struct execsw **execsw = NULL;
178 static int nexecs;
179
180 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
181
182 /* list of dynamically loaded execsw entries */
183 static LIST_HEAD(execlist_head, exec_entry) ex_head =
184 LIST_HEAD_INITIALIZER(ex_head);
185 struct exec_entry {
186 LIST_ENTRY(exec_entry) ex_list;
187 SLIST_ENTRY(exec_entry) ex_slist;
188 const struct execsw *ex_sw;
189 };
190
191 #ifndef __HAVE_SYSCALL_INTERN
192 void syscall(void);
193 #endif
194
195 /* NetBSD autoloadable syscalls */
196 #ifdef MODULAR
197 #include <kern/syscalls_autoload.c>
198 #endif
199
200 /* NetBSD emul struct */
201 struct emul emul_netbsd = {
202 .e_name = "netbsd",
203 #ifdef EMUL_NATIVEROOT
204 .e_path = EMUL_NATIVEROOT,
205 #else
206 .e_path = NULL,
207 #endif
208 #ifndef __HAVE_MINIMAL_EMUL
209 .e_flags = EMUL_HAS_SYS___syscall,
210 .e_errno = NULL,
211 .e_nosys = SYS_syscall,
212 .e_nsysent = SYS_NSYSENT,
213 #endif
214 #ifdef MODULAR
215 .e_sc_autoload = netbsd_syscalls_autoload,
216 #endif
217 .e_sysent = sysent,
218 .e_nomodbits = sysent_nomodbits,
219 #ifdef SYSCALL_DEBUG
220 .e_syscallnames = syscallnames,
221 #else
222 .e_syscallnames = NULL,
223 #endif
224 .e_sendsig = sendsig,
225 .e_trapsignal = trapsignal,
226 .e_sigcode = NULL,
227 .e_esigcode = NULL,
228 .e_sigobject = NULL,
229 .e_setregs = setregs,
230 .e_proc_exec = NULL,
231 .e_proc_fork = NULL,
232 .e_proc_exit = NULL,
233 .e_lwp_fork = NULL,
234 .e_lwp_exit = NULL,
235 #ifdef __HAVE_SYSCALL_INTERN
236 .e_syscall_intern = syscall_intern,
237 #else
238 .e_syscall = syscall,
239 #endif
240 .e_sysctlovly = NULL,
241 .e_vm_default_addr = uvm_default_mapaddr,
242 .e_usertrap = NULL,
243 .e_ucsize = sizeof(ucontext_t),
244 .e_startlwp = startlwp
245 };
246
247 /*
248 * Exec lock. Used to control access to execsw[] structures.
249 * This must not be static so that netbsd32 can access it, too.
250 */
251 krwlock_t exec_lock __cacheline_aligned;
252
253 /*
254 * Data used between a loadvm and execve part of an "exec" operation
255 */
256 struct execve_data {
257 struct exec_package ed_pack;
258 struct pathbuf *ed_pathbuf;
259 struct vattr ed_attr;
260 struct ps_strings ed_arginfo;
261 char *ed_argp;
262 const char *ed_pathstring;
263 char *ed_resolvedname;
264 size_t ed_ps_strings_sz;
265 int ed_szsigcode;
266 size_t ed_argslen;
267 long ed_argc;
268 long ed_envc;
269 };
270
271 /*
272 * data passed from parent lwp to child during a posix_spawn()
273 */
274 struct spawn_exec_data {
275 struct execve_data sed_exec;
276 struct posix_spawn_file_actions
277 *sed_actions;
278 struct posix_spawnattr *sed_attrs;
279 struct proc *sed_parent;
280 kcondvar_t sed_cv_child_ready;
281 kmutex_t sed_mtx_child;
282 int sed_error;
283 volatile uint32_t sed_refcnt;
284 };
285
286 static struct vm_map *exec_map;
287 static struct pool exec_pool;
288
289 static void *
290 exec_pool_alloc(struct pool *pp, int flags)
291 {
292
293 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
294 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
295 }
296
297 static void
298 exec_pool_free(struct pool *pp, void *addr)
299 {
300
301 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
302 }
303
304 static struct pool_allocator exec_palloc = {
305 .pa_alloc = exec_pool_alloc,
306 .pa_free = exec_pool_free,
307 .pa_pagesz = NCARGS
308 };
309
310 static void
311 exec_path_free(struct execve_data *data)
312 {
313 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
314 pathbuf_destroy(data->ed_pathbuf);
315 if (data->ed_resolvedname)
316 PNBUF_PUT(data->ed_resolvedname);
317 }
318
319 static int
320 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
321 char **rpath)
322 {
323 int error;
324 char *p;
325
326 KASSERT(rpath != NULL);
327
328 *rpath = PNBUF_GET();
329 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
330 if (error) {
331 DPRINTF(("%s: can't resolve name for %s, error %d\n",
332 __func__, epp->ep_kname, error));
333 PNBUF_PUT(*rpath);
334 *rpath = NULL;
335 return error;
336 }
337 epp->ep_resolvedname = *rpath;
338 if ((p = strrchr(*rpath, '/')) != NULL)
339 epp->ep_kname = p + 1;
340 return 0;
341 }
342
343
344 /*
345 * check exec:
346 * given an "executable" described in the exec package's namei info,
347 * see what we can do with it.
348 *
349 * ON ENTRY:
350 * exec package with appropriate namei info
351 * lwp pointer of exec'ing lwp
352 * NO SELF-LOCKED VNODES
353 *
354 * ON EXIT:
355 * error: nothing held, etc. exec header still allocated.
356 * ok: filled exec package, executable's vnode (unlocked).
357 *
358 * EXEC SWITCH ENTRY:
359 * Locked vnode to check, exec package, proc.
360 *
361 * EXEC SWITCH EXIT:
362 * ok: return 0, filled exec package, executable's vnode (unlocked).
363 * error: destructive:
364 * everything deallocated execept exec header.
365 * non-destructive:
366 * error code, executable's vnode (unlocked),
367 * exec header unmodified.
368 */
369 int
370 /*ARGSUSED*/
371 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
372 char **rpath)
373 {
374 int error, i;
375 struct vnode *vp;
376 size_t resid;
377
378 if (epp->ep_resolvedname) {
379 struct nameidata nd;
380
381 // grab the absolute pathbuf here before namei() trashes it.
382 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
383 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
384
385 /* first get the vnode */
386 if ((error = namei(&nd)) != 0)
387 return error;
388
389 epp->ep_vp = vp = nd.ni_vp;
390 #ifdef DIAGNOSTIC
391 /* paranoia (take this out once namei stuff stabilizes) */
392 memset(nd.ni_pnbuf, '~', PATH_MAX);
393 #endif
394 } else {
395 struct file *fp;
396
397 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
398 return error;
399 epp->ep_vp = vp = fp->f_vnode;
400 vref(vp);
401 fd_putfile(epp->ep_xfd);
402 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
403 return error;
404 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
405 }
406
407 /* check access and type */
408 if (vp->v_type != VREG) {
409 error = EACCES;
410 goto bad1;
411 }
412 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
413 goto bad1;
414
415 /* get attributes */
416 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
417 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
418 goto bad1;
419
420 /* Check mount point */
421 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
422 error = EACCES;
423 goto bad1;
424 }
425 if (vp->v_mount->mnt_flag & MNT_NOSUID)
426 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
427
428 /* try to open it */
429 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
430 goto bad1;
431
432 /* now we have the file, get the exec header */
433 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
434 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
435 if (error)
436 goto bad1;
437
438 /* unlock vp, since we need it unlocked from here on out. */
439 VOP_UNLOCK(vp);
440
441 #if NVERIEXEC > 0
442 error = veriexec_verify(l, vp,
443 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
444 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
445 NULL);
446 if (error)
447 goto bad2;
448 #endif /* NVERIEXEC > 0 */
449
450 #ifdef PAX_SEGVGUARD
451 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
452 if (error)
453 goto bad2;
454 #endif /* PAX_SEGVGUARD */
455
456 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
457
458 /*
459 * Set up default address space limits. Can be overridden
460 * by individual exec packages.
461 */
462 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
463 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
464
465 /*
466 * set up the vmcmds for creation of the process
467 * address space
468 */
469 error = ENOEXEC;
470 for (i = 0; i < nexecs; i++) {
471 int newerror;
472
473 epp->ep_esch = execsw[i];
474 newerror = (*execsw[i]->es_makecmds)(l, epp);
475
476 if (!newerror) {
477 /* Seems ok: check that entry point is not too high */
478 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
479 #ifdef DIAGNOSTIC
480 printf("%s: rejecting %p due to "
481 "too high entry address (>= %p)\n",
482 __func__, (void *)epp->ep_entry,
483 (void *)epp->ep_vm_maxaddr);
484 #endif
485 error = ENOEXEC;
486 break;
487 }
488 /* Seems ok: check that entry point is not too low */
489 if (epp->ep_entry < epp->ep_vm_minaddr) {
490 #ifdef DIAGNOSTIC
491 printf("%s: rejecting %p due to "
492 "too low entry address (< %p)\n",
493 __func__, (void *)epp->ep_entry,
494 (void *)epp->ep_vm_minaddr);
495 #endif
496 error = ENOEXEC;
497 break;
498 }
499
500 /* check limits */
501 #ifdef DIAGNOSTIC
502 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
503 #endif
504 #ifdef MAXTSIZ
505 if (epp->ep_tsize > MAXTSIZ) {
506 #ifdef DIAGNOSTIC
507 printf(LMSG, __func__, "text",
508 (uintmax_t)epp->ep_tsize,
509 (uintmax_t)MAXTSIZ);
510 #endif
511 error = ENOMEM;
512 break;
513 }
514 #endif
515 vsize_t dlimit =
516 (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
517 if (epp->ep_dsize > dlimit) {
518 #ifdef DIAGNOSTIC
519 printf(LMSG, __func__, "data",
520 (uintmax_t)epp->ep_dsize,
521 (uintmax_t)dlimit);
522 #endif
523 error = ENOMEM;
524 break;
525 }
526 return 0;
527 }
528
529 /*
530 * Reset all the fields that may have been modified by the
531 * loader.
