Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.524
      1 /*	$NetBSD: kern_exec.c,v 1.524 2024/12/06 16:19:41 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     34  * Copyright (C) 1992 Wolfgang Solfrank.
     35  * Copyright (C) 1992 TooLs GmbH.
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *	This product includes software developed by TooLs GmbH.
     49  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     57  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     58  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     59  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     60  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     61  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.524 2024/12/06 16:19:41 riastradh Exp $");
     66 
     67 #include "opt_exec.h"
     68 #include "opt_execfmt.h"
     69 #include "opt_ktrace.h"
     70 #include "opt_modular.h"
     71 #include "opt_pax.h"
     72 #include "opt_syscall_debug.h"
     73 #include "veriexec.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/types.h>
     77 
     78 #include <sys/acct.h>
     79 #include <sys/atomic.h>
     80 #include <sys/cprng.h>
     81 #include <sys/cpu.h>
     82 #include <sys/exec.h>
     83 #include <sys/file.h>
     84 #include <sys/filedesc.h>
     85 #include <sys/futex.h>
     86 #include <sys/kauth.h>
     87 #include <sys/kernel.h>
     88 #include <sys/kmem.h>
     89 #include <sys/ktrace.h>
     90 #include <sys/lwpctl.h>
     91 #include <sys/mman.h>
     92 #include <sys/module.h>
     93 #include <sys/mount.h>
     94 #include <sys/namei.h>
     95 #include <sys/pax.h>
     96 #include <sys/proc.h>
     97 #include <sys/prot.h>
     98 #include <sys/ptrace.h>
     99 #include <sys/ras.h>
    100 #include <sys/sdt.h>
    101 #include <sys/signalvar.h>
    102 #include <sys/spawn.h>
    103 #include <sys/stat.h>
    104 #include <sys/syscall.h>
    105 #include <sys/syscallargs.h>
    106 #include <sys/syscallvar.h>
    107 #include <sys/systm.h>
    108 #include <sys/uidinfo.h>
    109 #if NVERIEXEC > 0
    110 #include <sys/verified_exec.h>
    111 #endif /* NVERIEXEC > 0 */
    112 #include <sys/vfs_syscalls.h>
    113 #include <sys/vnode.h>
    114 #include <sys/wait.h>
    115 
    116 #include <uvm/uvm_extern.h>
    117 
    118 #include <machine/reg.h>
    119 
    120 #include <compat/common/compat_util.h>
    121 
    122 #ifndef MD_TOPDOWN_INIT
    123 #ifdef __USE_TOPDOWN_VM
    124 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    125 #else
    126 #define	MD_TOPDOWN_INIT(epp)
    127 #endif
    128 #endif
    129 
    130 struct execve_data;
    131 
    132 extern int user_va0_disable;
    133 
    134 static size_t calcargs(struct execve_data * restrict, const size_t);
    135 static size_t calcstack(struct execve_data * restrict, const size_t);
    136 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    137     char * const);
    138 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    139 static int copyinargs(struct execve_data * restrict, char * const *,
    140     char * const *, execve_fetch_element_t, char **);
    141 static int copyinargstrs(struct execve_data * restrict, char * const *,
    142     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    143 static int exec_sigcode_map(struct proc *, const struct emul *);
    144 
    145 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    146 #define DEBUG_EXEC
    147 #endif
    148 #ifdef DEBUG_EXEC
    149 #define DPRINTF(a) printf a
    150 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    151     __LINE__, (s), (a), (b))
    152 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    153 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    154 #else
    155 #define DPRINTF(a)
    156 #define COPYPRINTF(s, a, b)
    157 #define DUMPVMCMDS(p, x, e) do {} while (0)
    158 #endif /* DEBUG_EXEC */
    159 
    160 /*
    161  * DTrace SDT provider definitions
    162  */
    163 SDT_PROVIDER_DECLARE(proc);
    164 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    165 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    166 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    167 
    168 /*
    169  * Exec function switch:
    170  *
    171  * Note that each makecmds function is responsible for loading the
    172  * exec package with the necessary functions for any exec-type-specific
    173  * handling.
    174  *
    175  * Functions for specific exec types should be defined in their own
    176  * header file.
    177  */
    178 static const struct execsw	**execsw = NULL;
    179 static int			nexecs;
    180 
    181 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    182 
    183 /* list of dynamically loaded execsw entries */
    184 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    185     LIST_HEAD_INITIALIZER(ex_head);
    186 struct exec_entry {
    187 	LIST_ENTRY(exec_entry)	ex_list;
    188 	SLIST_ENTRY(exec_entry)	ex_slist;
    189 	const struct execsw	*ex_sw;
    190 };
    191 
    192 #ifndef __HAVE_SYSCALL_INTERN
    193 void	syscall(void);
    194 #endif
    195 
    196 /* NetBSD autoloadable syscalls */
    197 #ifdef MODULAR
    198 #include <kern/syscalls_autoload.c>
    199 #endif
    200 
    201 /* NetBSD emul struct */
    202 struct emul emul_netbsd = {
    203 	.e_name =		"netbsd",
    204 #ifdef EMUL_NATIVEROOT
    205 	.e_path =		EMUL_NATIVEROOT,
    206 #else
    207 	.e_path =		NULL,
    208 #endif
    209 #ifndef __HAVE_MINIMAL_EMUL
    210 	.e_flags =		EMUL_HAS_SYS___syscall,
    211 	.e_errno =		NULL,
    212 	.e_nosys =		SYS_syscall,
    213 	.e_nsysent =		SYS_NSYSENT,
    214 #endif
    215 #ifdef MODULAR
    216 	.e_sc_autoload =	netbsd_syscalls_autoload,
    217 #endif
    218 	.e_sysent =		sysent,
    219 	.e_nomodbits =		sysent_nomodbits,
    220 #ifdef SYSCALL_DEBUG
    221 	.e_syscallnames =	syscallnames,
    222 #else
    223 	.e_syscallnames =	NULL,
    224 #endif
    225 	.e_sendsig =		sendsig,
    226 	.e_trapsignal =		trapsignal,
    227 	.e_sigcode =		NULL,
    228 	.e_esigcode =		NULL,
    229 	.e_sigobject =		NULL,
    230 	.e_setregs =		setregs,
    231 	.e_proc_exec =		NULL,
    232 	.e_proc_fork =		NULL,
    233 	.e_proc_exit =		NULL,
    234 	.e_lwp_fork =		NULL,
    235 	.e_lwp_exit =		NULL,
    236 #ifdef __HAVE_SYSCALL_INTERN
    237 	.e_syscall_intern =	syscall_intern,
    238 #else
    239 	.e_syscall =		syscall,
    240 #endif
    241 	.e_sysctlovly =		NULL,
    242 	.e_vm_default_addr =	uvm_default_mapaddr,
    243 	.e_usertrap =		NULL,
    244 	.e_ucsize =		sizeof(ucontext_t),
    245 	.e_startlwp =		startlwp
    246 };
    247 
    248 /*
    249  * Exec lock. Used to control access to execsw[] structures.
    250  * This must not be static so that netbsd32 can access it, too.
    251  */
    252 krwlock_t exec_lock __cacheline_aligned;
    253 
    254 /*
    255  * Data used between a loadvm and execve part of an "exec" operation
    256  */
    257 struct execve_data {
    258 	struct exec_package	ed_pack;
    259 	struct pathbuf		*ed_pathbuf;
    260 	struct vattr		ed_attr;
    261 	struct ps_strings	ed_arginfo;
    262 	char			*ed_argp;
    263 	const char		*ed_pathstring;
    264 	char			*ed_resolvedname;
    265 	size_t			ed_ps_strings_sz;
    266 	int			ed_szsigcode;
    267 	size_t			ed_argslen;
    268 	long			ed_argc;
    269 	long			ed_envc;
    270 };
    271 
    272 /*
    273  * data passed from parent lwp to child during a posix_spawn()
    274  */
    275 struct spawn_exec_data {
    276 	struct execve_data	sed_exec;
    277 	struct posix_spawn_file_actions
    278 				*sed_actions;
    279 	struct posix_spawnattr	*sed_attrs;
    280 	struct proc		*sed_parent;
    281 	kcondvar_t		sed_cv_child_ready;
    282 	kmutex_t		sed_mtx_child;
    283 	int			sed_error;
    284 	volatile uint32_t	sed_refcnt;
    285 };
    286 
    287 static struct vm_map *exec_map;
    288 static struct pool exec_pool;
    289 
    290 static void *
    291 exec_pool_alloc(struct pool *pp, int flags)
    292 {
    293 
    294 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    295 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    296 }
    297 
    298 static void
    299 exec_pool_free(struct pool *pp, void *addr)
    300 {
    301 
    302 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    303 }
    304 
    305 static struct pool_allocator exec_palloc = {
    306 	.pa_alloc = exec_pool_alloc,
    307 	.pa_free = exec_pool_free,
    308 	.pa_pagesz = NCARGS
    309 };
    310 
    311 static void
    312 exec_path_free(struct execve_data *data)
    313 {
    314 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    315 	pathbuf_destroy(data->ed_pathbuf);
    316 	if (data->ed_resolvedname)
    317 		PNBUF_PUT(data->ed_resolvedname);
    318 }
    319 
    320 static int
    321 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
    322     char **rpath)
    323 {
    324 	int error;
    325 	char *p;
    326 
    327 	KASSERT(rpath != NULL);
    328 
    329 	*rpath = PNBUF_GET();
    330 	error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
    331 	if (error) {
    332 		DPRINTF(("%s: can't resolve name for %s, error %d\n",
    333 		    __func__, epp->ep_kname, error));
    334 		PNBUF_PUT(*rpath);
    335 		*rpath = NULL;
    336 		return error;
    337 	}
    338 	epp->ep_resolvedname = *rpath;
    339 	if ((p = strrchr(*rpath, '/')) != NULL)
    340 		epp->ep_kname = p + 1;
    341 	return 0;
    342 }
    343 
    344 
    345 /*
    346  * check exec:
    347  * given an "executable" described in the exec package's namei info,
    348  * see what we can do with it.
    349  *
    350  * ON ENTRY:
    351  *	exec package with appropriate namei info
    352  *	lwp pointer of exec'ing lwp
    353  *	NO SELF-LOCKED VNODES
    354  *
    355  * ON EXIT:
    356  *	error:	nothing held, etc.  exec header still allocated.
    357  *	ok:	filled exec package, executable's vnode (unlocked).
    358  *
    359  * EXEC SWITCH ENTRY:
    360  * 	Locked vnode to check, exec package, proc.
    361  *
    362  * EXEC SWITCH EXIT:
    363  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    364  *	error:	destructive:
    365  *			everything deallocated execept exec header.
    366  *		non-destructive:
    367  *			error code, executable's vnode (unlocked),
    368  *			exec header unmodified.
    369  */
    370 int
    371 /*ARGSUSED*/
    372 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
    373     char **rpath)
    374 {
    375 	int		error, i;
    376 	struct vnode	*vp;
    377 	size_t		resid;
    378 
    379 	if (epp->ep_resolvedname) {
    380 		struct nameidata nd;
    381 
    382 		// grab the absolute pathbuf here before namei() trashes it.