532 */
533 KASSERT(epp->ep_emul_arg == NULL);
534 if (epp->ep_emul_root != NULL) {
535 vrele(epp->ep_emul_root);
536 epp->ep_emul_root = NULL;
537 }
538 if (epp->ep_interp != NULL) {
539 vrele(epp->ep_interp);
540 epp->ep_interp = NULL;
541 }
542 epp->ep_pax_flags = 0;
543
544 /* make sure the first "interesting" error code is saved. */
545 if (error == ENOEXEC)
546 error = newerror;
547
548 if (epp->ep_flags & EXEC_DESTR)
549 /* Error from "#!" code, tidied up by recursive call */
550 return error;
551 }
552
553 /* not found, error */
554
555 /*
556 * free any vmspace-creation commands,
557 * and release their references
558 */
559 kill_vmcmds(&epp->ep_vmcmds);
560
561 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
562 bad2:
563 #endif
564 /*
565 * close and release the vnode, restore the old one, free the
566 * pathname buf, and punt.
567 */
568 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
569 VOP_CLOSE(vp, FREAD, l->l_cred);
570 vput(vp);
571 return error;
572
573 bad1:
574 /*
575 * free the namei pathname buffer, and put the vnode
576 * (which we don't yet have open).
577 */
578 vput(vp); /* was still locked */
579 return error;
580 }
581
582 #ifdef __MACHINE_STACK_GROWS_UP
583 #define STACK_PTHREADSPACE NBPG
584 #else
585 #define STACK_PTHREADSPACE 0
586 #endif
587
588 static int
589 execve_fetch_element(char * const *array, size_t index, char **value)
590 {
591 return copyin(array + index, value, sizeof(*value));
592 }
593
594 /*
595 * exec system call
596 */
597 int
598 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
599 {
600 /* {
601 syscallarg(const char *) path;
602 syscallarg(char * const *) argp;
603 syscallarg(char * const *) envp;
604 } */
605
606 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
607 SCARG(uap, envp), execve_fetch_element);
608 }
609
610 int
611 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
612 register_t *retval)
613 {
614 /* {
615 syscallarg(int) fd;
616 syscallarg(char * const *) argp;
617 syscallarg(char * const *) envp;
618 } */
619
620 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
621 SCARG(uap, envp), execve_fetch_element);
622 }
623
624 /*
625 * Load modules to try and execute an image that we do not understand.
626 * If no execsw entries are present, we load those likely to be needed
627 * in order to run native images only. Otherwise, we autoload all
628 * possible modules that could let us run the binary. XXX lame
629 */
630 static void
631 exec_autoload(void)
632 {
633 #ifdef MODULAR
634 static const char * const native[] = {
635 "exec_elf32",
636 "exec_elf64",
637 "exec_script",
638 NULL
639 };
640 static const char * const compat[] = {
641 "exec_elf32",
642 "exec_elf64",
643 "exec_script",
644 "exec_aout",
645 "exec_coff",
646 "exec_ecoff",
647 "compat_aoutm68k",
648 "compat_netbsd32",
649 #if 0
650 "compat_linux",
651 "compat_linux32",
652 #endif
653 "compat_sunos",
654 "compat_sunos32",
655 "compat_ultrix",
656 NULL
657 };
658 char const * const *list;
659 int i;
660
661 list = nexecs == 0 ? native : compat;
662 for (i = 0; list[i] != NULL; i++) {
663 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
664 continue;
665 }
666 yield();
667 }
668 #endif
669 }
670
671 /*
672 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
673 * making it absolute in the process, by prepending the current working
674 * directory if it is not. If offs is supplied it will contain the offset
675 * where the original supplied copy of upath starts.
676 */
677 int
678 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
679 struct pathbuf **pbp, size_t *offs)
680 {
681 char *path, *bp;
682 size_t len, tlen;
683 int error;
684 struct cwdinfo *cwdi;
685
686 path = PNBUF_GET();
687 if (seg == UIO_SYSSPACE) {
688 error = copystr(upath, path, MAXPATHLEN, &len);
689 } else {
690 error = copyinstr(upath, path, MAXPATHLEN, &len);
691 }
692 if (error)
693 goto err;
694
695 if (path[0] == '/') {
696 if (offs)
697 *offs = 0;
698 goto out;
699 }
700
701 len++;
702 if (len + 1 >= MAXPATHLEN) {
703 error = ENAMETOOLONG;
704 goto err;
705 }
706 bp = path + MAXPATHLEN - len;
707 memmove(bp, path, len);
708 *(--bp) = '/';
709
710 cwdi = l->l_proc->p_cwdi;
711 rw_enter(&cwdi->cwdi_lock, RW_READER);
712 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
713 GETCWD_CHECK_ACCESS, l);
714 rw_exit(&cwdi->cwdi_lock);
715
716 if (error)
717 goto err;
718 tlen = path + MAXPATHLEN - bp;
719
720 memmove(path, bp, tlen);
721 path[tlen - 1] = '\0';
722 if (offs)
723 *offs = tlen - len;
724 out:
725 *pbp = pathbuf_assimilate(path);
726 return 0;
727 err:
728 PNBUF_PUT(path);
729 return error;
730 }
731
732 vaddr_t
733 exec_vm_minaddr(vaddr_t va_min)
734 {
735 /*
736 * Increase va_min if we don't want NULL to be mappable by the
737 * process.
738 */
739 #define VM_MIN_GUARD PAGE_SIZE
740 if (user_va0_disable && (va_min < VM_MIN_GUARD))
741 return VM_MIN_GUARD;
742 return va_min;
743 }
744
745 static int
746 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
747 char * const *args, char * const *envs,
748 execve_fetch_element_t fetch_element,
749 struct execve_data * restrict data)
750 {
751 struct exec_package * const epp = &data->ed_pack;
752 int error;
753 struct proc *p;
754 char *dp;
755 u_int modgen;
756
757 KASSERT(data != NULL);
758
759 p = l->l_proc;
760 modgen = 0;
761
762 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
763
764 /*
765 * Check if we have exceeded our number of processes limit.
766 * This is so that we handle the case where a root daemon
767 * forked, ran setuid to become the desired user and is trying
768 * to exec. The obvious place to do the reference counting check
769 * is setuid(), but we don't do the reference counting check there
770 * like other OS's do because then all the programs that use setuid()
771 * must be modified to check the return code of setuid() and exit().
772 * It is dangerous to make setuid() fail, because it fails open and
773 * the program will continue to run as root. If we make it succeed
774 * and return an error code, again we are not enforcing the limit.
775 * The best place to enforce the limit is here, when the process tries
776 * to execute a new image, because eventually the process will need
777 * to call exec in order to do something useful.
778 */
779 retry:
780 if (p->p_flag & PK_SUGID) {
781 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
782 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
783 &p->p_rlimit[RLIMIT_NPROC],
784 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
785 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
786 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
787 return EAGAIN;
788 }
789
790 /*
791 * Drain existing references and forbid new ones. The process
792 * should be left alone until we're done here. This is necessary
793 * to avoid race conditions - e.g. in ptrace() - that might allow
794 * a local user to illicitly obtain elevated privileges.
795 */
796 rw_enter(&p->p_reflock, RW_WRITER);
797
798 if (has_path) {
799 size_t offs;
800 /*
801 * Init the namei data to point the file user's program name.
802 * This is done here rather than in check_exec(), so that it's
803 * possible to override this settings if any of makecmd/probe
804 * functions call check_exec() recursively - for example,
805 * see exec_script_makecmds().
806 */
807 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
808 &data->ed_pathbuf, &offs)) != 0)
809 goto clrflg;
810 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
811 epp->ep_kname = data->ed_pathstring + offs;
812 data->ed_resolvedname = PNBUF_GET();
813 epp->ep_resolvedname = data->ed_resolvedname;
814 epp->ep_xfd = -1;
815 } else {
816 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
817 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
818 epp->ep_kname = "*fexecve*";
819 data->ed_resolvedname = NULL;
820 epp->ep_resolvedname = NULL;
821 epp->ep_xfd = fd;
822 }
823
824
825 /*
826 * initialize the fields of the exec package.
827 */
828 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
829 epp->ep_hdrlen = exec_maxhdrsz;
830 epp->ep_hdrvalid = 0;
831 epp->ep_emul_arg = NULL;
832 epp->ep_emul_arg_free = NULL;
833 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
834 epp->ep_vap = &data->ed_attr;
835 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
836 MD_TOPDOWN_INIT(epp);
837 epp->ep_emul_root = NULL;
838 epp->ep_interp = NULL;
839 epp->ep_esch = NULL;
840 epp->ep_pax_flags = 0;
841 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
842
843 rw_enter(&exec_lock, RW_READER);
844
845 /* see if we can run it. */
846 if ((error = check_exec(l, epp, data->ed_pathbuf,
847 &data->ed_resolvedname)) != 0) {
848 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
849 DPRINTF(("%s: check exec failed for %s, error %d\n",
850 __func__, epp->ep_kname, error));
851 }
852 goto freehdr;
853 }
854
855 /* allocate an argument buffer */
856 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
857 KASSERT(data->ed_argp != NULL);
858 dp = data->ed_argp;
859
860 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
861 goto bad;
862 }
863
864 /*
865 * Calculate the new stack size.
866 */
867
868 #ifdef __MACHINE_STACK_GROWS_UP
869 /*
870 * copyargs() fills argc/argv/envp from the lower address even on
871 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
872 * so that _rtld() use it.
873 */
874 #define RTLD_GAP 32
875 #else
876 #define RTLD_GAP 0
877 #endif
878
879 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
880
881 data->ed_argslen = calcargs(data, argenvstrlen);
882
883 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
884
885 if (len > epp->ep_ssize) {
886 /* in effect, compare to initial limit */
887 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
888 error = ENOMEM;
889 goto bad;
890 }
891 /* adjust "active stack depth" for process VSZ */
892 epp->ep_ssize = len;
893
894 return 0;
895
896 bad:
897 /* free the vmspace-creation commands, and release their references */
898 kill_vmcmds(&epp->ep_vmcmds);
899 /* kill any opened file descriptor, if necessary */
900 if (epp->ep_flags & EXEC_HASFD) {
901 epp->ep_flags &= ~EXEC_HASFD;
902 fd_close(epp->ep_fd);
903 }
904 /* close and put the exec'd file */
905 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
906 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
907 vput(epp->ep_vp);
908 pool_put(&exec_pool, data->ed_argp);
909
910 freehdr:
911 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
912 if (epp->ep_emul_root != NULL)
913 vrele(epp->ep_emul_root);
914 if (epp->ep_interp != NULL)
915 vrele(epp->ep_interp);
916
917 rw_exit(&exec_lock);
918
919 exec_path_free(data);
920
921 clrflg:
922 rw_exit(&p->p_reflock);
923
924 if (modgen != module_gen && error == ENOEXEC) {
925 modgen = module_gen;
926 exec_autoload();
927 goto retry;
928 }
929
930 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
931 return error;
932 }
933
934 static int
935 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
936 {
937 struct exec_package * const epp = &data->ed_pack;
938 struct proc *p = l->l_proc;
939 struct exec_vmcmd *base_vcp;
940 int error = 0;
941 size_t i;
942
943 /* record proc's vnode, for use by procfs and others */
944 if (p->p_textvp)
945 vrele(p->p_textvp);
946 vref(epp->ep_vp);
947 p->p_textvp = epp->ep_vp;
948
949 /* create the new process's VM space by running the vmcmds */
950 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
951
952 #ifdef TRACE_EXEC
953 DUMPVMCMDS(epp, 0, 0);
954 #endif
955
956 base_vcp = NULL;
957
958 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
959 struct exec_vmcmd *vcp;
960
961 vcp = &epp->ep_vmcmds.evs_cmds[i];
962 if (vcp->ev_flags & VMCMD_RELATIVE) {
963 KASSERTMSG(base_vcp != NULL,
964 "%s: relative vmcmd with no base", __func__);
965 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
966 "%s: illegal base & relative vmcmd", __func__);
967 vcp->ev_addr += base_vcp->ev_addr;
968 }
969 error = (*vcp->ev_proc)(l, vcp);
970 if (error)
971 DUMPVMCMDS(epp, i, error);
972 if (vcp->ev_flags & VMCMD_BASE)
973 base_vcp = vcp;
974 }
975
976 /* free the vmspace-creation commands, and release their references */
977 kill_vmcmds(&epp->ep_vmcmds);
978
979 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
980 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
981 vput(epp->ep_vp);
982
983 /* if an error happened, deallocate and punt */
984 if (error != 0) {
985 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
986 }
987 return error;
988 }
989
990 static void
991 execve_free_data(struct execve_data *data)
992 {
993 struct exec_package * const epp = &data->ed_pack;
994
995 /* free the vmspace-creation commands, and release their references */
996 kill_vmcmds(&epp->ep_vmcmds);
997 /* kill any opened file descriptor, if necessary */
998 if (epp->ep_flags & EXEC_HASFD) {
999 epp->ep_flags &= ~EXEC_HASFD;
1000 fd_close(epp->ep_fd);
1001 }
1002
1003 /* close and put the exec'd file */
1004 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1005 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1006 vput(epp->ep_vp);
1007 pool_put(&exec_pool, data->ed_argp);
1008
1009 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1010 if (epp->ep_emul_root != NULL)
1011 vrele(epp->ep_emul_root);
1012 if (epp->ep_interp != NULL)
1013 vrele(epp->ep_interp);
1014
1015 exec_path_free(data);
1016 }
1017
1018 static void
1019 pathexec(struct proc *p, const char *resolvedname)
1020 {
1021 /* set command name & other accounting info */
1022 const char *cmdname;
1023
1024 if (resolvedname == NULL) {
1025 cmdname = "*fexecve*";
1026 resolvedname = "/";
1027 } else {
1028 cmdname = strrchr(resolvedname, '/') + 1;
1029 }
1030 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1031 resolvedname);
1032
1033 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1034
1035 kmem_strfree(p->p_path);
1036 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1037 }
1038
1039 /* XXX elsewhere */
1040 static int
1041 credexec(struct lwp *l, struct execve_data *data)
1042 {
1043 struct proc *p = l->l_proc;
1044 struct vattr *attr = &data->ed_attr;
1045 int error;
1046
1047 /*
1048 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1049 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1050 * out additional references on the process for the moment.
1051 */
1052 if ((p->p_slflag & PSL_TRACED) == 0 &&
1053
1054 (((attr->va_mode & S_ISUID) != 0 &&
1055 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1056
1057 ((attr->va_mode & S_ISGID) != 0 &&
1058 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1059 /*
1060 * Mark the process as SUGID before we do
1061 * anything that might block.
1062 */
1063 proc_crmod_enter();
1064 proc_crmod_leave(NULL, NULL, true);
1065 if (data->ed_argc == 0) {
1066 DPRINTF((
1067 "%s: not executing set[ug]id binary with no args\n",
1068 __func__));
1069 return EINVAL;
1070 }
1071
1072 /* Make sure file descriptors 0..2 are in use. */
1073 if ((error = fd_checkstd()) != 0) {
1074 DPRINTF(("%s: fdcheckstd failed %d\n",
1075 __func__, error));
1076 return error;
1077 }
1078
1079 /*
1080 * Copy the credential so other references don't see our
1081 * changes.
1082 */
1083 l->l_cred = kauth_cred_copy(l->l_cred);
1084 #ifdef KTRACE
1085 /*
1086 * If the persistent trace flag isn't set, turn off.
1087 */
1088 if (p->p_tracep) {
1089 mutex_enter(&ktrace_lock);
1090 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1091 ktrderef(p);
1092 mutex_exit(&ktrace_lock);
1093 }
1094 #endif
1095 if (attr->va_mode & S_ISUID)
1096 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1097 if (attr->va_mode & S_ISGID)
1098 kauth_cred_setegid(l->l_cred, attr->va_gid);
1099 } else {
1100 if (kauth_cred_geteuid(l->l_cred) ==
1101 kauth_cred_getuid(l->l_cred) &&
1102 kauth_cred_getegid(l->l_cred) ==
1103 kauth_cred_getgid(l->l_cred))
1104 p->p_flag &= ~PK_SUGID;
1105 }
1106
1107 /*
1108 * Copy the credential so other references don't see our changes.
1109 * Test to see if this is necessary first, since in the common case
1110 * we won't need a private reference.
1111 */
1112 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1113 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1114 l->l_cred = kauth_cred_copy(l->l_cred);
1115 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1116 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1117 }
1118
1119 /* Update the master credentials. */
1120 if (l->l_cred != p->p_cred) {
1121 kauth_cred_t ocred;
1122 mutex_enter(p->p_lock);
1123 ocred = p->p_cred;
1124 p->p_cred = kauth_cred_hold(l->l_cred);
1125 mutex_exit(p->p_lock);
1126 kauth_cred_free(ocred);
1127 }
1128
1129 return 0;
1130 }
1131
1132 static void
1133 emulexec(struct lwp *l, struct exec_package *epp)
1134 {
1135 struct proc *p = l->l_proc;
1136
1137 /* The emulation root will usually have been found when we looked
1138 * for the elf interpreter (or similar), if not look now. */
1139 if (epp->ep_esch->es_emul->e_path != NULL &&
1140 epp->ep_emul_root == NULL)
1141 emul_find_root(l, epp);
1142
1143 /* Any old emulation root got removed by fdcloseexec */
1144 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1145 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1146 rw_exit(&p->p_cwdi->cwdi_lock);
1147 epp->ep_emul_root = NULL;
1148 if (epp->ep_interp != NULL)
1149 vrele(epp->ep_interp);
1150
1151 /*
1152 * Call emulation specific exec hook. This can setup per-process
1153 * p->p_emuldata or do any other per-process stuff an emulation needs.
1154 *
1155 * If we are executing process of different emulation than the
1156 * original forked process, call e_proc_exit() of the old emulation
1157 * first, then e_proc_exec() of new emulation. If the emulation is
1158 * same, the exec hook code should deallocate any old emulation
1159 * resources held previously by this process.
1160 */
1161 if (p->p_emul && p->p_emul->e_proc_exit
1162 && p->p_emul != epp->ep_esch->es_emul)
1163 (*p->p_emul->e_proc_exit)(p);
1164
1165 /*
1166 * Call exec hook. Emulation code may NOT store reference to anything
1167 * from &pack.
1168 */
1169 if (epp->ep_esch->es_emul->e_proc_exec)
1170 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1171
1172 /* update p_emul, the old value is no longer needed */
1173 p->p_emul = epp->ep_esch->es_emul;
1174
1175 /* ...and the same for p_execsw */
1176 p->p_execsw = epp->ep_esch;
1177
1178 #ifdef __HAVE_SYSCALL_INTERN
1179 (*p->p_emul->e_syscall_intern)(p);
1180 #endif
1181 ktremul();
1182 }
1183
1184 static int
1185 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1186 bool no_local_exec_lock, bool is_spawn)
1187 {
1188 struct exec_package * const epp = &data->ed_pack;
1189 int error = 0;
1190 struct proc *p;
1191 struct vmspace *vm;
1192
1193 /*
1194 * In case of a posix_spawn operation, the child doing the exec
1195 * might not hold the reader lock on exec_lock, but the parent
1196 * will do this instead.
1197 */
1198 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1199 KASSERT(!no_local_exec_lock || is_spawn);
1200 KASSERT(data != NULL);
1201
1202 p = l->l_proc;
1203
1204 /* Get rid of other LWPs. */
1205 if (p->p_nlwps > 1) {
1206 mutex_enter(p->p_lock);
1207 exit_lwps(l);
1208 mutex_exit(p->p_lock);
1209 }
1210 KDASSERT(p->p_nlwps == 1);
1211
1212 /*
1213 * All of the other LWPs got rid of their robust futexes
1214 * when they exited above, but we might still have some
1215 * to dispose of. Do that now.
1216 */
1217 if (__predict_false(l->l_robust_head != 0)) {
1218 futex_release_all_lwp(l);
1219 /*
1220 * Since this LWP will live on with a different
1221 * program image, we need to clear the robust
1222 * futex list pointer here.
1223 */
1224 l->l_robust_head = 0;
1225 }
1226
1227 /* Destroy any lwpctl info. */
1228 if (p->p_lwpctl != NULL)
1229 lwp_ctl_exit();
1230
1231 /* Remove POSIX timers */
1232 ptimers_free(p, TIMERS_POSIX);
1233
1234 /* Set the PaX flags. */
1235 pax_set_flags(epp, p);
1236
1237 /*
1238 * Do whatever is necessary to prepare the address space
1239 * for remapping. Note that this might replace the current
1240 * vmspace with another!
1241 *
1242 * vfork(): do not touch any user space data in the new child
1243 * until we have awoken the parent below, or it will defeat
1244 * lazy pmap switching (on x86).