    383 		pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    384 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    385 
    386 		/* first get the vnode */
    387 		if ((error = namei(&nd)) != 0)
    388 			return error;
    389 
    390 		epp->ep_vp = vp = nd.ni_vp;
    391 #ifdef DIAGNOSTIC
    392 		/* paranoia (take this out once namei stuff stabilizes) */
    393 		memset(nd.ni_pnbuf, '~', PATH_MAX);
    394 #endif
    395 	} else {
    396 		struct file *fp;
    397 
    398 		if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
    399 			return error;
    400 		epp->ep_vp = vp = fp->f_vnode;
    401 		vref(vp);
    402 		fd_putfile(epp->ep_xfd);
    403 		if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
    404 			return error;
    405 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    406 	}
    407 
    408 	/* check access and type */
    409 	if (vp->v_type != VREG) {
    410 		error = SET_ERROR(EACCES);
    411 		goto bad1;
    412 	}
    413 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    414 		goto bad1;
    415 
    416 	/* get attributes */
    417 	/* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
    418 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    419 		goto bad1;
    420 
    421 	/* Check mount point */
    422 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    423 		error = SET_ERROR(EACCES);
    424 		goto bad1;
    425 	}
    426 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    427 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    428 
    429 	/* try to open it */
    430 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    431 		goto bad1;
    432 
    433 	/* now we have the file, get the exec header */
    434 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    435 			UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
    436 	if (error)
    437 		goto bad1;
    438 
    439 	/* unlock vp, since we need it unlocked from here on out. */
    440 	VOP_UNLOCK(vp);
    441 
    442 #if NVERIEXEC > 0
    443 	error = veriexec_verify(l, vp,
    444 	    epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
    445 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    446 	    NULL);
    447 	if (error)
    448 		goto bad2;
    449 #endif /* NVERIEXEC > 0 */
    450 
    451 #ifdef PAX_SEGVGUARD
    452 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    453 	if (error)
    454 		goto bad2;
    455 #endif /* PAX_SEGVGUARD */
    456 
    457 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    458 
    459 	/*
    460 	 * Set up default address space limits.  Can be overridden
    461 	 * by individual exec packages.
    462 	 */
    463 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    464 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    465 
    466 	/*
    467 	 * set up the vmcmds for creation of the process
    468 	 * address space
    469 	 */
    470 	error = nexecs == 0 ? SET_ERROR(ENOEXEC) : ENOEXEC;
    471 	for (i = 0; i < nexecs; i++) {
    472 		int newerror;
    473 
    474 		epp->ep_esch = execsw[i];
    475 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    476 
    477 		if (!newerror) {
    478 			/* Seems ok: check that entry point is not too high */
    479 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    480 #ifdef DIAGNOSTIC
    481 				printf("%s: rejecting %p due to "
    482 				    "too high entry address (>= %p)\n",
    483 					 __func__, (void *)epp->ep_entry,
    484 					 (void *)epp->ep_vm_maxaddr);
    485 #endif
    486 				error = SET_ERROR(ENOEXEC);
    487 				break;
    488 			}
    489 			/* Seems ok: check that entry point is not too low */
    490 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    491 #ifdef DIAGNOSTIC
    492 				printf("%s: rejecting %p due to "
    493 				    "too low entry address (< %p)\n",
    494 				     __func__, (void *)epp->ep_entry,
    495 				     (void *)epp->ep_vm_minaddr);
    496 #endif
    497 				error = SET_ERROR(ENOEXEC);
    498 				break;
    499 			}
    500 
    501 			/* check limits */
    502 #ifdef DIAGNOSTIC
    503 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
    504 #endif
    505 #ifdef MAXTSIZ
    506 			if (epp->ep_tsize > MAXTSIZ) {
    507 #ifdef DIAGNOSTIC
    508 				printf(LMSG, __func__, "text",
    509 				    (uintmax_t)epp->ep_tsize,
    510 				    (uintmax_t)MAXTSIZ);
    511 #endif
    512 				error = SET_ERROR(ENOMEM);
    513 				break;
    514 			}
    515 #endif
    516 			vsize_t dlimit =
    517 			    (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
    518 			if (epp->ep_dsize > dlimit) {
    519 #ifdef DIAGNOSTIC
    520 				printf(LMSG, __func__, "data",
    521 				    (uintmax_t)epp->ep_dsize,
    522 				    (uintmax_t)dlimit);
    523 #endif
    524 				error = SET_ERROR(ENOMEM);
    525 				break;
    526 			}
    527 			return 0;
    528 		}
    529 
    530 		/*
    531 		 * Reset all the fields that may have been modified by the
    532 		 * loader.
    533 		 */
    534 		KASSERT(epp->ep_emul_arg == NULL);
    535 		if (epp->ep_emul_root != NULL) {
    536 			vrele(epp->ep_emul_root);
    537 			epp->ep_emul_root = NULL;
    538 		}
    539 		if (epp->ep_interp != NULL) {
    540 			vrele(epp->ep_interp);
    541 			epp->ep_interp = NULL;
    542 		}
    543 		epp->ep_pax_flags = 0;
    544 
    545 		/* make sure the first "interesting" error code is saved. */
    546 		if (error == ENOEXEC)
    547 			error = newerror;
    548 
    549 		if (epp->ep_flags & EXEC_DESTR)
    550 			/* Error from "#!" code, tidied up by recursive call */
    551 			return error;
    552 	}
    553 
    554 	/* not found, error */
    555 
    556 	/*
    557 	 * free any vmspace-creation commands,
    558 	 * and release their references
    559 	 */
    560 	kill_vmcmds(&epp->ep_vmcmds);
    561 
    562 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
    563 bad2:
    564 #endif
    565 	/*
    566 	 * close and release the vnode, restore the old one, free the
    567 	 * pathname buf, and punt.
    568 	 */
    569 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    570 	VOP_CLOSE(vp, FREAD, l->l_cred);
    571 	vput(vp);
    572 	return error;
    573 
    574 bad1:
    575 	/*
    576 	 * free the namei pathname buffer, and put the vnode
    577 	 * (which we don't yet have open).
    578 	 */
    579 	vput(vp);				/* was still locked */
    580 	return error;
    581 }
    582 
    583 #ifdef __MACHINE_STACK_GROWS_UP
    584 #define STACK_PTHREADSPACE NBPG
    585 #else
    586 #define STACK_PTHREADSPACE 0
    587 #endif
    588 
    589 static int
    590 execve_fetch_element(char * const *array, size_t index, char **value)
    591 {
    592 	return copyin(array + index, value, sizeof(*value));
    593 }
    594 
    595 /*
    596  * exec system call
    597  */
    598 int
    599 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    600 {
    601 	/* {
    602 		syscallarg(const char *)	path;
    603 		syscallarg(char * const *)	argp;
    604 		syscallarg(char * const *)	envp;
    605 	} */
    606 
    607 	return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
    608 	    SCARG(uap, envp), execve_fetch_element);
    609 }
    610 
    611 int
    612 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    613     register_t *retval)
    614 {
    615 	/* {
    616 		syscallarg(int)			fd;
    617 		syscallarg(char * const *)	argp;
    618 		syscallarg(char * const *)	envp;
    619 	} */
    620 
    621 	return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
    622 	    SCARG(uap, envp), execve_fetch_element);
    623 }
    624 
    625 /*
    626  * Load modules to try and execute an image that we do not understand.
    627  * If no execsw entries are present, we load those likely to be needed
    628  * in order to run native images only.  Otherwise, we autoload all
    629  * possible modules that could let us run the binary.  XXX lame
    630  */
    631 static void
    632 exec_autoload(void)
    633 {
    634 #ifdef MODULAR
    635 	static const char * const native[] = {
    636 		"exec_elf32",
    637 		"exec_elf64",
    638 		"exec_script",
    639 		NULL
    640 	};
    641 	static const char * const compat[] = {
    642 		"exec_elf32",
    643 		"exec_elf64",
    644 		"exec_script",
    645 		"exec_aout",
    646 		"exec_coff",
    647 		"exec_ecoff",
    648 		"compat_aoutm68k",
    649 		"compat_netbsd32",
    650 #if 0
    651 		"compat_linux",
    652 		"compat_linux32",
    653 #endif
    654 		"compat_sunos",
    655 		"compat_sunos32",
    656 		"compat_ultrix",
    657 		NULL
    658 	};
    659 	char const * const *list;
    660 	int i;
    661 
    662 	list = nexecs == 0 ? native : compat;
    663 	for (i = 0; list[i] != NULL; i++) {
    664 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    665 			continue;
    666 		}
    667 		yield();
    668 	}
    669 #endif
    670 }
    671 
    672 /*
    673  * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
    674  * making it absolute in the process, by prepending the current working
    675  * directory if it is not. If offs is supplied it will contain the offset
    676  * where the original supplied copy of upath starts.
    677  */
    678 int
    679 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    680     struct pathbuf **pbp, size_t *offs)
    681 {
    682 	char *path, *bp;
    683 	size_t len, tlen;
    684 	int error;
    685 	struct cwdinfo *cwdi;
    686 
    687 	path = PNBUF_GET();
    688 	if (seg == UIO_SYSSPACE) {
    689 		error = copystr(upath, path, MAXPATHLEN, &len);
    690 	} else {
    691 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    692 	}
    693 	if (error)
    694 		goto err;
    695 
    696 	if (path[0] == '/') {
    697 		if (offs)
    698 			*offs = 0;
    699 		goto out;
    700 	}
    701 
    702 	len++;
    703 	if (len + 1 >= MAXPATHLEN) {
    704 		error = SET_ERROR(ENAMETOOLONG);
    705 		goto err;
    706 	}
    707 	bp = path + MAXPATHLEN - len;
    708 	memmove(bp, path, len);
    709 	*(--bp) = '/';
    710 
    711 	cwdi = l->l_proc->p_cwdi;
    712 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    713 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    714 	    GETCWD_CHECK_ACCESS, l);
    715 	rw_exit(&cwdi->cwdi_lock);
    716 
    717 	if (error)
    718 		goto err;
    719 	tlen = path + MAXPATHLEN - bp;
    720 
    721 	memmove(path, bp, tlen);
    722 	path[tlen - 1] = '\0';
    723 	if (offs)
    724 		*offs = tlen - len;
    725 out:
    726 	*pbp = pathbuf_assimilate(path);
    727 	return 0;
    728 err:
    729 	PNBUF_PUT(path);
    730 	return error;
    731 }
    732 
    733 vaddr_t
    734 exec_vm_minaddr(vaddr_t va_min)
    735 {
    736 	/*
    737 	 * Increase va_min if we don't want NULL to be mappable by the
    738 	 * process.
    739 	 */
    740 #define VM_MIN_GUARD	PAGE_SIZE
    741 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    742 		return VM_MIN_GUARD;
    743 	return va_min;
    744 }
    745 
    746 static int
    747 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
    748 	char * const *args, char * const *envs,
    749 	execve_fetch_element_t fetch_element,
    750 	struct execve_data * restrict data)
    751 {
    752 	struct exec_package	* const epp = &data->ed_pack;
    753 	int			error;
    754 	struct proc		*p;
    755 	char			*dp;
    756 	u_int			modgen;
    757 
    758 	KASSERT(data != NULL);
    759 
    760 	p = l->l_proc;
    761 	modgen = 0;
    762 
    763 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    764 
    765 	/*
    766 	 * Check if we have exceeded our number of processes limit.
    767 	 * This is so that we handle the case where a root daemon
    768 	 * forked, ran setuid to become the desired user and is trying
    769 	 * to exec. The obvious place to do the reference counting check
    770 	 * is setuid(), but we don't do the reference counting check there
    771 	 * like other OS's do because then all the programs that use setuid()
    772 	 * must be modified to check the return code of setuid() and exit().
    773 	 * It is dangerous to make setuid() fail, because it fails open and
    774 	 * the program will continue to run as root. If we make it succeed
    775 	 * and return an error code, again we are not enforcing the limit.
    776 	 * The best place to enforce the limit is here, when the process tries
    777 	 * to execute a new image, because eventually the process will need
    778 	 * to call exec in order to do something useful.
    779 	 */
    780  retry:
    781 	if (p->p_flag & PK_SUGID) {
    782 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    783 			p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    784 			&p->p_rlimit[RLIMIT_NPROC],
    785 			KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    786 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    787 		    p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    788 			return SET_ERROR(EAGAIN);
    789 	}
    790 
    791 	/*
    792 	 * Drain existing references and forbid new ones.  The process
    793 	 * should be left alone until we're done here.  This is necessary
    794 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    795 	 * a local user to illicitly obtain elevated privileges.
    796 	 */
    797 	rw_enter(&p->p_reflock, RW_WRITER);
    798 
    799 	if (has_path) {
    800 		size_t	offs;
    801 		/*
    802 		 * Init the namei data to point the file user's program name.
    803 		 * This is done here rather than in check_exec(), so that it's
    804 		 * possible to override this settings if any of makecmd/probe
    805 		 * functions call check_exec() recursively - for example,
    806 		 * see exec_script_makecmds().
    807 		 */
    808 		if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    809 		    &data->ed_pathbuf, &offs)) != 0)
    810 			goto clrflg;
    811 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    812 		epp->ep_kname = data->ed_pathstring + offs;
    813 		data->ed_resolvedname = PNBUF_GET();
    814 		epp->ep_resolvedname = data->ed_resolvedname;
    815 		epp->ep_xfd = -1;
    816 	} else {
    817 		data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
    818 		data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    819 		epp->ep_kname = "*fexecve*";
    820 		data->ed_resolvedname = NULL;
    821 		epp->ep_resolvedname = NULL;
    822 		epp->ep_xfd = fd;
    823 	}
    824 
    825 
    826 	/*
    827 	 * initialize the fields of the exec package.
    828 	 */
    829 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    830 	epp->ep_hdrlen = exec_maxhdrsz;
    831 	epp->ep_hdrvalid = 0;
    832 	epp->ep_emul_arg = NULL;
    833 	epp->ep_emul_arg_free = NULL;
    834 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    835 	epp->ep_vap = &data->ed_attr;
    836 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    837 	MD_TOPDOWN_INIT(epp);
    838 	epp->ep_emul_root = NULL;
    839 	epp->ep_interp = NULL;
    840 	epp->ep_esch = NULL;
    841 	epp->ep_pax_flags = 0;
    842 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    843 
    844 	rw_enter(&exec_lock, RW_READER);
    845 
    846 	/* see if we can run it. */
    847 	if ((error = check_exec(l, epp, data->ed_pathbuf,
    848 	    &data->ed_resolvedname)) != 0) {
    849 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    850 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    851 			    __func__, epp->ep_kname, error));
    852 		}
    853 		goto freehdr;
    854 	}
    855 
    856 	/* allocate an argument buffer */
    857 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    858 	KASSERT(data->ed_argp != NULL);
    859 	dp = data->ed_argp;
    860 
    861 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    862 		goto bad;
    863 	}
    864 
    865 	/*
    866 	 * Calculate the new stack size.
    867 	 */
    868 
    869 #ifdef __MACHINE_STACK_GROWS_UP
    870 /*
    871  * copyargs() fills argc/argv/envp from the lower address even on
    872  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    873  * so that _rtld() use it.
    874  */
    875 #define	RTLD_GAP	32
    876 #else
    877 #define	RTLD_GAP	0
    878 #endif
    879 
    880 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    881 
    882 	data->ed_argslen = calcargs(data, argenvstrlen);
    883 
    884 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    885 
    886 	if (len > epp->ep_ssize) {
    887 		/* in effect, compare to initial limit */
    888 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    889 		error = SET_ERROR(ENOMEM);
    890 		goto bad;
    891 	}
    892 	/* adjust "active stack depth" for process VSZ */
    893 	epp->ep_ssize = len;
    894 
    895 	return 0;
    896 
    897  bad:
    898 	/* free the vmspace-creation commands, and release their references */
    899 	kill_vmcmds(&epp->ep_vmcmds);
    900 	/* kill any opened file descriptor, if necessary */
    901 	if (epp->ep_flags & EXEC_HASFD) {
    902 		epp->ep_flags &= ~EXEC_HASFD;
    903 		fd_close(epp->ep_fd);
    904 	}
    905 	/* close and put the exec'd file */
    906 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    907 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    908 	vput(epp->ep_vp);
    909 	pool_put(&exec_pool, data->ed_argp);
    910 
    911  freehdr:
    912 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    913 	if (epp->ep_emul_root != NULL)
    914 		vrele(epp->ep_emul_root);
    915 	if (epp->ep_interp != NULL)
    916 		vrele(epp->ep_interp);
    917 
    918 	rw_exit(&exec_lock);
    919 
    920 	exec_path_free(data);
    921 
    922  clrflg:
    923 	rw_exit(&p->p_reflock);
    924 
    925 	if (modgen != module_gen && error == ENOEXEC) {
    926 		modgen = module_gen;
    927 		exec_autoload();
    928 		goto retry;
    929 	}
    930 
    931 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    932 	return error;
    933 }
    934 
    935 static int
    936 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    937 {
    938 	struct exec_package	* const epp = &data->ed_pack;
    939 	struct proc		*p = l->l_proc;
    940 	struct exec_vmcmd	*base_vcp;
    941 	int			error = 0;
    942 	size_t			i;
    943 
    944 	/* record proc's vnode, for use by procfs and others */
    945 	if (p->p_textvp)
    946 		vrele(p->p_textvp);
    947 	vref(epp->ep_vp);
    948 	p->p_textvp = epp->ep_vp;
    949 
    950 	/* create the new process's VM space by running the vmcmds */
    951 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    952 
    953 #ifdef TRACE_EXEC
    954 	DUMPVMCMDS(epp, 0, 0);
    955 #endif
    956 
    957 	base_vcp = NULL;
    958 
    959 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    960 		struct exec_vmcmd *vcp;
    961 
    962 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    963 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    964 			KASSERTMSG(base_vcp != NULL,
    965 			    "%s: relative vmcmd with no base", __func__);
    966 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    967 			    "%s: illegal base & relative vmcmd", __func__);
    968 			vcp->ev_addr += base_vcp->ev_addr;
    969 		}
    970 		error = (*vcp->ev_proc)(l, vcp);
    971 		if (error)
    972 			DUMPVMCMDS(epp, i, error);
    973 		if (vcp->ev_flags & VMCMD_BASE)
    974 			base_vcp = vcp;
    975 	}
    976 
    977 	/* free the vmspace-creation commands, and release their references */
    978 	kill_vmcmds(&epp->ep_vmcmds);
    979 
    980 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    981 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    982 	vput(epp->ep_vp);
    983 
    984 	/* if an error happened, deallocate and punt */
    985 	if (error != 0) {
    986 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    987 	}
    988 	return error;
    989 }
    990 
    991 static void
    992 execve_free_data(struct execve_data *data)
    993 {
    994 	struct exec_package	* const epp = &data->ed_pack;
    995 
    996 	/* free the vmspace-creation commands, and release their references */
    997 	kill_vmcmds(&epp->ep_vmcmds);
    998 	/* kill any opened file descriptor, if necessary */
    999 	if (epp->ep_flags & EXEC_HASFD) {
   1000 		epp->ep_flags &= ~EXEC_HASFD;
   1001 		fd_close(epp->ep_fd);
   1002 	}
   1003 
   1004 	/* close and put the exec'd file */
   1005 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1006 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
   1007 	vput(epp->ep_vp);
   1008 	pool_put(&exec_pool, data->ed_argp);
   1009 
   1010 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1011 	if (epp->ep_emul_root != NULL)
   1012 		vrele(epp->ep_emul_root);
   1013 	if (epp->ep_interp != NULL)
   1014 		vrele(epp->ep_interp);
   1015 
   1016 	exec_path_free(data);
   1017 }
   1018 
   1019 static void
   1020 pathexec(struct proc *p, const char *resolvedname)
   1021 {
   1022 	/* set command name & other accounting info */
   1023 	const char *cmdname;
   1024 
   1025 	if (resolvedname == NULL) {
   1026 		cmdname = "*fexecve*";
   1027 		resolvedname = "/";
   1028 	} else {
   1029 		cmdname = strrchr(resolvedname, '/') + 1;
   1030 	}
   1031 	KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
   1032 	    resolvedname);
   1033 
   1034 	strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
   1035 
   1036 	kmem_strfree(p->p_path);
   1037 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
   1038 }
   1039 
   1040 /* XXX elsewhere */
   1041 static int
   1042 credexec(struct lwp *l, struct execve_data *data)
   1043 {
   1044 	struct proc *p = l->l_proc;
   1045 	struct vattr *attr = &data->ed_attr;
   1046 	int error;
   1047 
   1048 	/*
   1049 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1050 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1051 	 * out additional references on the process for the moment.
   1052 	 */
   1053 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1054 
   1055 	    (((attr->va_mode & S_ISUID) != 0 &&
   1056 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
   1057 
   1058 	     ((attr->va_mode & S_ISGID) != 0 &&
   1059 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
   1060 		/*
   1061 		 * Mark the process as SUGID before we do
   1062 		 * anything that might block.
   1063 		 */
   1064 		proc_crmod_enter();
   1065 		proc_crmod_leave(NULL, NULL, true);
   1066 		if (data->ed_argc == 0) {
   1067 			DPRINTF((
   1068 			    "%s: not executing set[ug]id binary with no args\n",
   1069 			    __func__));
   1070 			return SET_ERROR(EINVAL);
   1071 		}
   1072 
   1073 		/* Make sure file descriptors 0..2 are in use. */
   1074 		if ((error = fd_checkstd()) != 0) {
   1075 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1076 			    __func__, error));
   1077 			return error;
   1078 		}
   1079 
   1080 		/*
   1081 		 * Copy the credential so other references don't see our
   1082 		 * changes.
   1083 		 */
   1084 		l->l_cred = kauth_cred_copy(l->l_cred);
   1085 #ifdef KTRACE
   1086 		/*
   1087 		 * If the persistent trace flag isn't set, turn off.
   1088 		 */
   1089 		if (p->p_tracep) {
   1090 			mutex_enter(&ktrace_lock);
   1091 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1092 				ktrderef(p);
   1093 			mutex_exit(&ktrace_lock);
   1094 		}
   1095 #endif
   1096 		if (attr->va_mode & S_ISUID)
   1097 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1098 		if (attr->va_mode & S_ISGID)
   1099 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1100 	} else {
   1101 		if (kauth_cred_geteuid(l->l_cred) ==
   1102 		    kauth_cred_getuid(l->l_cred) &&
   1103 		    kauth_cred_getegid(l->l_cred) ==
   1104 		    kauth_cred_getgid(l->l_cred))
   1105 			p->p_flag &= ~PK_SUGID;
   1106 	}
   1107 
   1108 	/*
   1109 	 * Copy the credential so other references don't see our changes.
   1110 	 * Test to see if this is necessary first, since in the common case
   1111 	 * we won't need a private reference.
   1112 	 */
   1113 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1114 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1115 		l->l_cred = kauth_cred_copy(l->l_cred);
   1116 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1117 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1118 	}
   1119 
   1120 	/* Update the master credentials. */
   1121 	if (l->l_cred != p->p_cred) {
   1122 		kauth_cred_t ocred;
   1123 		mutex_enter(p->p_lock);
   1124 		ocred = p->p_cred;
   1125 		p->p_cred = kauth_cred_hold(l->l_cred);
   1126 		mutex_exit(p->p_lock);
   1127 		kauth_cred_free(ocred);
   1128 	}
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 static void
   1134 emulexec(struct lwp *l, struct exec_package *epp)
   1135 {
   1136 	struct proc		*p = l->l_proc;
   1137 
   1138 	/* The emulation root will usually have been found when we looked
   1139 	 * for the elf interpreter (or similar), if not look now. */
   1140 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1141 	    epp->ep_emul_root == NULL)
   1142 		emul_find_root(l, epp);
   1143 
   1144 	/* Any old emulation root got removed by fdcloseexec */
   1145 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1146 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1147 	rw_exit(&p->p_cwdi->cwdi_lock);
   1148 	epp->ep_emul_root = NULL;
   1149 	if (epp->ep_interp != NULL)
   1150 		vrele(epp->ep_interp);
   1151 
   1152 	/*
   1153 	 * Call emulation specific exec hook. This can setup per-process
   1154 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1155 	 *
   1156 	 * If we are executing process of different emulation than the
   1157 	 * original forked process, call e_proc_exit() of the old emulation
   1158 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1159 	 * same, the exec hook code should deallocate any old emulation
   1160 	 * resources held previously by this process.
   1161 	 */
   1162 	if (p->p_emul && p->p_emul->e_proc_exit
   1163 	    && p->p_emul != epp->ep_esch->es_emul)
   1164 		(*p->p_emul->e_proc_exit)(p);
   1165 
   1166 	/*
   1167 	 * Call exec hook. Emulation code may NOT store reference to anything
   1168 	 * from &pack.