1245 */
1246 if (is_spawn)
1247 uvmspace_spawn(l, epp->ep_vm_minaddr,
1248 epp->ep_vm_maxaddr,
1249 epp->ep_flags & EXEC_TOPDOWN_VM);
1250 else
1251 uvmspace_exec(l, epp->ep_vm_minaddr,
1252 epp->ep_vm_maxaddr,
1253 epp->ep_flags & EXEC_TOPDOWN_VM);
1254 vm = p->p_vmspace;
1255
1256 vm->vm_taddr = (void *)epp->ep_taddr;
1257 vm->vm_tsize = btoc(epp->ep_tsize);
1258 vm->vm_daddr = (void*)epp->ep_daddr;
1259 vm->vm_dsize = btoc(epp->ep_dsize);
1260 vm->vm_ssize = btoc(epp->ep_ssize);
1261 vm->vm_issize = 0;
1262 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1263 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1264
1265 pax_aslr_init_vm(l, vm, epp);
1266
1267 cwdexec(p);
1268 fd_closeexec(); /* handle close on exec */
1269
1270 if (__predict_false(ktrace_on))
1271 fd_ktrexecfd();
1272
1273 execsigs(p); /* reset caught signals */
1274
1275 mutex_enter(p->p_lock);
1276 l->l_ctxlink = NULL; /* reset ucontext link */
1277 p->p_acflag &= ~AFORK;
1278 p->p_flag |= PK_EXEC;
1279 mutex_exit(p->p_lock);
1280
1281 error = credexec(l, data);
1282 if (error)
1283 goto exec_abort;
1284
1285 #if defined(__HAVE_RAS)
1286 /*
1287 * Remove all RASs from the address space.
1288 */
1289 ras_purgeall();
1290 #endif
1291
1292 /*
1293 * Stop profiling.
1294 */
1295 if ((p->p_stflag & PST_PROFIL) != 0) {
1296 mutex_spin_enter(&p->p_stmutex);
1297 stopprofclock(p);
1298 mutex_spin_exit(&p->p_stmutex);
1299 }
1300
1301 /*
1302 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1303 * exited and exec()/exit() are the only places it will be cleared.
1304 *
1305 * Once the parent has been awoken, curlwp may teleport to a new CPU
1306 * in sched_vforkexec(), and it's then OK to start messing with user
1307 * data. See comment above.
1308 */
1309 if ((p->p_lflag & PL_PPWAIT) != 0) {
1310 bool samecpu;
1311 lwp_t *lp;
1312
1313 mutex_enter(&proc_lock);
1314 lp = p->p_vforklwp;
1315 p->p_vforklwp = NULL;
1316 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1317
1318 /* Clear flags after cv_broadcast() (scheduler needs them). */
1319 p->p_lflag &= ~PL_PPWAIT;
1320 lp->l_vforkwaiting = false;
1321
1322 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1323 samecpu = (lp->l_cpu == curlwp->l_cpu);
1324 cv_broadcast(&lp->l_waitcv);
1325 mutex_exit(&proc_lock);
1326
1327 /* Give the parent its CPU back - find a new home. */
1328 KASSERT(!is_spawn);
1329 sched_vforkexec(l, samecpu);
1330 }
1331
1332 /* Now map address space. */
1333 error = execve_dovmcmds(l, data);
1334 if (error != 0)
1335 goto exec_abort;
1336
1337 pathexec(p, epp->ep_resolvedname);
1338
1339 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1340
1341 error = copyoutargs(data, l, newstack);
1342 if (error != 0)
1343 goto exec_abort;
1344
1345 doexechooks(p);
1346
1347 /*
1348 * Set initial SP at the top of the stack.
1349 *
1350 * Note that on machines where stack grows up (e.g. hppa), SP points to
1351 * the end of arg/env strings. Userland guesses the address of argc
1352 * via ps_strings::ps_argvstr.
1353 */
1354
1355 /* Setup new registers and do misc. setup. */
1356 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1357 if (epp->ep_esch->es_setregs)
1358 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1359
1360 /* Provide a consistent LWP private setting */
1361 (void)lwp_setprivate(l, NULL);
1362
1363 /* Discard all PCU state; need to start fresh */
1364 pcu_discard_all(l);
1365
1366 /* map the process's signal trampoline code */
1367 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1368 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1369 goto exec_abort;
1370 }
1371
1372 pool_put(&exec_pool, data->ed_argp);
1373
1374 /*
1375 * Notify anyone who might care that we've exec'd.
1376 *
1377 * This is slightly racy; someone could sneak in and
1378 * attach a knote after we've decided not to notify,
1379 * or vice-versa, but that's not particularly bothersome.
1380 * knote_proc_exec() will acquire p->p_lock as needed.
1381 */
1382 if (!SLIST_EMPTY(&p->p_klist)) {
1383 knote_proc_exec(p);
1384 }
1385
1386 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1387
1388 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1389
1390 emulexec(l, epp);
1391
1392 /* Allow new references from the debugger/procfs. */
1393 rw_exit(&p->p_reflock);
1394 if (!no_local_exec_lock)
1395 rw_exit(&exec_lock);
1396
1397 mutex_enter(&proc_lock);
1398
1399 /* posix_spawn(3) reports a single event with implied exec(3) */
1400 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1401 mutex_enter(p->p_lock);
1402 eventswitch(TRAP_EXEC, 0, 0);
1403 mutex_enter(&proc_lock);
1404 }
1405
1406 if (p->p_sflag & PS_STOPEXEC) {
1407 ksiginfoq_t kq;
1408
1409 KASSERT(l->l_blcnt == 0);
1410 p->p_pptr->p_nstopchild++;
1411 p->p_waited = 0;
1412 mutex_enter(p->p_lock);
1413 ksiginfo_queue_init(&kq);
1414 sigclearall(p, &contsigmask, &kq);
1415 lwp_lock(l);
1416 l->l_stat = LSSTOP;
1417 p->p_stat = SSTOP;
1418 p->p_nrlwps--;
1419 lwp_unlock(l);
1420 mutex_exit(p->p_lock);
1421 mutex_exit(&proc_lock);
1422 lwp_lock(l);
1423 spc_lock(l->l_cpu);
1424 mi_switch(l);
1425 ksiginfo_queue_drain(&kq);
1426 } else {
1427 mutex_exit(&proc_lock);
1428 }
1429
1430 exec_path_free(data);
1431 #ifdef TRACE_EXEC
1432 DPRINTF(("%s finished\n", __func__));
1433 #endif
1434 return EJUSTRETURN;
1435
1436 exec_abort:
1437 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1438 rw_exit(&p->p_reflock);
1439 if (!no_local_exec_lock)
1440 rw_exit(&exec_lock);
1441
1442 exec_path_free(data);
1443
1444 /*
1445 * the old process doesn't exist anymore. exit gracefully.
1446 * get rid of the (new) address space we have created, if any, get rid
1447 * of our namei data and vnode, and exit noting failure
1448 */
1449 if (vm != NULL) {
1450 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1451 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1452 }
1453
1454 exec_free_emul_arg(epp);
1455 pool_put(&exec_pool, data->ed_argp);
1456 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1457 if (epp->ep_emul_root != NULL)
1458 vrele(epp->ep_emul_root);
1459 if (epp->ep_interp != NULL)
1460 vrele(epp->ep_interp);
1461
1462 /* Acquire the sched-state mutex (exit1() will release it). */
1463 if (!is_spawn) {
1464 mutex_enter(p->p_lock);
1465 exit1(l, error, SIGABRT);
1466 }
1467
1468 return error;
1469 }
1470
1471 int
1472 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1473 char * const *args, char * const *envs,
1474 execve_fetch_element_t fetch_element)
1475 {
1476 struct execve_data data;
1477 int error;
1478
1479 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1480 &data);
1481 if (error)
1482 return error;
1483 error = execve_runproc(l, &data, false, false);
1484 return error;
1485 }
1486
1487 static size_t
1488 fromptrsz(const struct exec_package *epp)
1489 {
1490 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1491 }
1492
1493 static size_t
1494 ptrsz(const struct exec_package *epp)
1495 {
1496 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1497 }
1498
1499 static size_t
1500 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1501 {
1502 struct exec_package * const epp = &data->ed_pack;
1503
1504 const size_t nargenvptrs =
1505 1 + /* long argc */
1506 data->ed_argc + /* char *argv[] */
1507 1 + /* \0 */
1508 data->ed_envc + /* char *env[] */
1509 1; /* \0 */
1510
1511 return (nargenvptrs * ptrsz(epp)) /* pointers */
1512 + argenvstrlen /* strings */
1513 + epp->ep_esch->es_arglen; /* auxinfo */
1514 }
1515
1516 static size_t
1517 calcstack(struct execve_data * restrict data, const size_t gaplen)
1518 {
1519 struct exec_package * const epp = &data->ed_pack;
1520
1521 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1522 epp->ep_esch->es_emul->e_sigcode;
1523
1524 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1525 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1526
1527 const size_t sigcode_psstr_sz =
1528 data->ed_szsigcode + /* sigcode */
1529 data->ed_ps_strings_sz + /* ps_strings */
1530 STACK_PTHREADSPACE; /* pthread space */
1531
1532 const size_t stacklen =
1533 data->ed_argslen +
1534 gaplen +
1535 sigcode_psstr_sz;
1536
1537 /* make the stack "safely" aligned */
1538 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1539 }
1540
1541 static int
1542 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1543 char * const newstack)
1544 {
1545 struct exec_package * const epp = &data->ed_pack;
1546 struct proc *p = l->l_proc;
1547 int error;
1548
1549 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1550
1551 /* remember information about the process */
1552 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1553 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1554
1555 /*
1556 * Allocate the stack address passed to the newly execve()'ed process.
1557 *
1558 * The new stack address will be set to the SP (stack pointer) register
1559 * in setregs().