   1169 	 */
   1170 	if (epp->ep_esch->es_emul->e_proc_exec)
   1171 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1172 
   1173 	/* update p_emul, the old value is no longer needed */
   1174 	p->p_emul = epp->ep_esch->es_emul;
   1175 
   1176 	/* ...and the same for p_execsw */
   1177 	p->p_execsw = epp->ep_esch;
   1178 
   1179 #ifdef __HAVE_SYSCALL_INTERN
   1180 	(*p->p_emul->e_syscall_intern)(p);
   1181 #endif
   1182 	ktremul();
   1183 }
   1184 
   1185 static int
   1186 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1187 	bool no_local_exec_lock, bool is_spawn)
   1188 {
   1189 	struct exec_package	* const epp = &data->ed_pack;
   1190 	int error = 0;
   1191 	struct proc		*p;
   1192 	struct vmspace		*vm;
   1193 
   1194 	/*
   1195 	 * In case of a posix_spawn operation, the child doing the exec
   1196 	 * might not hold the reader lock on exec_lock, but the parent
   1197 	 * will do this instead.
   1198 	 */
   1199 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1200 	KASSERT(!no_local_exec_lock || is_spawn);
   1201 	KASSERT(data != NULL);
   1202 
   1203 	p = l->l_proc;
   1204 
   1205 	/* Get rid of other LWPs. */
   1206 	if (p->p_nlwps > 1) {
   1207 		mutex_enter(p->p_lock);
   1208 		exit_lwps(l);
   1209 		mutex_exit(p->p_lock);
   1210 	}
   1211 	KDASSERT(p->p_nlwps == 1);
   1212 
   1213 	/*
   1214 	 * All of the other LWPs got rid of their robust futexes
   1215 	 * when they exited above, but we might still have some
   1216 	 * to dispose of.  Do that now.
   1217 	 */
   1218 	if (__predict_false(l->l_robust_head != 0)) {
   1219 		futex_release_all_lwp(l);
   1220 		/*
   1221 		 * Since this LWP will live on with a different
   1222 		 * program image, we need to clear the robust
   1223 		 * futex list pointer here.
   1224 		 */
   1225 		l->l_robust_head = 0;
   1226 	}
   1227 
   1228 	/* Destroy any lwpctl info. */
   1229 	if (p->p_lwpctl != NULL)
   1230 		lwp_ctl_exit();
   1231 
   1232 	/* Remove POSIX timers */
   1233 	ptimers_free(p, TIMERS_POSIX);
   1234 
   1235 	/* Set the PaX flags. */
   1236 	pax_set_flags(epp, p);
   1237 
   1238 	/*
   1239 	 * Do whatever is necessary to prepare the address space
   1240 	 * for remapping.  Note that this might replace the current
   1241 	 * vmspace with another!
   1242 	 *
   1243 	 * vfork(): do not touch any user space data in the new child
   1244 	 * until we have awoken the parent below, or it will defeat
   1245 	 * lazy pmap switching (on x86).
   1246 	 */
   1247 	if (is_spawn)
   1248 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1249 		    epp->ep_vm_maxaddr,
   1250 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1251 	else
   1252 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1253 		    epp->ep_vm_maxaddr,
   1254 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1255 	vm = p->p_vmspace;
   1256 
   1257 	vm->vm_taddr = (void *)epp->ep_taddr;
   1258 	vm->vm_tsize = btoc(epp->ep_tsize);
   1259 	vm->vm_daddr = (void*)epp->ep_daddr;
   1260 	vm->vm_dsize = btoc(epp->ep_dsize);
   1261 	vm->vm_ssize = btoc(epp->ep_ssize);
   1262 	vm->vm_issize = 0;
   1263 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1264 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1265 
   1266 	pax_aslr_init_vm(l, vm, epp);
   1267 
   1268 	cwdexec(p);
   1269 	fd_closeexec();		/* handle close on exec */
   1270 
   1271 	if (__predict_false(ktrace_on))
   1272 		fd_ktrexecfd();
   1273 
   1274 	execsigs(p);		/* reset caught signals */
   1275 
   1276 	mutex_enter(p->p_lock);
   1277 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1278 	p->p_acflag &= ~AFORK;
   1279 	p->p_flag |= PK_EXEC;
   1280 	mutex_exit(p->p_lock);
   1281 
   1282 	error = credexec(l, data);
   1283 	if (error)
   1284 		goto exec_abort;
   1285 
   1286 #if defined(__HAVE_RAS)
   1287 	/*
   1288 	 * Remove all RASs from the address space.
   1289 	 */
   1290 	ras_purgeall();
   1291 #endif
   1292 
   1293 	/*
   1294 	 * Stop profiling.
   1295 	 */
   1296 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1297 		mutex_spin_enter(&p->p_stmutex);
   1298 		stopprofclock(p);
   1299 		mutex_spin_exit(&p->p_stmutex);
   1300 	}
   1301 
   1302 	/*
   1303 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1304 	 * exited and exec()/exit() are the only places it will be cleared.
   1305 	 *
   1306 	 * Once the parent has been awoken, curlwp may teleport to a new CPU
   1307 	 * in sched_vforkexec(), and it's then OK to start messing with user
   1308 	 * data.  See comment above.
   1309 	 */
   1310 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1311 		bool samecpu;
   1312 		lwp_t *lp;
   1313 
   1314 		mutex_enter(&proc_lock);
   1315 		lp = p->p_vforklwp;
   1316 		p->p_vforklwp = NULL;
   1317 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1318 
   1319 		/* Clear flags after cv_broadcast() (scheduler needs them). */
   1320 		p->p_lflag &= ~PL_PPWAIT;
   1321 		lp->l_vforkwaiting = false;
   1322 
   1323 		/* If parent is still on same CPU, teleport curlwp elsewhere. */
   1324 		samecpu = (lp->l_cpu == curlwp->l_cpu);
   1325 		cv_broadcast(&lp->l_waitcv);
   1326 		mutex_exit(&proc_lock);
   1327 
   1328 		/* Give the parent its CPU back - find a new home. */
   1329 		KASSERT(!is_spawn);
   1330 		sched_vforkexec(l, samecpu);
   1331 	}
   1332 
   1333 	/* Now map address space. */
   1334 	error = execve_dovmcmds(l, data);
   1335 	if (error != 0)
   1336 		goto exec_abort;
   1337 
   1338 	pathexec(p, epp->ep_resolvedname);
   1339 
   1340 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1341 
   1342 	error = copyoutargs(data, l, newstack);
   1343 	if (error != 0)
   1344 		goto exec_abort;
   1345 
   1346 	doexechooks(p);
   1347 
   1348 	/*
   1349 	 * Set initial SP at the top of the stack.
   1350 	 *
   1351 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1352 	 * the end of arg/env strings.  Userland guesses the address of argc
   1353 	 * via ps_strings::ps_argvstr.
   1354 	 */
   1355 
   1356 	/* Setup new registers and do misc. setup. */
   1357 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1358 	if (epp->ep_esch->es_setregs)
   1359 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1360 
   1361 	/* Provide a consistent LWP private setting */
   1362 	(void)lwp_setprivate(l, NULL);
   1363 
   1364 	/* Discard all PCU state; need to start fresh */
   1365 	pcu_discard_all(l);
   1366 
   1367 	/* map the process's signal trampoline code */
   1368 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1369 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1370 		goto exec_abort;
   1371 	}
   1372 
   1373 	pool_put(&exec_pool, data->ed_argp);
   1374 
   1375 	/*
   1376 	 * Notify anyone who might care that we've exec'd.
   1377 	 *
   1378 	 * This is slightly racy; someone could sneak in and
   1379 	 * attach a knote after we've decided not to notify,
   1380 	 * or vice-versa, but that's not particularly bothersome.
   1381 	 * knote_proc_exec() will acquire p->p_lock as needed.
   1382 	 */
   1383 	if (!SLIST_EMPTY(&p->p_klist)) {
   1384 		knote_proc_exec(p);
   1385 	}
   1386 
   1387 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1388 
   1389 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1390 
   1391 	emulexec(l, epp);
   1392 
   1393 	/* Allow new references from the debugger/procfs. */
   1394 	rw_exit(&p->p_reflock);
   1395 	if (!no_local_exec_lock)
   1396 		rw_exit(&exec_lock);
   1397 
   1398 	mutex_enter(&proc_lock);
   1399 
   1400 	/* posix_spawn(3) reports a single event with implied exec(3) */
   1401 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
   1402 		mutex_enter(p->p_lock);
   1403 		eventswitch(TRAP_EXEC, 0, 0);
   1404 		mutex_enter(&proc_lock);
   1405 	}
   1406 
   1407 	if (p->p_sflag & PS_STOPEXEC) {
   1408 		ksiginfoq_t kq;
   1409 
   1410 		KASSERT(l->l_blcnt == 0);
   1411 		p->p_pptr->p_nstopchild++;
   1412 		p->p_waited = 0;
   1413 		mutex_enter(p->p_lock);
   1414 		ksiginfo_queue_init(&kq);
   1415 		sigclearall(p, &contsigmask, &kq);
   1416 		lwp_lock(l);
   1417 		l->l_stat = LSSTOP;
   1418 		p->p_stat = SSTOP;
   1419 		p->p_nrlwps--;
   1420 		lwp_unlock(l);
   1421 		mutex_exit(p->p_lock);
   1422 		mutex_exit(&proc_lock);
   1423 		lwp_lock(l);
   1424 		spc_lock(l->l_cpu);
   1425 		mi_switch(l);
   1426 		ksiginfo_queue_drain(&kq);
   1427 	} else {
   1428 		mutex_exit(&proc_lock);
   1429 	}
   1430 
   1431 	exec_path_free(data);
   1432 #ifdef TRACE_EXEC
   1433 	DPRINTF(("%s finished\n", __func__));
   1434 #endif
   1435 	return EJUSTRETURN;
   1436 
   1437  exec_abort:
   1438 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1439 	rw_exit(&p->p_reflock);
   1440 	if (!no_local_exec_lock)
   1441 		rw_exit(&exec_lock);
   1442 
   1443 	exec_path_free(data);
   1444 
   1445 	/*
   1446 	 * the old process doesn't exist anymore.  exit gracefully.
   1447 	 * get rid of the (new) address space we have created, if any, get rid
   1448 	 * of our namei data and vnode, and exit noting failure
   1449 	 */
   1450 	if (vm != NULL) {
   1451 		uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1452 			VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1453 	}
   1454 
   1455 	exec_free_emul_arg(epp);
   1456 	pool_put(&exec_pool, data->ed_argp);
   1457 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1458 	if (epp->ep_emul_root != NULL)
   1459 		vrele(epp->ep_emul_root);
   1460 	if (epp->ep_interp != NULL)
   1461 		vrele(epp->ep_interp);
   1462 
   1463 	/* Acquire the sched-state mutex (exit1() will release it). */
   1464 	if (!is_spawn) {
   1465 		mutex_enter(p->p_lock);
   1466 		exit1(l, error, SIGABRT);
   1467 	}
   1468 
   1469 	return error;
   1470 }
   1471 
   1472 int
   1473 execve1(struct lwp *l, bool has_path, const char *path, int fd,
   1474     char * const *args, char * const *envs,
   1475     execve_fetch_element_t fetch_element)
   1476 {
   1477 	struct execve_data data;
   1478 	int error;
   1479 
   1480 	error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
   1481 	    &data);
   1482 	if (error)
   1483 		return error;
   1484 	error = execve_runproc(l, &data, false, false);
   1485 	return error;
   1486 }
   1487 
   1488 static size_t
   1489 fromptrsz(const struct exec_package *epp)
   1490 {
   1491 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1492 }
   1493 
   1494 static size_t
   1495 ptrsz(const struct exec_package *epp)
   1496 {
   1497 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1498 }
   1499 
   1500 static size_t
   1501 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1502 {
   1503 	struct exec_package	* const epp = &data->ed_pack;
   1504 
   1505 	const size_t nargenvptrs =
   1506 	    1 +				/* long argc */
   1507 	    data->ed_argc +		/* char *argv[] */
   1508 	    1 +				/* \0 */
   1509 	    data->ed_envc +		/* char *env[] */
   1510 	    1;				/* \0 */
   1511 
   1512 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1513 	    + argenvstrlen			/* strings */
   1514 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1515 }
   1516 
   1517 static size_t
   1518 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1519 {
   1520 	struct exec_package	* const epp = &data->ed_pack;
   1521 
   1522 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1523 	    epp->ep_esch->es_emul->e_sigcode;
   1524 
   1525 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1526 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1527 
   1528 	const size_t sigcode_psstr_sz =
   1529 	    data->ed_szsigcode +	/* sigcode */
   1530 	    data->ed_ps_strings_sz +	/* ps_strings */
   1531 	    STACK_PTHREADSPACE;		/* pthread space */
   1532 
   1533 	const size_t stacklen =
   1534 	    data->ed_argslen +
   1535 	    gaplen +
   1536 	    sigcode_psstr_sz;
   1537 
   1538 	/* make the stack "safely" aligned */
   1539 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1540 }
   1541 
   1542 static int
   1543 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1544     char * const newstack)
   1545 {
   1546 	struct exec_package	* const epp = &data->ed_pack;
   1547 	struct proc		*p = l->l_proc;
   1548 	int			error;
   1549 
   1550 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1551 
   1552 	/* remember information about the process */
   1553 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1554 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1555 
   1556 	/*
   1557 	 * Allocate the stack address passed to the newly execve()'ed process.