1560 */
1561
1562 char *newargs = STACK_ALLOC(
1563 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1564
1565 error = (*epp->ep_esch->es_copyargs)(l, epp,
1566 &data->ed_arginfo, &newargs, data->ed_argp);
1567
1568 if (error) {
1569 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1570 return error;
1571 }
1572
1573 error = copyoutpsstrs(data, p);
1574 if (error != 0)
1575 return error;
1576
1577 return 0;
1578 }
1579
1580 static int
1581 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1582 {
1583 struct exec_package * const epp = &data->ed_pack;
1584 struct ps_strings32 arginfo32;
1585 void *aip;
1586 int error;
1587
1588 /* fill process ps_strings info */
1589 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1590 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1591
1592 if (epp->ep_flags & EXEC_32) {
1593 aip = &arginfo32;
1594 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1595 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1596 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1597 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1598 } else
1599 aip = &data->ed_arginfo;
1600
1601 /* copy out the process's ps_strings structure */
1602 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1603 != 0) {
1604 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1605 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1606 return error;
1607 }
1608
1609 return 0;
1610 }
1611
1612 static int
1613 copyinargs(struct execve_data * restrict data, char * const *args,
1614 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1615 {
1616 struct exec_package * const epp = &data->ed_pack;
1617 char *dp;
1618 size_t i;
1619 int error;
1620
1621 dp = *dpp;
1622
1623 data->ed_argc = 0;
1624
1625 /* copy the fake args list, if there's one, freeing it as we go */
1626 if (epp->ep_flags & EXEC_HASARGL) {
1627 struct exec_fakearg *fa = epp->ep_fa;
1628
1629 while (fa->fa_arg != NULL) {
1630 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1631 size_t len;
1632
1633 len = strlcpy(dp, fa->fa_arg, maxlen);
1634 /* Count NUL into len. */
1635 if (len < maxlen)
1636 len++;
1637 else {
1638 while (fa->fa_arg != NULL) {
1639 kmem_free(fa->fa_arg, fa->fa_len);
1640 fa++;
1641 }
1642 kmem_free(epp->ep_fa, epp->ep_fa_len);
1643 epp->ep_flags &= ~EXEC_HASARGL;
1644 return E2BIG;
1645 }
1646 ktrexecarg(fa->fa_arg, len - 1);
1647 dp += len;
1648
1649 kmem_free(fa->fa_arg, fa->fa_len);
1650 fa++;
1651 data->ed_argc++;
1652 }
1653 kmem_free(epp->ep_fa, epp->ep_fa_len);
1654 epp->ep_flags &= ~EXEC_HASARGL;
1655 }
1656
1657 /*
1658 * Read and count argument strings from user.
1659 */
1660
1661 if (args == NULL) {
1662 DPRINTF(("%s: null args\n", __func__));
1663 return EINVAL;
1664 }
1665 if (epp->ep_flags & EXEC_SKIPARG)
1666 args = (const void *)((const char *)args + fromptrsz(epp));
1667 i = 0;
1668 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1669 if (error != 0) {
1670 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1671 return error;
1672 }
1673 data->ed_argc += i;
1674
1675 /*
1676 * Read and count environment strings from user.
1677 */
1678
1679 data->ed_envc = 0;
1680 /* environment need not be there */
1681 if (envs == NULL)
1682 goto done;
1683 i = 0;
1684 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1685 if (error != 0) {
1686 DPRINTF(("%s: copyin env %d\n", __func__, error));
1687 return error;
1688 }
1689 data->ed_envc += i;
1690
1691 done:
1692 *dpp = dp;
1693
1694 return 0;
1695 }
1696
1697 static int
1698 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1699 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1700 void (*ktr)(const void *, size_t))
1701 {
1702 char *dp, *sp;
1703 size_t i;
1704 int error;
1705
1706 dp = *dpp;
1707
1708 i = 0;
1709 while (1) {
1710 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1711 size_t len;
1712
1713 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1714 return error;
1715 }
1716 if (!sp)
1717 break;
1718 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1719 if (error == ENAMETOOLONG)
1720 error = E2BIG;
1721 return error;
1722 }
1723 if (__predict_false(ktrace_on))
1724 (*ktr)(dp, len - 1);
1725 dp += len;
1726 i++;
1727 }
1728
1729 *dpp = dp;
1730 *ip = i;
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1737 * Those strings are located just after auxinfo.
1738 */
1739 int
1740 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1741 char **stackp, void *argp)
1742 {
1743 char **cpp, *dp, *sp;
1744 size_t len;
1745 void *nullp;
1746 long argc, envc;
1747 int error;
1748
1749 cpp = (char **)*stackp;
1750 nullp = NULL;
1751 argc = arginfo->ps_nargvstr;
1752 envc = arginfo->ps_nenvstr;
1753
1754 /* argc on stack is long */
1755 CTASSERT(sizeof(*cpp) == sizeof(argc));
1756
1757 dp = (char *)(cpp +
1758 1 + /* long argc */
1759 argc + /* char *argv[] */
1760 1 + /* \0 */
1761 envc + /* char *env[] */
1762 1) + /* \0 */
1763 pack->ep_esch->es_arglen; /* auxinfo */
1764 sp = argp;
1765
1766 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1767 COPYPRINTF("", cpp - 1, sizeof(argc));
1768 return error;
1769 }
1770
1771 /* XXX don't copy them out, remap them! */
1772 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1773
1774 for (; --argc >= 0; sp += len, dp += len) {
1775 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1776 COPYPRINTF("", cpp - 1, sizeof(dp));
1777 return error;
1778 }
1779 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1780 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1781 return error;
1782 }
1783 }
1784
1785 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1786 COPYPRINTF("", cpp - 1, sizeof(nullp));
1787 return error;
1788 }
1789
1790 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1791
1792 for (; --envc >= 0; sp += len, dp += len) {
1793 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1794 COPYPRINTF("", cpp - 1, sizeof(dp));
1795 return error;
1796 }
1797 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1798 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1799 return error;
1800 }
1801
1802 }
1803
1804 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1805 COPYPRINTF("", cpp - 1, sizeof(nullp));
1806 return error;
1807 }
1808
1809 *stackp = (char *)cpp;
1810 return 0;
1811 }
1812
1813
1814 /*
1815 * Add execsw[] entries.
1816 */
1817 int
1818 exec_add(struct execsw *esp, int count)
1819 {
1820 struct exec_entry *it;
1821 int i, error = 0;
1822
1823 if (count == 0) {
1824 return 0;
1825 }
1826
1827 /* Check for duplicates. */
1828 rw_enter(&exec_lock, RW_WRITER);
1829 for (i = 0; i < count; i++) {
1830 LIST_FOREACH(it, &ex_head, ex_list) {
1831 /* assume unique (makecmds, probe_func, emulation) */
1832 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1833 it->ex_sw->u.elf_probe_func ==
1834 esp[i].u.elf_probe_func &&
1835 it->ex_sw->es_emul == esp[i].es_emul) {
1836 rw_exit(&exec_lock);
1837 return EEXIST;
1838 }
1839 }
1840 }
1841
1842 /* Allocate new entries. */
1843 for (i = 0; i < count; i++) {
1844 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1845 it->ex_sw = &esp[i];
1846 error = exec_sigcode_alloc(it->ex_sw->es_emul);
1847 if (error != 0) {
1848 kmem_free(it, sizeof(*it));
1849 break;
1850 }
1851 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1852 }
1853 /* If even one fails, remove them all back. */
1854 if (error != 0) {
1855 for (i--; i >= 0; i--) {
1856 it = LIST_FIRST(&ex_head);
1857 LIST_REMOVE(it, ex_list);
1858 exec_sigcode_free(it->ex_sw->es_emul);
1859 kmem_free(it, sizeof(*it));
1860 }
1861 return error;
1862 }
1863
1864 /* update execsw[] */
1865 exec_init(0);
1866 rw_exit(&exec_lock);
1867 return 0;
1868 }
1869
1870 /*
1871 * Remove execsw[] entry.
1872 */
1873 int
1874 exec_remove(struct execsw *esp, int count)
1875 {
1876 struct exec_entry *it, *next;
1877 int i;
1878 const struct proclist_desc *pd;
1879 proc_t *p;
1880
1881 if (count == 0) {
1882 return 0;
1883 }
1884
1885 /* Abort if any are busy. */
1886 rw_enter(&exec_lock, RW_WRITER);
1887 for (i = 0; i < count; i++) {
1888 mutex_enter(&proc_lock);
1889 for (pd = proclists; pd->pd_list != NULL; pd++) {
1890 PROCLIST_FOREACH(p, pd->pd_list) {
1891 if (p->p_execsw == &esp[i]) {
1892 mutex_exit(&proc_lock);
1893 rw_exit(&exec_lock);
1894 return EBUSY;
1895 }
1896 }
1897 }
1898 mutex_exit(&proc_lock);
1899 }
1900
1901 /* None are busy, so remove them all. */
1902 for (i = 0; i < count; i++) {
1903 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1904 next = LIST_NEXT(it, ex_list);
1905 if (it->ex_sw == &esp[i]) {
1906 LIST_REMOVE(it, ex_list);
1907 exec_sigcode_free(it->ex_sw->es_emul);
1908 kmem_free(it, sizeof(*it));
1909 break;
1910 }
1911 }
1912 }
1913
1914 /* update execsw[] */
1915 exec_init(0);
1916 rw_exit(&exec_lock);
1917 return 0;
1918 }
1919
1920 /*
1921 * Initialize exec structures. If init_boot is true, also does necessary
1922 * one-time initialization (it's called from main() that way).
1923 * Once system is multiuser, this should be called with exec_lock held,
1924 * i.e. via exec_{add|remove}().
1925 */
1926 int
1927 exec_init(int init_boot)
1928 {
1929 const struct execsw **sw;
1930 struct exec_entry *ex;
1931 SLIST_HEAD(,exec_entry) first;
1932 SLIST_HEAD(,exec_entry) any;
1933 SLIST_HEAD(,exec_entry) last;
1934 int i, sz;
1935
1936 if (init_boot) {
1937 /* do one-time initializations */
1938 vaddr_t vmin = 0, vmax;
1939
1940 rw_init(&exec_lock);
1941 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1942 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1943 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1944 "execargs", &exec_palloc, IPL_NONE);
1945 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1946 } else {
1947 KASSERT(rw_write_held(&exec_lock));
1948 }
1949
1950 /* Sort each entry onto the appropriate queue. */
1951 SLIST_INIT(&first);
1952 SLIST_INIT(&any);
1953 SLIST_INIT(&last);
1954 sz = 0;
1955 LIST_FOREACH(ex, &ex_head, ex_list) {
1956 switch(ex->ex_sw->es_prio) {
1957 case EXECSW_PRIO_FIRST:
1958 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1959 break;
1960 case EXECSW_PRIO_ANY:
1961 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1962 break;
1963 case EXECSW_PRIO_LAST:
1964 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1965 break;
1966 default:
1967 panic("%s", __func__);
1968 break;
1969 }
1970 sz++;
1971 }
1972
1973 /*
1974 * Create new execsw[]. Ensure we do not try a zero-sized
1975 * allocation.
1976 */
1977 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1978 i = 0;
1979 SLIST_FOREACH(ex, &first, ex_slist) {
1980 sw[i++] = ex->ex_sw;
1981 }
1982 SLIST_FOREACH(ex, &any, ex_slist) {
1983 sw[i++] = ex->ex_sw;
1984 }
1985 SLIST_FOREACH(ex, &last, ex_slist) {
1986 sw[i++] = ex->ex_sw;
1987 }
1988
1989 /* Replace old execsw[] and free used memory. */
1990 if (execsw != NULL) {
1991 kmem_free(__UNCONST(execsw),
1992 nexecs * sizeof(struct execsw *) + 1);
1993 }
1994 execsw = sw;
1995 nexecs = sz;
1996
1997 /* Figure out the maximum size of an exec header. */
1998 exec_maxhdrsz = sizeof(int);
1999 for (i = 0; i < nexecs; i++) {
2000 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
2001 exec_maxhdrsz = execsw[i]->es_hdrsz;
2002 }
2003
2004 return 0;
2005 }
2006
2007 int
2008 exec_sigcode_alloc(const struct emul *e)
2009 {
2010 vaddr_t va;
2011 vsize_t sz;
2012 int error;
2013 struct uvm_object *uobj;
2014
2015 KASSERT(rw_lock_held(&exec_lock));
2016
2017 if (e == NULL || e->e_sigobject == NULL)
2018 return 0;
2019
2020 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2021 if (sz == 0)
2022 return 0;
2023
2024 /*
2025 * Create a sigobject for this emulation.
2026 *
2027 * sigobject is an anonymous memory object (just like SYSV shared
2028 * memory) that we keep a permanent reference to and that we map
2029 * in all processes that need this sigcode. The creation is simple,
2030 * we create an object, add a permanent reference to it, map it in
2031 * kernel space, copy out the sigcode to it and unmap it.
2032 * We map it with PROT_READ|PROT_EXEC into the process just
2033 * the way sys_mmap() would map it.
2034 */
2035 if (*e->e_sigobject == NULL) {
2036 uobj = uao_create(sz, 0);
2037 (*uobj->pgops->pgo_reference)(uobj);
2038 va = vm_map_min(kernel_map);
2039 if ((error = uvm_map(kernel_map, &va, round_page(sz),
2040 uobj, 0, 0,
2041 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2042 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
2043 printf("sigcode kernel mapping failed %d\n", error);
2044 (*uobj->pgops->pgo_detach)(uobj);
2045 return error;
2046 }
2047 memcpy((void *)va, e->e_sigcode, sz);
2048 #ifdef PMAP_NEED_PROCWR
2049 pmap_procwr(&proc0, va, sz);
2050 #endif
2051 uvm_unmap(kernel_map, va, va + round_page(sz));
2052 *e->e_sigobject = uobj;
2053 KASSERT(uobj->uo_refs == 1);
2054 } else {
2055 /* if already created, reference++ */
2056 uobj = *e->e_sigobject;
2057 (*uobj->pgops->pgo_reference)(uobj);
2058 }
2059
2060 return 0;
2061 }
2062
2063 void
2064 exec_sigcode_free(const struct emul *e)
2065 {
2066 struct uvm_object *uobj;
2067
2068 KASSERT(rw_lock_held(&exec_lock));
2069
2070 if (e == NULL || e->e_sigobject == NULL)
2071 return;
2072
2073 uobj = *e->e_sigobject;
2074 if (uobj == NULL)
2075 return;
2076
2077 if (uobj->uo_refs == 1)
2078 *e->e_sigobject = NULL; /* I'm the last person to reference. */
2079 (*uobj->pgops->pgo_detach)(uobj);
2080 }
2081
2082 static int
2083 exec_sigcode_map(struct proc *p, const struct emul *e)
2084 {
2085 vaddr_t va;
2086 vsize_t sz;
2087 int error;
2088 struct uvm_object *uobj;
2089
2090 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2091 if (e->e_sigobject == NULL || sz == 0)
2092 return 0;
2093
2094 uobj = *e->e_sigobject;
2095 if (uobj == NULL)
2096 return 0;
2097
2098 /* Just a hint to uvm_map where to put it. */
2099 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2100 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2101
2102 #ifdef __alpha__
2103 /*
2104 * Tru64 puts /sbin/loader at the end of user virtual memory,
2105 * which causes the above calculation to put the sigcode at
2106 * an invalid address. Put it just below the text instead.
2107 */
2108 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2109 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2110 }
2111 #endif
2112
2113 (*uobj->pgops->pgo_reference)(uobj);
2114 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2115 uobj, 0, 0,
2116 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2117 UVM_ADV_RANDOM, 0));
2118 if (error) {
2119 DPRINTF(("%s, %d: map %p "
2120 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2121 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2122 va, error));
2123 (*uobj->pgops->pgo_detach)(uobj);
2124 return error;
2125 }
2126 p->p_sigctx.ps_sigcode = (void *)va;
2127 return 0;
2128 }
2129
2130 /*
2131 * Release a refcount on spawn_exec_data and destroy memory, if this
2132 * was the last one.
2133 */
2134 static void
2135 spawn_exec_data_release(struct spawn_exec_data *data)
2136 {
2137
2138 membar_release();
2139 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2140 return;
2141 membar_acquire();
2142
2143 cv_destroy(&data->sed_cv_child_ready);
2144 mutex_destroy(&data->sed_mtx_child);
2145
2146 if (data->sed_actions)
2147 posix_spawn_fa_free(data->sed_actions,
2148 data->sed_actions->len);
2149 if (data->sed_attrs)
2150 kmem_free(data->sed_attrs,
2151 sizeof(*data->sed_attrs));
2152 kmem_free(data, sizeof(*data));
2153 }
2154
2155 static int
2156 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2157 {
2158 struct lwp *l = curlwp;
2159 register_t retval;
2160 int error, newfd;
2161
2162 if (actions == NULL)
2163 return 0;
2164
2165 for (size_t i = 0; i < actions->len; i++) {
2166 const struct posix_spawn_file_actions_entry *fae =
2167 &actions->fae[i];
2168 switch (fae->fae_action) {
2169 case FAE_OPEN:
2170 if (fd_getfile(fae->fae_fildes) != NULL) {
2171 error = fd_close(fae->fae_fildes);
2172 if (error)
2173 return error;
2174 }
2175 error = fd_open(fae->fae_path, fae->fae_oflag,
2176 fae->fae_mode, &newfd);
2177 if (error)
2178 return error;
2179 if (newfd != fae->fae_fildes) {
2180 error = dodup(l, newfd,
2181 fae->fae_fildes, 0, &retval);
2182 if (fd_getfile(newfd) != NULL)
2183 fd_close(newfd);
2184 }
2185 break;
2186 case FAE_DUP2:
2187 error = dodup(l, fae->fae_fildes,
2188 fae->fae_newfildes, 0, &retval);
2189 break;
2190 case FAE_CLOSE:
2191 if (fd_getfile(fae->fae_fildes) == NULL) {
2192 return EBADF;
2193 }
2194 error = fd_close(fae->fae_fildes);
2195 break;
2196 case FAE_CHDIR:
2197 error = do_sys_chdir(l, fae->fae_chdir_path,
2198 UIO_SYSSPACE, &retval);
2199 break;
2200 case FAE_FCHDIR:
2201 error = do_sys_fchdir(l, fae->fae_fildes, &retval);
2202 break;
2203 }
2204 if (error)
2205 return error;
2206 }
2207 return 0;
2208 }
2209
2210 static int
2211 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2212 {
2213 struct sigaction sigact;
2214 int error;
2215 struct proc *p = curproc;
2216 struct lwp *l = curlwp;
2217
2218 if (attrs == NULL)
2219 return 0;
2220
2221 memset(&sigact, 0, sizeof(sigact));
2222 sigact._sa_u._sa_handler = SIG_DFL;
2223 sigact.sa_flags = 0;
2224
2225 /*
2226 * set state to SSTOP so that this proc can be found by pid.
2227 * see proc_enterprp, do_sched_setparam below
2228 */
2229 mutex_enter(&proc_lock);
2230 /*
2231 * p_stat should be SACTIVE, so we need to adjust the
2232 * parent's p_nstopchild here. For safety, just make
2233 * we're on the good side of SDEAD before we adjust.
2234 */
2235 int ostat = p->p_stat;
2236 KASSERT(ostat < SSTOP);
2237 p->p_stat = SSTOP;
2238 p->p_waited = 0;
2239 p->p_pptr->p_nstopchild++;
2240 mutex_exit(&proc_lock);
2241
2242 /* Set process group */
2243 if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2244 pid_t mypid = p->p_pid;
2245 pid_t pgrp = attrs->sa_pgroup;
2246
2247 if (pgrp == 0)
2248 pgrp = mypid;
2249
2250 error = proc_enterpgrp(parent, mypid, pgrp, false);
2251 if (error)
2252 goto out;
2253 }
2254
2255 /* Set scheduler policy */
2256 if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2257 error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2258 &attrs->sa_schedparam);
2259 else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2260 error = do_sched_setparam(parent->p_pid, 0,
2261 SCHED_NONE, &attrs->sa_schedparam);
2262 }
2263 if (error)
2264 goto out;
2265
2266 /* Reset user ID's */
2267 if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2268 error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2269 ID_E_EQ_R | ID_E_EQ_S);
2270 if (error)
2271 return error;
2272 error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2273 ID_E_EQ_R | ID_E_EQ_S);
2274 if (error)
2275 goto out;
2276 }
2277
2278 /* Set signal masks/defaults */
2279 if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2280 mutex_enter(p->p_lock);
2281 error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2282 mutex_exit(p->p_lock);
2283 if (error)
2284 goto out;
2285 }
2286
2287 if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2288 /*
2289 * The following sigaction call is using a sigaction
2290 * version 0 trampoline which is in the compatibility
2291 * code only. This is not a problem because for SIG_DFL
2292 * and SIG_IGN, the trampolines are now ignored. If they
2293 * were not, this would be a problem because we are
2294 * holding the exec_lock, and the compat code needs
2295 * to do the same in order to replace the trampoline
2296 * code of the process.