   1558 	 *
   1559 	 * The new stack address will be set to the SP (stack pointer) register
   1560 	 * in setregs().
   1561 	 */
   1562 
   1563 	char *newargs = STACK_ALLOC(
   1564 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1565 
   1566 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1567 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1568 
   1569 	if (error) {
   1570 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1571 		return error;
   1572 	}
   1573 
   1574 	error = copyoutpsstrs(data, p);
   1575 	if (error != 0)
   1576 		return error;
   1577 
   1578 	return 0;
   1579 }
   1580 
   1581 static int
   1582 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1583 {
   1584 	struct exec_package	* const epp = &data->ed_pack;
   1585 	struct ps_strings32	arginfo32;
   1586 	void			*aip;
   1587 	int			error;
   1588 
   1589 	/* fill process ps_strings info */
   1590 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1591 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1592 
   1593 	if (epp->ep_flags & EXEC_32) {
   1594 		aip = &arginfo32;
   1595 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1596 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1597 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1598 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1599 	} else
   1600 		aip = &data->ed_arginfo;
   1601 
   1602 	/* copy out the process's ps_strings structure */
   1603 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1604 	    != 0) {
   1605 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1606 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1607 		return error;
   1608 	}
   1609 
   1610 	return 0;
   1611 }
   1612 
   1613 static int
   1614 copyinargs(struct execve_data * restrict data, char * const *args,
   1615     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1616 {
   1617 	struct exec_package	* const epp = &data->ed_pack;
   1618 	char			*dp;
   1619 	size_t			i;
   1620 	int			error;
   1621 
   1622 	dp = *dpp;
   1623 
   1624 	data->ed_argc = 0;
   1625 
   1626 	/* copy the fake args list, if there's one, freeing it as we go */
   1627 	if (epp->ep_flags & EXEC_HASARGL) {
   1628 		struct exec_fakearg	*fa = epp->ep_fa;
   1629 
   1630 		while (fa->fa_arg != NULL) {
   1631 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1632 			size_t len;
   1633 
   1634 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1635 			/* Count NUL into len. */
   1636 			if (len < maxlen)
   1637 				len++;
   1638 			else {
   1639 				while (fa->fa_arg != NULL) {
   1640 					kmem_free(fa->fa_arg, fa->fa_len);
   1641 					fa++;
   1642 				}
   1643 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1644 				epp->ep_flags &= ~EXEC_HASARGL;
   1645 				return SET_ERROR(E2BIG);
   1646 			}
   1647 			ktrexecarg(fa->fa_arg, len - 1);
   1648 			dp += len;
   1649 
   1650 			kmem_free(fa->fa_arg, fa->fa_len);
   1651 			fa++;
   1652 			data->ed_argc++;
   1653 		}
   1654 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1655 		epp->ep_flags &= ~EXEC_HASARGL;
   1656 	}
   1657 
   1658 	/*
   1659 	 * Read and count argument strings from user.
   1660 	 */
   1661 
   1662 	if (args == NULL) {
   1663 		DPRINTF(("%s: null args\n", __func__));
   1664 		return SET_ERROR(EINVAL);
   1665 	}
   1666 	if (epp->ep_flags & EXEC_SKIPARG)
   1667 		args = (const void *)((const char *)args + fromptrsz(epp));
   1668 	i = 0;
   1669 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1670 	if (error != 0) {
   1671 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1672 		return error;
   1673 	}
   1674 	data->ed_argc += i;
   1675 
   1676 	/*
   1677 	 * Read and count environment strings from user.
   1678 	 */
   1679 
   1680 	data->ed_envc = 0;
   1681 	/* environment need not be there */
   1682 	if (envs == NULL)
   1683 		goto done;
   1684 	i = 0;
   1685 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1686 	if (error != 0) {
   1687 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1688 		return error;
   1689 	}
   1690 	data->ed_envc += i;
   1691 
   1692 done:
   1693 	*dpp = dp;
   1694 
   1695 	return 0;
   1696 }
   1697 
   1698 static int
   1699 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1700     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1701     void (*ktr)(const void *, size_t))
   1702 {
   1703 	char			*dp, *sp;
   1704 	size_t			i;
   1705 	int			error;
   1706 
   1707 	dp = *dpp;
   1708 
   1709 	i = 0;
   1710 	while (1) {
   1711 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1712 		size_t len;
   1713 
   1714 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1715 			return error;
   1716 		}
   1717 		if (!sp)
   1718 			break;
   1719 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1720 			if (error == ENAMETOOLONG)
   1721 				error = SET_ERROR(E2BIG);
   1722 			return error;
   1723 		}
   1724 		if (__predict_false(ktrace_on))
   1725 			(*ktr)(dp, len - 1);
   1726 		dp += len;
   1727 		i++;
   1728 	}
   1729 
   1730 	*dpp = dp;
   1731 	*ip = i;
   1732 
   1733 	return 0;
   1734 }
   1735 
   1736 /*
   1737  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1738  * Those strings are located just after auxinfo.
   1739  */
   1740 int
   1741 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1742     char **stackp, void *argp)
   1743 {
   1744 	char	**cpp, *dp, *sp;
   1745 	size_t	len;
   1746 	void	*nullp;
   1747 	long	argc, envc;
   1748 	int	error;
   1749 
   1750 	cpp = (char **)*stackp;
   1751 	nullp = NULL;
   1752 	argc = arginfo->ps_nargvstr;
   1753 	envc = arginfo->ps_nenvstr;
   1754 
   1755 	/* argc on stack is long */
   1756 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1757 
   1758 	dp = (char *)(cpp +
   1759 	    1 +				/* long argc */
   1760 	    argc +			/* char *argv[] */
   1761 	    1 +				/* \0 */
   1762 	    envc +			/* char *env[] */
   1763 	    1) +			/* \0 */
   1764 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1765 	sp = argp;
   1766 
   1767 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1768 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1769 		return error;
   1770 	}
   1771 
   1772 	/* XXX don't copy them out, remap them! */
   1773 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1774 
   1775 	for (; --argc >= 0; sp += len, dp += len) {
   1776 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1777 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1778 			return error;
   1779 		}
   1780 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1781 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1782 			return error;
   1783 		}
   1784 	}
   1785 
   1786 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1787 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1788 		return error;
   1789 	}
   1790 
   1791 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1792 
   1793 	for (; --envc >= 0; sp += len, dp += len) {
   1794 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1795 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1796 			return error;
   1797 		}
   1798 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1799 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1800 			return error;
   1801 		}
   1802 
   1803 	}
   1804 
   1805 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1806 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1807 		return error;
   1808 	}
   1809 
   1810 	*stackp = (char *)cpp;
   1811 	return 0;
   1812 }
   1813 
   1814 
   1815 /*
   1816  * Add execsw[] entries.
   1817  */
   1818 int
   1819 exec_add(struct execsw *esp, int count)
   1820 {
   1821 	struct exec_entry	*it;
   1822 	int			i, error = 0;
   1823 
   1824 	if (count == 0) {
   1825 		return 0;
   1826 	}
   1827 
   1828 	/* Check for duplicates. */
   1829 	rw_enter(&exec_lock, RW_WRITER);
   1830 	for (i = 0; i < count; i++) {
   1831 		LIST_FOREACH(it, &ex_head, ex_list) {
   1832 			/* assume unique (makecmds, probe_func, emulation) */
   1833 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1834 			    it->ex_sw->u.elf_probe_func ==
   1835 			    esp[i].u.elf_probe_func &&
   1836 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1837 				rw_exit(&exec_lock);
   1838 				return SET_ERROR(EEXIST);
   1839 			}
   1840 		}
   1841 	}
   1842 
   1843 	/* Allocate new entries. */
   1844 	for (i = 0; i < count; i++) {
   1845 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1846 		it->ex_sw = &esp[i];
   1847 		error = exec_sigcode_alloc(it->ex_sw->es_emul);
   1848 		if (error != 0) {
   1849 			kmem_free(it, sizeof(*it));
   1850 			break;
   1851 		}
   1852 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1853 	}
   1854 	/* If even one fails, remove them all back. */
   1855 	if (error != 0) {
   1856 		for (i--; i >= 0; i--) {
   1857 			it = LIST_FIRST(&ex_head);
   1858 			LIST_REMOVE(it, ex_list);
   1859 			exec_sigcode_free(it->ex_sw->es_emul);
   1860 			kmem_free(it, sizeof(*it));
   1861 		}
   1862 		rw_exit(&exec_lock);
   1863 		return error;
   1864 	}
   1865 
   1866 	/* update execsw[] */
   1867 	exec_init(0);
   1868 	rw_exit(&exec_lock);
   1869 	return 0;
   1870 }
   1871 
   1872 /*
   1873  * Remove execsw[] entry.
   1874  */
   1875 int
   1876 exec_remove(struct execsw *esp, int count)
   1877 {
   1878 	struct exec_entry	*it, *next;
   1879 	int			i;
   1880 	const struct proclist_desc *pd;
   1881 	proc_t			*p;
   1882 
   1883 	if (count == 0) {
   1884 		return 0;
   1885 	}
   1886 
   1887 	/* Abort if any are busy. */
   1888 	rw_enter(&exec_lock, RW_WRITER);
   1889 	for (i = 0; i < count; i++) {
   1890 		mutex_enter(&proc_lock);
   1891 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1892 			PROCLIST_FOREACH(p, pd->pd_list) {
   1893 				if (p->p_execsw == &esp[i]) {
   1894 					mutex_exit(&proc_lock);
   1895 					rw_exit(&exec_lock);
   1896 					return SET_ERROR(EBUSY);
   1897 				}
   1898 			}
   1899 		}
   1900 		mutex_exit(&proc_lock);
   1901 	}
   1902 
   1903 	/* None are busy, so remove them all. */
   1904 	for (i = 0; i < count; i++) {
   1905 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1906 			next = LIST_NEXT(it, ex_list);
   1907 			if (it->ex_sw == &esp[i]) {
   1908 				LIST_REMOVE(it, ex_list);
   1909 				exec_sigcode_free(it->ex_sw->es_emul);
   1910 				kmem_free(it, sizeof(*it));
   1911 				break;
   1912 			}
   1913 		}
   1914 	}
   1915 
   1916 	/* update execsw[] */
   1917 	exec_init(0);
   1918 	rw_exit(&exec_lock);
   1919 	return 0;
   1920 }
   1921 
   1922 /*
   1923  * Initialize exec structures. If init_boot is true, also does necessary
   1924  * one-time initialization (it's called from main() that way).
   1925  * Once system is multiuser, this should be called with exec_lock held,
   1926  * i.e. via exec_{add|remove}().
   1927  */
   1928 int
   1929 exec_init(int init_boot)
   1930 {
   1931 	const struct execsw 	**sw;
   1932 	struct exec_entry	*ex;
   1933 	SLIST_HEAD(,exec_entry)	first;
   1934 	SLIST_HEAD(,exec_entry)	any;
   1935 	SLIST_HEAD(,exec_entry)	last;
   1936 	int			i, sz;
   1937 
   1938 	if (init_boot) {
   1939 		/* do one-time initializations */
   1940 		vaddr_t vmin = 0, vmax;
   1941 
   1942 		rw_init(&exec_lock);
   1943 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1944 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1945 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1946 		    "execargs", &exec_palloc, IPL_NONE);
   1947 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1948 	} else {
   1949 		KASSERT(rw_write_held(&exec_lock));
   1950 	}
   1951 
   1952 	/* Sort each entry onto the appropriate queue. */
   1953 	SLIST_INIT(&first);
   1954 	SLIST_INIT(&any);
   1955 	SLIST_INIT(&last);
   1956 	sz = 0;
   1957 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1958 		switch(ex->ex_sw->es_prio) {
   1959 		case EXECSW_PRIO_FIRST:
   1960 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1961 			break;
   1962 		case EXECSW_PRIO_ANY:
   1963 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1964 			break;
   1965 		case EXECSW_PRIO_LAST:
   1966 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1967 			break;
   1968 		default:
   1969 			panic("%s", __func__);
   1970 			break;
   1971 		}
   1972 		sz++;
   1973 	}
   1974 
   1975 	/*
   1976 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1977 	 * allocation.
   1978 	 */
   1979 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1980 	i = 0;
   1981 	SLIST_FOREACH(ex, &first, ex_slist) {
   1982 		sw[i++] = ex->ex_sw;
   1983 	}
   1984 	SLIST_FOREACH(ex, &any, ex_slist) {
   1985 		sw[i++] = ex->ex_sw;
   1986 	}
   1987 	SLIST_FOREACH(ex, &last, ex_slist) {
   1988 		sw[i++] = ex->ex_sw;
   1989 	}
   1990 
   1991 	/* Replace old execsw[] and free used memory. */
   1992 	if (execsw != NULL) {
   1993 		kmem_free(__UNCONST(execsw),
   1994 		    nexecs * sizeof(struct execsw *) + 1);
   1995 	}
   1996 	execsw = sw;
   1997 	nexecs = sz;
   1998 
   1999 	/* Figure out the maximum size of an exec header. */
   2000 	exec_maxhdrsz = sizeof(int);
   2001 	for (i = 0; i < nexecs; i++) {
   2002 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   2003 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   2004 	}
   2005 
   2006 	return 0;
   2007 }
   2008 
   2009 int
   2010 exec_sigcode_alloc(const struct emul *e)
   2011 {
   2012 	vaddr_t va;
   2013 	vsize_t sz;
   2014 	int error;
   2015 	struct uvm_object *uobj;
   2016 
   2017 	KASSERT(rw_lock_held(&exec_lock));
   2018 
   2019 	if (e == NULL || e->e_sigobject == NULL)
   2020 		return 0;
   2021 
   2022 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   2023 	if (sz == 0)
   2024 		return 0;
   2025 
   2026 	/*
   2027 	 * Create a sigobject for this emulation.
   2028 	 *
   2029 	 * sigobject is an anonymous memory object (just like SYSV shared
   2030 	 * memory) that we keep a permanent reference to and that we map
   2031 	 * in all processes that need this sigcode. The creation is simple,
   2032 	 * we create an object, add a permanent reference to it, map it in
   2033 	 * kernel space, copy out the sigcode to it and unmap it.
   2034 	 * We map it with PROT_READ|PROT_EXEC into the process just
   2035 	 * the way sys_mmap() would map it.
   2036 	 */
   2037 	if (*e->e_sigobject == NULL) {
   2038 		uobj = uao_create(sz, 0);
   2039 		(*uobj->pgops->pgo_reference)(uobj);
   2040 		va = vm_map_min(kernel_map);
   2041 		if ((error = uvm_map(kernel_map, &va, round_page(sz),
   2042 		    uobj, 0, 0,
   2043 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   2044 		    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   2045 			printf("sigcode kernel mapping failed %d\n", error);
   2046 			(*uobj->pgops->pgo_detach)(uobj);
   2047 			return error;
   2048 		}
   2049 		memcpy((void *)va, e->e_sigcode, sz);
   2050 #ifdef PMAP_NEED_PROCWR
   2051 		pmap_procwr(&proc0, va, sz);
   2052 #endif
   2053 		uvm_unmap(kernel_map, va, va + round_page(sz));
   2054 		*e->e_sigobject = uobj;
   2055 		KASSERT(uobj->uo_refs == 1);
   2056 	} else {
   2057 		/* if already created, reference++ */
   2058 		uobj = *e->e_sigobject;
   2059 		(*uobj->pgops->pgo_reference)(uobj);
   2060 	}
   2061 
   2062 	return 0;
   2063 }
   2064 
   2065 void
   2066 exec_sigcode_free(const struct emul *e)
   2067 {
   2068 	struct uvm_object *uobj;
   2069 
   2070 	KASSERT(rw_lock_held(&exec_lock));
   2071 
   2072 	if (e == NULL || e->e_sigobject == NULL)
   2073 		return;
   2074 
   2075 	uobj = *e->e_sigobject;
   2076 	if (uobj == NULL)
   2077 		return;
   2078 
   2079 	if (uobj->uo_refs == 1)
   2080 		*e->e_sigobject = NULL;	/* I'm the last person to reference. */
   2081 	(*uobj->pgops->pgo_detach)(uobj);
   2082 }
   2083 
   2084 static int
   2085 exec_sigcode_map(struct proc *p, const struct emul *e)
   2086 {
   2087 	vaddr_t va;
   2088 	vsize_t sz;
   2089 	int error;
   2090 	struct uvm_object *uobj;
   2091 
   2092 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   2093 	if (e->e_sigobject == NULL || sz == 0)
   2094 		return 0;
   2095 
   2096 	uobj = *e->e_sigobject;
   2097 	if (uobj == NULL)
   2098 		return 0;
   2099 
   2100 	/* Just a hint to uvm_map where to put it. */
   2101 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   2102 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   2103 
   2104 #ifdef __alpha__
   2105 	/*
   2106 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   2107 	 * which causes the above calculation to put the sigcode at
   2108 	 * an invalid address.  Put it just below the text instead.
   2109 	 */
   2110 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   2111 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   2112 	}
   2113 #endif
   2114 
   2115 	(*uobj->pgops->pgo_reference)(uobj);
   2116 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   2117 			uobj, 0, 0,
   2118 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   2119 				    UVM_ADV_RANDOM, 0));
   2120 	if (error) {
   2121 		DPRINTF(("%s, %d: map %p "
   2122 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   2123 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   2124 		    va, error));
   2125 		(*uobj->pgops->pgo_detach)(uobj);
   2126 		return error;
   2127 	}
   2128 	p->p_sigctx.ps_sigcode = (void *)va;
   2129 	return 0;
   2130 }
   2131 
   2132 /*
   2133  * Release a refcount on spawn_exec_data and destroy memory, if this
   2134  * was the last one.
   2135  */
   2136 static void
   2137 spawn_exec_data_release(struct spawn_exec_data *data)
   2138 {
   2139 
   2140 	membar_release();
   2141 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   2142 		return;
   2143 	membar_acquire();
   2144 
   2145 	cv_destroy(&data->sed_cv_child_ready);
   2146 	mutex_destroy(&data->sed_mtx_child);
   2147 
   2148 	if (data->sed_actions)
   2149 		posix_spawn_fa_free(data->sed_actions,
   2150 		    data->sed_actions->len);
   2151 	if (data->sed_attrs)
   2152 		kmem_free(data->sed_attrs,
   2153 		    sizeof(*data->sed_attrs));
   2154 	kmem_free(data, sizeof(*data));
   2155 }
   2156 
   2157 static int
   2158 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
   2159 {
   2160 	struct lwp *l = curlwp;
   2161 	register_t retval;
   2162 	int error, newfd;
   2163 
   2164 	if (actions == NULL)
   2165 		return 0;
   2166 
   2167 	for (size_t i = 0; i < actions->len; i++) {
   2168 		const struct posix_spawn_file_actions_entry *fae =
   2169 		    &actions->fae[i];
   2170 		switch (fae->fae_action) {
   2171 		case FAE_OPEN:
   2172 			if (fd_getfile(fae->fae_fildes) != NULL) {
   2173 				error = fd_close(fae->fae_fildes);
   2174 				if (error)
   2175 					return error;
   2176 			}
   2177 			error = fd_open(fae->fae_path, fae->fae_oflag,
   2178 			    fae->fae_mode, &newfd);
   2179 			if (error)
   2180 				return error;
   2181 			if (newfd != fae->fae_fildes) {
   2182 				error = dodup(l, newfd,
   2183 				    fae->fae_fildes, 0, &retval);
   2184 				if (fd_getfile(newfd) != NULL)
   2185 					fd_close(newfd);
   2186 			}
   2187 			break;
   2188 		case FAE_DUP2:
   2189 			error = dodup(l, fae->fae_fildes,
   2190 			    fae->fae_newfildes, 0, &retval);
   2191 			break;
   2192 		case FAE_CLOSE:
   2193 			if (fd_getfile(fae->fae_fildes) == NULL) {
   2194 				return SET_ERROR(EBADF);
   2195 			}
   2196 			error = fd_close(fae->fae_fildes);
   2197 			break;
   2198 		case FAE_CHDIR:
   2199 			error = do_sys_chdir(l, fae->fae_chdir_path,
   2200 			    UIO_SYSSPACE, &retval);
   2201 			break;
   2202 		case FAE_FCHDIR:
   2203 			error = do_sys_fchdir(l, fae->fae_fildes, &retval);
   2204 			break;
   2205 		}
   2206 		if (error)
   2207 			return error;
   2208 	}
   2209 	return 0;
   2210 }
   2211 
   2212 static int
   2213 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
   2214 {
   2215 	struct sigaction sigact;
   2216 	int error;
   2217 	struct proc *p = curproc;
   2218 	struct lwp *l = curlwp;
   2219 
   2220 	if (attrs == NULL)
   2221 		return 0;
   2222 
   2223 	memset(&sigact, 0, sizeof(sigact));
   2224 	sigact._sa_u._sa_handler = SIG_DFL;
   2225 	sigact.sa_flags = 0;
   2226 
   2227 	/*
   2228 	 * set state to SSTOP so that this proc can be found by pid.
   2229 	 * see proc_enterprp, do_sched_setparam below
   2230 	 */
   2231 	mutex_enter(&proc_lock);
   2232 	/*
   2233 	 * p_stat should be SACTIVE, so we need to adjust the
   2234 	 * parent's p_nstopchild here.  For safety, just make
   2235 	 * we're on the good side of SDEAD before we adjust.