2297 */
2298 for (int i = 1; i <= NSIG; i++) {
2299 if (sigismember(&attrs->sa_sigdefault, i))
2300 sigaction1(l, i, &sigact, NULL, NULL, 0);
2301 }
2302 }
2303 error = 0;
2304 out:
2305 mutex_enter(&proc_lock);
2306 p->p_stat = ostat;
2307 p->p_pptr->p_nstopchild--;
2308 mutex_exit(&proc_lock);
2309 return error;
2310 }
2311
2312 /*
2313 * A child lwp of a posix_spawn operation starts here and ends up in
2314 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2315 * manipulations in between.
2316 * The parent waits for the child, as it is not clear whether the child
2317 * will be able to acquire its own exec_lock. If it can, the parent can
2318 * be released early and continue running in parallel. If not (or if the
2319 * magic debug flag is passed in the scheduler attribute struct), the
2320 * child rides on the parent's exec lock until it is ready to return to
2321 * to userland - and only then releases the parent. This method loses
2322 * concurrency, but improves error reporting.
2323 */
2324 static void
2325 spawn_return(void *arg)
2326 {
2327 struct spawn_exec_data *spawn_data = arg;
2328 struct lwp *l = curlwp;
2329 struct proc *p = l->l_proc;
2330 int error;
2331 bool have_reflock;
2332 bool parent_is_waiting = true;
2333
2334 /*
2335 * Check if we can release parent early.
2336 * We either need to have no sed_attrs, or sed_attrs does not
2337 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2338 * safe access to the parent proc (passed in sed_parent).
2339 * We then try to get the exec_lock, and only if that works, we can
2340 * release the parent here already.
2341 */
2342 struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2343 if ((!attrs || (attrs->sa_flags
2344 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2345 && rw_tryenter(&exec_lock, RW_READER)) {
2346 parent_is_waiting = false;
2347 mutex_enter(&spawn_data->sed_mtx_child);
2348 cv_signal(&spawn_data->sed_cv_child_ready);
2349 mutex_exit(&spawn_data->sed_mtx_child);
2350 }
2351
2352 /* don't allow debugger access yet */
2353 rw_enter(&p->p_reflock, RW_WRITER);
2354 have_reflock = true;
2355
2356 /* handle posix_spawnattr */
2357 error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2358 if (error)
2359 goto report_error;
2360
2361 /* handle posix_spawn_file_actions */
2362 error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2363 if (error)
2364 goto report_error;
2365
2366 /* now do the real exec */
2367 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2368 true);
2369 have_reflock = false;
2370 if (error == EJUSTRETURN)
2371 error = 0;
2372 else if (error)
2373 goto report_error;
2374
2375 if (parent_is_waiting) {
2376 mutex_enter(&spawn_data->sed_mtx_child);
2377 cv_signal(&spawn_data->sed_cv_child_ready);
2378 mutex_exit(&spawn_data->sed_mtx_child);
2379 }
2380
2381 /* release our refcount on the data */
2382 spawn_exec_data_release(spawn_data);
2383
2384 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2385 (PSL_TRACED|PSL_TRACEDCHILD)) {
2386 eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2387 }
2388
2389 /* and finally: leave to userland for the first time */
2390 cpu_spawn_return(l);
2391
2392 /* NOTREACHED */
2393 return;
2394
2395 report_error:
2396 if (have_reflock) {
2397 /*
2398 * We have not passed through execve_runproc(),
2399 * which would have released the p_reflock and also
2400 * taken ownership of the sed_exec part of spawn_data,
2401 * so release/free both here.
2402 */
2403 rw_exit(&p->p_reflock);
2404 execve_free_data(&spawn_data->sed_exec);
2405 }
2406
2407 if (parent_is_waiting) {
2408 /* pass error to parent */
2409 mutex_enter(&spawn_data->sed_mtx_child);
2410 spawn_data->sed_error = error;
2411 cv_signal(&spawn_data->sed_cv_child_ready);
2412 mutex_exit(&spawn_data->sed_mtx_child);
2413 } else {
2414 rw_exit(&exec_lock);
2415 }
2416
2417 /* release our refcount on the data */
2418 spawn_exec_data_release(spawn_data);
2419
2420 /* done, exit */
2421 mutex_enter(p->p_lock);
2422 /*
2423 * Posix explicitly asks for an exit code of 127 if we report
2424 * errors from the child process - so, unfortunately, there
2425 * is no way to report a more exact error code.
2426 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2427 * flag bit in the attrp argument to posix_spawn(2), see above.
2428 */
2429 exit1(l, 127, 0);
2430 }
2431
2432 static __inline char **
2433 posix_spawn_fae_path(struct posix_spawn_file_actions_entry *fae)
2434 {
2435 switch (fae->fae_action) {
2436 case FAE_OPEN:
2437 return &fae->fae_path;
2438 case FAE_CHDIR:
2439 return &fae->fae_chdir_path;
2440 default:
2441 return NULL;
2442 }
2443 }
2444
2445 void
2446 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2447 {
2448
2449 for (size_t i = 0; i < len; i++) {
2450 char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2451 if (pathp)
2452 kmem_strfree(*pathp);
2453 }
2454 if (fa->len > 0)
2455 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2456 kmem_free(fa, sizeof(*fa));
2457 }
2458
2459 static int
2460 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2461 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2462 {
2463 struct posix_spawn_file_actions *fa;
2464 struct posix_spawn_file_actions_entry *fae;
2465 char *pbuf = NULL;
2466 int error;
2467 size_t i = 0;
2468
2469 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2470 error = copyin(ufa, fa, sizeof(*fa));
2471 if (error || fa->len == 0) {
2472 kmem_free(fa, sizeof(*fa));
2473 return error; /* 0 if not an error, and len == 0 */
2474 }
2475
2476 if (fa->len > lim) {
2477 kmem_free(fa, sizeof(*fa));
2478 return EINVAL;
2479 }
2480
2481 fa->size = fa->len;
2482 size_t fal = fa->len * sizeof(*fae);
2483 fae = fa->fae;
2484 fa->fae = kmem_alloc(fal, KM_SLEEP);
2485 error = copyin(fae, fa->fae, fal);
2486 if (error)
2487 goto out;
2488
2489 pbuf = PNBUF_GET();
2490 for (; i < fa->len; i++) {
2491 char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2492 if (pathp == NULL)
2493 continue;
2494 error = copyinstr(*pathp, pbuf, MAXPATHLEN, &fal);
2495 if (error)
2496 goto out;
2497 *pathp = kmem_alloc(fal, KM_SLEEP);
2498 memcpy(*pathp, pbuf, fal);
2499 }
2500 PNBUF_PUT(pbuf);
2501
2502 *fap = fa;
2503 return 0;
2504 out:
2505 if (pbuf)
2506 PNBUF_PUT(pbuf);
2507 posix_spawn_fa_free(fa, i);
2508 return error;
2509 }
2510
2511 /*
2512 * N.B. increments nprocs upon success. Callers need to drop nprocs if
2513 * they fail for some other reason.
2514 */
2515 int
2516 check_posix_spawn(struct lwp *l1)
2517 {
2518 int error, tnprocs, count;
2519 uid_t uid;
2520 struct proc *p1;
2521
2522 p1 = l1->l_proc;
2523 uid = kauth_cred_getuid(l1->l_cred);
2524 tnprocs = atomic_inc_uint_nv(&nprocs);
2525
2526 /*
2527 * Although process entries are dynamically created, we still keep
2528 * a global limit on the maximum number we will create.
2529 */
2530 if (__predict_false(tnprocs >= maxproc))
2531 error = -1;
2532 else
2533 error = kauth_authorize_process(l1->l_cred,
2534 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2535
2536 if (error) {
2537 atomic_dec_uint(&nprocs);
2538 return EAGAIN;
2539 }
2540
2541 /*
2542 * Enforce limits.
2543 */
2544 count = chgproccnt(uid, 1);
2545 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2546 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2547 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2548 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2549 (void)chgproccnt(uid, -1);
2550 atomic_dec_uint(&nprocs);
2551 return EAGAIN;
2552 }
2553
2554 return 0;
2555 }
2556
2557 int
2558 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2559 struct posix_spawn_file_actions *fa,
2560 struct posix_spawnattr *sa,
2561 char *const *argv, char *const *envp,
2562 execve_fetch_element_t fetch)
2563 {
2564
2565 struct proc *p1, *p2;
2566 struct lwp *l2;
2567 int error;
2568 struct spawn_exec_data *spawn_data;
2569 vaddr_t uaddr = 0;
2570 pid_t pid;
2571 bool have_exec_lock = false;
2572
2573 p1 = l1->l_proc;
2574
2575 /* Allocate and init spawn_data */
2576 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2577 spawn_data->sed_refcnt = 1; /* only parent so far */
2578 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2579 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2580 mutex_enter(&spawn_data->sed_mtx_child);
2581
2582 /*
2583 * Do the first part of the exec now, collect state
2584 * in spawn_data.
2585 */
2586 error = execve_loadvm(l1, true, path, -1, argv,
2587 envp, fetch, &spawn_data->sed_exec);
2588 if (error == EJUSTRETURN)
2589 error = 0;
2590 else if (error)
2591 goto error_exit;
2592
2593 have_exec_lock = true;
2594
2595 /*
2596 * Allocate virtual address space for the U-area now, while it
2597 * is still easy to abort the fork operation if we're out of
2598 * kernel virtual address space.
2599 */
2600 uaddr = uvm_uarea_alloc();
2601 if (__predict_false(uaddr == 0)) {
2602 error = ENOMEM;
2603 goto error_exit;
2604 }
2605
2606 /*
2607 * Allocate new proc. Borrow proc0 vmspace for it, we will
2608 * replace it with its own before returning to userland
2609 * in the child.
2610 */
2611 p2 = proc_alloc();
2612 if (p2 == NULL) {
2613 /* We were unable to allocate a process ID. */
2614 error = EAGAIN;
2615 goto error_exit;
2616 }
2617
2618 /*
2619 * This is a point of no return, we will have to go through
2620 * the child proc to properly clean it up past this point.
2621 */
2622 pid = p2->p_pid;
2623
2624 /*
2625 * Make a proc table entry for the new process.
2626 * Start by zeroing the section of proc that is zero-initialized,
2627 * then copy the section that is copied directly from the parent.