   2236 	 */
   2237 	int ostat = p->p_stat;
   2238 	KASSERT(ostat < SSTOP);
   2239 	p->p_stat = SSTOP;
   2240 	p->p_waited = 0;
   2241 	p->p_pptr->p_nstopchild++;
   2242 	mutex_exit(&proc_lock);
   2243 
   2244 	/* Set process group */
   2245 	if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2246 		pid_t mypid = p->p_pid;
   2247 		pid_t pgrp = attrs->sa_pgroup;
   2248 
   2249 		if (pgrp == 0)
   2250 			pgrp = mypid;
   2251 
   2252 		error = proc_enterpgrp(parent, mypid, pgrp, false);
   2253 		if (error)
   2254 			goto out;
   2255 	}
   2256 
   2257 	/* Set scheduler policy */
   2258 	if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2259 		error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
   2260 		    &attrs->sa_schedparam);
   2261 	else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
   2262 		error = do_sched_setparam(parent->p_pid, 0,
   2263 		    SCHED_NONE, &attrs->sa_schedparam);
   2264 	}
   2265 	if (error)
   2266 		goto out;
   2267 
   2268 	/* Reset user ID's */
   2269 	if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2270 		error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
   2271 		     ID_E_EQ_R | ID_E_EQ_S);
   2272 		if (error)
   2273 			return error;
   2274 		error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
   2275 		    ID_E_EQ_R | ID_E_EQ_S);
   2276 		if (error)
   2277 			goto out;
   2278 	}
   2279 
   2280 	/* Set signal masks/defaults */
   2281 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2282 		mutex_enter(p->p_lock);
   2283 		error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
   2284 		mutex_exit(p->p_lock);
   2285 		if (error)
   2286 			goto out;
   2287 	}
   2288 
   2289 	if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2290 		/*
   2291 		 * The following sigaction call is using a sigaction
   2292 		 * version 0 trampoline which is in the compatibility
   2293 		 * code only. This is not a problem because for SIG_DFL
   2294 		 * and SIG_IGN, the trampolines are now ignored. If they
   2295 		 * were not, this would be a problem because we are
   2296 		 * holding the exec_lock, and the compat code needs
   2297 		 * to do the same in order to replace the trampoline
   2298 		 * code of the process.
   2299 		 */
   2300 		for (int i = 1; i <= NSIG; i++) {
   2301 			if (sigismember(&attrs->sa_sigdefault, i))
   2302 				sigaction1(l, i, &sigact, NULL, NULL, 0);
   2303 		}
   2304 	}
   2305 	error = 0;
   2306 out:
   2307 	mutex_enter(&proc_lock);
   2308 	p->p_stat = ostat;
   2309 	p->p_pptr->p_nstopchild--;
   2310 	mutex_exit(&proc_lock);
   2311 	return error;
   2312 }
   2313 
   2314 /*
   2315  * A child lwp of a posix_spawn operation starts here and ends up in
   2316  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   2317  * manipulations in between.
   2318  * The parent waits for the child, as it is not clear whether the child
   2319  * will be able to acquire its own exec_lock. If it can, the parent can
   2320  * be released early and continue running in parallel. If not (or if the
   2321  * magic debug flag is passed in the scheduler attribute struct), the
   2322  * child rides on the parent's exec lock until it is ready to return to
   2323  * to userland - and only then releases the parent. This method loses
   2324  * concurrency, but improves error reporting.
   2325  */
   2326 static void
   2327 spawn_return(void *arg)
   2328 {
   2329 	struct spawn_exec_data *spawn_data = arg;
   2330 	struct lwp *l = curlwp;
   2331 	struct proc *p = l->l_proc;
   2332 	int error;
   2333 	bool have_reflock;
   2334 	bool parent_is_waiting = true;
   2335 
   2336 	/*
   2337 	 * Check if we can release parent early.
   2338 	 * We either need to have no sed_attrs, or sed_attrs does not
   2339 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2340 	 * safe access to the parent proc (passed in sed_parent).
   2341 	 * We then try to get the exec_lock, and only if that works, we can
   2342 	 * release the parent here already.
   2343 	 */
   2344 	struct posix_spawnattr *attrs = spawn_data->sed_attrs;
   2345 	if ((!attrs || (attrs->sa_flags
   2346 		& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2347 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2348 		parent_is_waiting = false;
   2349 		mutex_enter(&spawn_data->sed_mtx_child);
   2350 		cv_signal(&spawn_data->sed_cv_child_ready);
   2351 		mutex_exit(&spawn_data->sed_mtx_child);
   2352 	}
   2353 
   2354 	/* don't allow debugger access yet */
   2355 	rw_enter(&p->p_reflock, RW_WRITER);
   2356 	have_reflock = true;
   2357 
   2358 	/* handle posix_spawnattr */
   2359 	error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
   2360 	if (error)
   2361 		goto report_error;
   2362 
   2363 	/* handle posix_spawn_file_actions */
   2364 	error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
   2365 	if (error)
   2366 		goto report_error;
   2367 
   2368 	/* now do the real exec */
   2369 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2370 	    true);
   2371 	have_reflock = false;
   2372 	if (error == EJUSTRETURN)
   2373 		error = 0;
   2374 	else if (error)
   2375 		goto report_error;
   2376 
   2377 	if (parent_is_waiting) {
   2378 		mutex_enter(&spawn_data->sed_mtx_child);
   2379 		cv_signal(&spawn_data->sed_cv_child_ready);
   2380 		mutex_exit(&spawn_data->sed_mtx_child);
   2381 	}
   2382 
   2383 	/* release our refcount on the data */
   2384 	spawn_exec_data_release(spawn_data);
   2385 
   2386 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
   2387 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
   2388 		eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
   2389 	}
   2390 
   2391 	/* and finally: leave to userland for the first time */
   2392 	cpu_spawn_return(l);
   2393 
   2394 	/* NOTREACHED */
   2395 	return;
   2396 
   2397  report_error:
   2398 	if (have_reflock) {
   2399 		/*
   2400 		 * We have not passed through execve_runproc(),
   2401 		 * which would have released the p_reflock and also
   2402 		 * taken ownership of the sed_exec part of spawn_data,
   2403 		 * so release/free both here.
   2404 		 */
   2405 		rw_exit(&p->p_reflock);
   2406 		execve_free_data(&spawn_data->sed_exec);
   2407 	}
   2408 
   2409 	if (parent_is_waiting) {
   2410 		/* pass error to parent */
   2411 		mutex_enter(&spawn_data->sed_mtx_child);
   2412 		spawn_data->sed_error = error;
   2413 		cv_signal(&spawn_data->sed_cv_child_ready);
   2414 		mutex_exit(&spawn_data->sed_mtx_child);
   2415 	} else {
   2416 		rw_exit(&exec_lock);
   2417 	}
   2418 
   2419 	/* release our refcount on the data */
   2420 	spawn_exec_data_release(spawn_data);
   2421 
   2422 	/* done, exit */
   2423 	mutex_enter(p->p_lock);
   2424 	/*
   2425 	 * Posix explicitly asks for an exit code of 127 if we report
   2426 	 * errors from the child process - so, unfortunately, there
   2427 	 * is no way to report a more exact error code.
   2428 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2429 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2430 	 */
   2431 	exit1(l, 127, 0);
   2432 }
   2433 
   2434 static __inline char **
   2435 posix_spawn_fae_path(struct posix_spawn_file_actions_entry *fae)
   2436 {
   2437 	switch (fae->fae_action) {
   2438 	case FAE_OPEN:
   2439 		return &fae->fae_path;
   2440 	case FAE_CHDIR:
   2441 		return &fae->fae_chdir_path;
   2442 	default:
   2443 		return NULL;
   2444 	}
   2445 }
   2446 
   2447 void
   2448 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2449 {
   2450 
   2451 	for (size_t i = 0; i < len; i++) {
   2452 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
   2453 		if (pathp)
   2454 			kmem_strfree(*pathp);
   2455 	}
   2456 	if (fa->len > 0)
   2457 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2458 	kmem_free(fa, sizeof(*fa));
   2459 }
   2460 
   2461 static int
   2462 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2463     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2464 {
   2465 	struct posix_spawn_file_actions *fa;
   2466 	struct posix_spawn_file_actions_entry *fae;
   2467 	char *pbuf = NULL;
   2468 	int error;
   2469 	size_t i = 0;
   2470 
   2471 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2472 	error = copyin(ufa, fa, sizeof(*fa));
   2473 	if (error || fa->len == 0) {
   2474 		kmem_free(fa, sizeof(*fa));
   2475 		return error;	/* 0 if not an error, and len == 0 */
   2476 	}
   2477 
   2478 	if (fa->len > lim) {
   2479 		kmem_free(fa, sizeof(*fa));
   2480 		return SET_ERROR(EINVAL);
   2481 	}
   2482 
   2483 	fa->size = fa->len;
   2484 	size_t fal = fa->len * sizeof(*fae);
   2485 	fae = fa->fae;
   2486 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2487 	error = copyin(fae, fa->fae, fal);
   2488 	if (error)
   2489 		goto out;
   2490 
   2491 	pbuf = PNBUF_GET();
   2492 	for (; i < fa->len; i++) {
   2493 		char **pathp = posix_spawn_fae_path(&fa->fae[i]);
   2494 		if (pathp == NULL)
   2495 			continue;
   2496 		error = copyinstr(*pathp, pbuf, MAXPATHLEN, &fal);
   2497 		if (error)
   2498 			goto out;
   2499 		*pathp = kmem_alloc(fal, KM_SLEEP);
   2500 		memcpy(*pathp, pbuf, fal);
   2501 	}
   2502 	PNBUF_PUT(pbuf);
   2503 
   2504 	*fap = fa;
   2505 	return 0;
   2506 out:
   2507 	if (pbuf)
   2508 		PNBUF_PUT(pbuf);
   2509 	posix_spawn_fa_free(fa, i);
   2510 	return error;
   2511 }
   2512 
   2513 /*
   2514  * N.B. increments nprocs upon success.  Callers need to drop nprocs if
   2515  * they fail for some other reason.
   2516  */
   2517 int
   2518 check_posix_spawn(struct lwp *l1)
   2519 {
   2520 	int error, tnprocs, count;
   2521 	uid_t uid;
   2522 	struct proc *p1;
   2523 
   2524 	p1 = l1->l_proc;
   2525 	uid = kauth_cred_getuid(l1->l_cred);
   2526 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2527 
   2528 	/*
   2529 	 * Although process entries are dynamically created, we still keep
   2530 	 * a global limit on the maximum number we will create.
   2531 	 */
   2532 	if (__predict_false(tnprocs >= maxproc))
   2533 		error = -1;
   2534 	else
   2535 		error = kauth_authorize_process(l1->l_cred,
   2536 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2537 
   2538 	if (error) {
   2539 		atomic_dec_uint(&nprocs);
   2540 		return SET_ERROR(EAGAIN);
   2541 	}
   2542 
   2543 	/*
   2544 	 * Enforce limits.
   2545 	 */
   2546 	count = chgproccnt(uid, 1);
   2547 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2548 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2549 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2550 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2551 		(void)chgproccnt(uid, -1);
   2552 		atomic_dec_uint(&nprocs);
   2553 		return SET_ERROR(EAGAIN);
   2554 	}
   2555 
   2556 	return 0;
   2557 }
   2558 
   2559 int
   2560 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2561 	struct posix_spawn_file_actions *fa,
   2562 	struct posix_spawnattr *sa,
   2563 	char *const *argv, char *const *envp,
   2564 	execve_fetch_element_t fetch)
   2565 {
   2566 
   2567 	struct proc *p1, *p2;
   2568 	struct lwp *l2;
   2569 	int error;
   2570 	struct spawn_exec_data *spawn_data;
   2571 	vaddr_t uaddr = 0;
   2572 	pid_t pid;
   2573 	bool have_exec_lock = false;
   2574 
   2575 	p1 = l1->l_proc;
   2576 
   2577 	/* Allocate and init spawn_data */
   2578 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2579 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2580 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2581 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2582 	mutex_enter(&spawn_data->sed_mtx_child);
   2583 
   2584 	/*
   2585 	 * Do the first part of the exec now, collect state
   2586 	 * in spawn_data.
   2587 	 */
   2588 	error = execve_loadvm(l1, true, path, -1, argv,
   2589 	    envp, fetch, &spawn_data->sed_exec);
   2590 	if (error == EJUSTRETURN)
   2591 		error = 0;
   2592 	else if (error)
   2593 		goto error_exit;
   2594 
   2595 	have_exec_lock = true;
   2596 
   2597 	/*
   2598 	 * Allocate virtual address space for the U-area now, while it
   2599 	 * is still easy to abort the fork operation if we're out of
   2600 	 * kernel virtual address space.
   2601 	 */
   2602 	uaddr = uvm_uarea_alloc();
   2603 	if (__predict_false(uaddr == 0)) {
   2604 		error = SET_ERROR(ENOMEM);
   2605 		goto error_exit;
   2606 	}
   2607 
   2608 	/*
   2609 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2610 	 * replace it with its own before returning to userland
   2611 	 * in the child.