2628 */
2629 memset(&p2->p_startzero, 0,
2630 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2631 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2632 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2633 p2->p_vmspace = proc0.p_vmspace;
2634
2635 TAILQ_INIT(&p2->p_sigpend.sp_info);
2636
2637 LIST_INIT(&p2->p_lwps);
2638 LIST_INIT(&p2->p_sigwaiters);
2639
2640 /*
2641 * Duplicate sub-structures as needed.
2642 * Increase reference counts on shared objects.
2643 * Inherit flags we want to keep. The flags related to SIGCHLD
2644 * handling are important in order to keep a consistent behaviour
2645 * for the child after the fork. If we are a 32-bit process, the
2646 * child will be too.
2647 */
2648 p2->p_flag =
2649 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2650 p2->p_emul = p1->p_emul;
2651 p2->p_execsw = p1->p_execsw;
2652
2653 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2654 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2655 rw_init(&p2->p_reflock);
2656 cv_init(&p2->p_waitcv, "wait");
2657 cv_init(&p2->p_lwpcv, "lwpwait");
2658
2659 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2660
2661 kauth_proc_fork(p1, p2);
2662
2663 p2->p_raslist = NULL;
2664 p2->p_fd = fd_copy();
2665
2666 /* XXX racy */
2667 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2668
2669 p2->p_cwdi = cwdinit();
2670
2671 /*
2672 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2673 * we just need increase pl_refcnt.
2674 */
2675 if (!p1->p_limit->pl_writeable) {
2676 lim_addref(p1->p_limit);
2677 p2->p_limit = p1->p_limit;
2678 } else {
2679 p2->p_limit = lim_copy(p1->p_limit);
2680 }
2681
2682 p2->p_lflag = 0;
2683 l1->l_vforkwaiting = false;
2684 p2->p_sflag = 0;
2685 p2->p_slflag = 0;
2686 p2->p_pptr = p1;
2687 p2->p_ppid = p1->p_pid;
2688 LIST_INIT(&p2->p_children);
2689
2690 p2->p_aio = NULL;
2691
2692 #ifdef KTRACE
2693 /*
2694 * Copy traceflag and tracefile if enabled.
2695 * If not inherited, these were zeroed above.
2696 */
2697 if (p1->p_traceflag & KTRFAC_INHERIT) {
2698 mutex_enter(&ktrace_lock);
2699 p2->p_traceflag = p1->p_traceflag;
2700 if ((p2->p_tracep = p1->p_tracep) != NULL)
2701 ktradref(p2);
2702 mutex_exit(&ktrace_lock);
2703 }
2704 #endif
2705
2706 /*
2707 * Create signal actions for the child process.
2708 */
2709 p2->p_sigacts = sigactsinit(p1, 0);
2710 mutex_enter(p1->p_lock);
2711 p2->p_sflag |=
2712 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2713 sched_proc_fork(p1, p2);
2714 mutex_exit(p1->p_lock);
2715
2716 p2->p_stflag = p1->p_stflag;
2717
2718 /*
2719 * p_stats.
2720 * Copy parts of p_stats, and zero out the rest.
2721 */
2722 p2->p_stats = pstatscopy(p1->p_stats);
2723
2724 /* copy over machdep flags to the new proc */
2725 cpu_proc_fork(p1, p2);
2726
2727 /*
2728 * Prepare remaining parts of spawn data
2729 */
2730 spawn_data->sed_actions = fa;
2731 spawn_data->sed_attrs = sa;
2732
2733 spawn_data->sed_parent = p1;
2734
2735 /* create LWP */
2736 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2737 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2738 l2->l_ctxlink = NULL; /* reset ucontext link */
2739
2740 /*
2741 * Copy the credential so other references don't see our changes.
2742 * Test to see if this is necessary first, since in the common case
2743 * we won't need a private reference.
2744 */
2745 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2746 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2747 l2->l_cred = kauth_cred_copy(l2->l_cred);
2748 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2749 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2750 }
2751
2752 /* Update the master credentials. */
2753 if (l2->l_cred != p2->p_cred) {
2754 kauth_cred_t ocred;
2755 mutex_enter(p2->p_lock);
2756 ocred = p2->p_cred;
2757 p2->p_cred = kauth_cred_hold(l2->l_cred);
2758 mutex_exit(p2->p_lock);
2759 kauth_cred_free(ocred);
2760 }
2761
2762 *child_ok = true;
2763 spawn_data->sed_refcnt = 2; /* child gets it as well */
2764 #if 0
2765 l2->l_nopreempt = 1; /* start it non-preemptable */
2766 #endif
2767
2768 /*
2769 * It's now safe for the scheduler and other processes to see the
2770 * child process.
2771 */
2772 mutex_enter(&proc_lock);
2773
2774 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2775 p2->p_lflag |= PL_CONTROLT;
2776
2777 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2778 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2779
2780 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2781 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2782 proc_changeparent(p2, p1->p_pptr);
2783 SET(p2->p_slflag, PSL_TRACEDCHILD);
2784 }
2785
2786 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
2787
2788 LIST_INSERT_AFTER(p1, p2, p_pglist);
2789 LIST_INSERT_HEAD(&allproc, p2, p_list);
2790
2791 p2->p_trace_enabled = trace_is_enabled(p2);
2792 #ifdef __HAVE_SYSCALL_INTERN
2793 (*p2->p_emul->e_syscall_intern)(p2);
2794 #endif
2795
2796 /*
2797 * Make child runnable, set start time, and add to run queue except
2798 * if the parent requested the child to start in SSTOP state.
2799 */
2800 mutex_enter(p2->p_lock);
2801
2802 getmicrotime(&p2->p_stats->p_start);
2803
2804 lwp_lock(l2);
2805 KASSERT(p2->p_nrlwps == 1);
2806 KASSERT(l2->l_stat == LSIDL);
2807 p2->p_nrlwps = 1;
2808 p2->p_stat = SACTIVE;
2809 setrunnable(l2);
2810 /* LWP now unlocked */
2811
2812 mutex_exit(p2->p_lock);
2813 mutex_exit(&proc_lock);
2814
2815 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2816 error = spawn_data->sed_error;
2817 mutex_exit(&spawn_data->sed_mtx_child);
2818 spawn_exec_data_release(spawn_data);
2819
2820 rw_exit(&p1->p_reflock);
2821 rw_exit(&exec_lock);
2822 have_exec_lock = false;
2823
2824 *pid_res = pid;
2825
2826 if (error)
2827 return error;
2828
2829 if (p1->p_slflag & PSL_TRACED) {
2830 /* Paranoid check */
2831 mutex_enter(&proc_lock);
2832 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2833 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2834 mutex_exit(&proc_lock);
2835 return 0;
2836 }
2837
2838 mutex_enter(p1->p_lock);
2839 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2840 }
2841 return 0;
2842
2843 error_exit:
2844 if (have_exec_lock) {
2845 execve_free_data(&spawn_data->sed_exec);
2846 rw_exit(&p1->p_reflock);
2847 rw_exit(&exec_lock);
2848 }
2849 mutex_exit(&spawn_data->sed_mtx_child);
2850 spawn_exec_data_release(spawn_data);
2851 if (uaddr != 0)
2852 uvm_uarea_free(uaddr);
2853
2854 return error;
2855 }
2856
2857 int
2858 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2859 register_t *retval)
2860 {
2861 /* {
2862 syscallarg(pid_t *) pid;
2863 syscallarg(const char *) path;
2864 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2865 syscallarg(const struct posix_spawnattr *) attrp;
2866 syscallarg(char *const *) argv;
2867 syscallarg(char *const *) envp;
2868 } */
2869
2870 int error;
2871 struct posix_spawn_file_actions *fa = NULL;
2872 struct posix_spawnattr *sa = NULL;
2873 pid_t pid;
2874 bool child_ok = false;
2875 rlim_t max_fileactions;
2876 proc_t *p = l1->l_proc;
2877
2878 /* check_posix_spawn() increments nprocs for us. */
2879 error = check_posix_spawn(l1);
2880 if (error) {
2881 *retval = error;
2882 return 0;
2883 }
2884
2885 /* copy in file_actions struct */
2886 if (SCARG(uap, file_actions) != NULL) {
2887 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2888 maxfiles);
2889 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2890 max_fileactions);
2891 if (error)
2892 goto error_exit;
2893 }
2894
2895 /* copyin posix_spawnattr struct */
2896 if (SCARG(uap, attrp) != NULL) {
2897 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2898 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2899 if (error)
2900 goto error_exit;
2901 }
2902
2903 /*
2904 * Do the spawn
2905 */
2906 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2907 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2908 if (error)
2909 goto error_exit;
2910
2911 if (error == 0 && SCARG(uap, pid) != NULL)
2912 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2913
2914 *retval = error;
2915 return 0;
2916
2917 error_exit:
2918 if (!child_ok) {
2919 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2920 atomic_dec_uint(&nprocs);
2921
2922 if (sa)
2923 kmem_free(sa, sizeof(*sa));
2924 if (fa)
2925 posix_spawn_fa_free(fa, fa->len);
2926 }
2927
2928 *retval = error;
2929 return 0;
2930 }
2931
2932 void
2933 exec_free_emul_arg(struct exec_package *epp)
2934 {
2935 if (epp->ep_emul_arg_free != NULL) {
2936 KASSERT(epp->ep_emul_arg != NULL);
2937 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2938 epp->ep_emul_arg_free = NULL;
2939 epp->ep_emul_arg = NULL;
2940 } else {
2941 KASSERT(epp->ep_emul_arg == NULL);
2942 }
2943 }
2944
2945 #ifdef DEBUG_EXEC
2946 static void
2947 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2948 {
2949 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2950 size_t j;
2951
2952 if (error == 0)
2953 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2954 else
2955 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2956 epp->ep_vmcmds.evs_used, error));
2957
2958 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2959 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2960 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2961 PRIxVSIZE" prot=0%o flags=%d\n", j,
2962 vp[j].ev_proc == vmcmd_map_pagedvn ?
2963 "pagedvn" :
2964 vp[j].ev_proc == vmcmd_map_readvn ?
2965 "readvn" :
2966 vp[j].ev_proc == vmcmd_map_zero ?
2967 "zero" : "*unknown*",
2968 vp[j].ev_addr, vp[j].ev_len,
2969 vp[j].ev_offset, vp[j].ev_prot,
2970 vp[j].ev_flags));
2971 if (error != 0 && j == x)
2972 DPRINTF((" ^--- failed\n"));
2973 }
2974 }
2975 #endif
2976