   2612 	 */
   2613 	p2 = proc_alloc();
   2614 	if (p2 == NULL) {
   2615 		/* We were unable to allocate a process ID. */
   2616 		error = SET_ERROR(EAGAIN);
   2617 		goto error_exit;
   2618 	}
   2619 
   2620 	/*
   2621 	 * This is a point of no return, we will have to go through
   2622 	 * the child proc to properly clean it up past this point.
   2623 	 */
   2624 	pid = p2->p_pid;
   2625 
   2626 	/*
   2627 	 * Make a proc table entry for the new process.
   2628 	 * Start by zeroing the section of proc that is zero-initialized,
   2629 	 * then copy the section that is copied directly from the parent.
   2630 	 */
   2631 	memset(&p2->p_startzero, 0,
   2632 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2633 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2634 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2635 	p2->p_vmspace = proc0.p_vmspace;
   2636 
   2637 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2638 
   2639 	LIST_INIT(&p2->p_lwps);
   2640 	LIST_INIT(&p2->p_sigwaiters);
   2641 
   2642 	/*
   2643 	 * Duplicate sub-structures as needed.
   2644 	 * Increase reference counts on shared objects.
   2645 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2646 	 * handling are important in order to keep a consistent behaviour
   2647 	 * for the child after the fork.  If we are a 32-bit process, the
   2648 	 * child will be too.
   2649 	 */
   2650 	p2->p_flag =
   2651 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2652 	p2->p_emul = p1->p_emul;
   2653 	p2->p_execsw = p1->p_execsw;
   2654 
   2655 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2656 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2657 	rw_init(&p2->p_reflock);
   2658 	cv_init(&p2->p_waitcv, "wait");
   2659 	cv_init(&p2->p_lwpcv, "lwpwait");
   2660 
   2661 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2662 
   2663 	kauth_proc_fork(p1, p2);
   2664 
   2665 	p2->p_raslist = NULL;
   2666 	p2->p_fd = fd_copy();
   2667 
   2668 	/* XXX racy */
   2669 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2670 
   2671 	p2->p_cwdi = cwdinit();
   2672 
   2673 	/*
   2674 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2675 	 * we just need increase pl_refcnt.
   2676 	 */
   2677 	if (!p1->p_limit->pl_writeable) {
   2678 		lim_addref(p1->p_limit);
   2679 		p2->p_limit = p1->p_limit;
   2680 	} else {
   2681 		p2->p_limit = lim_copy(p1->p_limit);
   2682 	}
   2683 
   2684 	p2->p_lflag = 0;
   2685 	l1->l_vforkwaiting = false;
   2686 	p2->p_sflag = 0;
   2687 	p2->p_slflag = 0;
   2688 	p2->p_pptr = p1;
   2689 	p2->p_ppid = p1->p_pid;
   2690 	LIST_INIT(&p2->p_children);
   2691 
   2692 	p2->p_aio = NULL;
   2693 
   2694 #ifdef KTRACE
   2695 	/*
   2696 	 * Copy traceflag and tracefile if enabled.
   2697 	 * If not inherited, these were zeroed above.
   2698 	 */
   2699 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2700 		mutex_enter(&ktrace_lock);
   2701 		p2->p_traceflag = p1->p_traceflag;
   2702 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2703 			ktradref(p2);
   2704 		mutex_exit(&ktrace_lock);
   2705 	}
   2706 #endif
   2707 
   2708 	/*
   2709 	 * Create signal actions for the child process.
   2710 	 */
   2711 	p2->p_sigacts = sigactsinit(p1, 0);
   2712 	mutex_enter(p1->p_lock);
   2713 	p2->p_sflag |=
   2714 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2715 	sched_proc_fork(p1, p2);
   2716 	mutex_exit(p1->p_lock);
   2717 
   2718 	p2->p_stflag = p1->p_stflag;
   2719 
   2720 	/*
   2721 	 * p_stats.
   2722 	 * Copy parts of p_stats, and zero out the rest.
   2723 	 */
   2724 	p2->p_stats = pstatscopy(p1->p_stats);
   2725 
   2726 	/* copy over machdep flags to the new proc */
   2727 	cpu_proc_fork(p1, p2);
   2728 
   2729 	/*
   2730 	 * Prepare remaining parts of spawn data
   2731 	 */
   2732 	spawn_data->sed_actions = fa;
   2733 	spawn_data->sed_attrs = sa;
   2734 
   2735 	spawn_data->sed_parent = p1;
   2736 
   2737 	/* create LWP */
   2738 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2739 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2740 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2741 
   2742 	/*
   2743 	 * Copy the credential so other references don't see our changes.
   2744 	 * Test to see if this is necessary first, since in the common case
   2745 	 * we won't need a private reference.
   2746 	 */
   2747 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2748 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2749 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2750 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2751 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2752 	}
   2753 
   2754 	/* Update the master credentials. */
   2755 	if (l2->l_cred != p2->p_cred) {
   2756 		kauth_cred_t ocred;
   2757 		mutex_enter(p2->p_lock);
   2758 		ocred = p2->p_cred;
   2759 		p2->p_cred = kauth_cred_hold(l2->l_cred);
   2760 		mutex_exit(p2->p_lock);
   2761 		kauth_cred_free(ocred);
   2762 	}
   2763 
   2764 	*child_ok = true;
   2765 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2766 #if 0
   2767 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2768 #endif
   2769 
   2770 	/*
   2771 	 * It's now safe for the scheduler and other processes to see the
   2772 	 * child process.
   2773 	 */
   2774 	mutex_enter(&proc_lock);
   2775 
   2776 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2777 		p2->p_lflag |= PL_CONTROLT;
   2778 
   2779 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2780 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2781 
   2782 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
   2783 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2784 		proc_changeparent(p2, p1->p_pptr);
   2785 		SET(p2->p_slflag, PSL_TRACEDCHILD);
   2786 	}
   2787 
   2788 	p2->p_oppid = p1->p_pid;  /* Remember the original parent id. */
   2789 
   2790 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2791 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2792 
   2793 	p2->p_trace_enabled = trace_is_enabled(p2);
   2794 #ifdef __HAVE_SYSCALL_INTERN
   2795 	(*p2->p_emul->e_syscall_intern)(p2);
   2796 #endif
   2797 
   2798 	/*
   2799 	 * Make child runnable, set start time, and add to run queue except
   2800 	 * if the parent requested the child to start in SSTOP state.
   2801 	 */
   2802 	mutex_enter(p2->p_lock);
   2803 
   2804 	getmicrotime(&p2->p_stats->p_start);
   2805 
   2806 	lwp_lock(l2);
   2807 	KASSERT(p2->p_nrlwps == 1);
   2808 	KASSERT(l2->l_stat == LSIDL);
   2809 	p2->p_nrlwps = 1;
   2810 	p2->p_stat = SACTIVE;
   2811 	setrunnable(l2);
   2812 	/* LWP now unlocked */
   2813 
   2814 	mutex_exit(p2->p_lock);
   2815 	mutex_exit(&proc_lock);
   2816 
   2817 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2818 	error = spawn_data->sed_error;
   2819 	mutex_exit(&spawn_data->sed_mtx_child);
   2820 	spawn_exec_data_release(spawn_data);
   2821 
   2822 	rw_exit(&p1->p_reflock);
   2823 	rw_exit(&exec_lock);
   2824 	have_exec_lock = false;
   2825 
   2826 	*pid_res = pid;
   2827 
   2828 	if (error)
   2829 		return error;
   2830 
   2831 	if (p1->p_slflag & PSL_TRACED) {
   2832 		/* Paranoid check */
   2833 		mutex_enter(&proc_lock);
   2834 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
   2835 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2836 			mutex_exit(&proc_lock);
   2837 			return 0;
   2838 		}
   2839 
   2840 		mutex_enter(p1->p_lock);
   2841 		eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
   2842 	}
   2843 	return 0;
   2844 
   2845  error_exit:
   2846 	if (have_exec_lock) {
   2847 		execve_free_data(&spawn_data->sed_exec);
   2848 		rw_exit(&p1->p_reflock);
   2849 		rw_exit(&exec_lock);
   2850 	}
   2851 	mutex_exit(&spawn_data->sed_mtx_child);
   2852 	spawn_exec_data_release(spawn_data);
   2853 	if (uaddr != 0)
   2854 		uvm_uarea_free(uaddr);
   2855 
   2856 	return error;
   2857 }
   2858 
   2859 int
   2860 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2861     register_t *retval)
   2862 {
   2863 	/* {
   2864 		syscallarg(pid_t *) pid;
   2865 		syscallarg(const char *) path;
   2866 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2867 		syscallarg(const struct posix_spawnattr *) attrp;
   2868 		syscallarg(char *const *) argv;
   2869 		syscallarg(char *const *) envp;
   2870 	} */
   2871 
   2872 	int error;
   2873 	struct posix_spawn_file_actions *fa = NULL;
   2874 	struct posix_spawnattr *sa = NULL;
   2875 	pid_t pid;
   2876 	bool child_ok = false;
   2877 	rlim_t max_fileactions;
   2878 	proc_t *p = l1->l_proc;
   2879 
   2880 	/* check_posix_spawn() increments nprocs for us. */
   2881 	error = check_posix_spawn(l1);
   2882 	if (error) {
   2883 		*retval = error;
   2884 		return 0;
   2885 	}
   2886 
   2887 	/* copy in file_actions struct */
   2888 	if (SCARG(uap, file_actions) != NULL) {
   2889 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2890 		    maxfiles);
   2891 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2892 		    max_fileactions);
   2893 		if (error)
   2894 			goto error_exit;
   2895 	}
   2896 
   2897 	/* copyin posix_spawnattr struct */
   2898 	if (SCARG(uap, attrp) != NULL) {
   2899 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2900 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2901 		if (error)
   2902 			goto error_exit;
   2903 	}
   2904 
   2905 	/*
   2906 	 * Do the spawn
   2907 	 */
   2908 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2909 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2910 	if (error)
   2911 		goto error_exit;
   2912 
   2913 	if (error == 0 && SCARG(uap, pid) != NULL)
   2914 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2915 
   2916 	*retval = error;
   2917 	return 0;
   2918 
   2919  error_exit:
   2920 	if (!child_ok) {
   2921 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2922 		atomic_dec_uint(&nprocs);
   2923 
   2924 		if (sa)
   2925 			kmem_free(sa, sizeof(*sa));
   2926 		if (fa)
   2927 			posix_spawn_fa_free(fa, fa->len);
   2928 	}
   2929 
   2930 	*retval = error;
   2931 	return 0;
   2932 }
   2933 
   2934 void
   2935 exec_free_emul_arg(struct exec_package *epp)
   2936 {
   2937 	if (epp->ep_emul_arg_free != NULL) {
   2938 		KASSERT(epp->ep_emul_arg != NULL);
   2939 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2940 		epp->ep_emul_arg_free = NULL;
   2941 		epp->ep_emul_arg = NULL;
   2942 	} else {
   2943 		KASSERT(epp->ep_emul_arg == NULL);
   2944 	}
   2945 }
   2946 
   2947 #ifdef DEBUG_EXEC
   2948 static void
   2949 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2950 {
   2951 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2952 	size_t j;
   2953 
   2954 	if (error == 0)
   2955 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2956 	else
   2957 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2958 		    epp->ep_vmcmds.evs_used, error));
   2959 
   2960 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2961 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2962 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2963 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2964 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2965 		    "pagedvn" :
   2966 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2967 		    "readvn" :
   2968 		    vp[j].ev_proc == vmcmd_map_zero ?
   2969 		    "zero" : "*unknown*",
   2970 		    vp[j].ev_addr, vp[j].ev_len,
   2971 		    vp[j].ev_offset, vp[j].ev_prot,
   2972 		    vp[j].ev_flags));
   2973 		if (error != 0 && j == x)
   2974 			DPRINTF(("     ^--- failed\n"));
   2975 	}
   2976 }
   2977 #endif
   2978