kern_exec.c revision 1.524 1 /* $NetBSD: kern_exec.c,v 1.524 2024/12/06 16:19:41 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
34 * Copyright (C) 1992 Wolfgang Solfrank.
35 * Copyright (C) 1992 TooLs GmbH.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by TooLs GmbH.
49 * 4. The name of TooLs GmbH may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
57 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
58 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
59 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
60 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
61 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.524 2024/12/06 16:19:41 riastradh Exp $");
66
67 #include "opt_exec.h"
68 #include "opt_execfmt.h"
69 #include "opt_ktrace.h"
70 #include "opt_modular.h"
71 #include "opt_pax.h"
72 #include "opt_syscall_debug.h"
73 #include "veriexec.h"
74
75 #include <sys/param.h>
76 #include <sys/types.h>
77
78 #include <sys/acct.h>
79 #include <sys/atomic.h>
80 #include <sys/cprng.h>
81 #include <sys/cpu.h>
82 #include <sys/exec.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/futex.h>
86 #include <sys/kauth.h>
87 #include <sys/kernel.h>
88 #include <sys/kmem.h>
89 #include <sys/ktrace.h>
90 #include <sys/lwpctl.h>
91 #include <sys/mman.h>
92 #include <sys/module.h>
93 #include <sys/mount.h>
94 #include <sys/namei.h>
95 #include <sys/pax.h>
96 #include <sys/proc.h>
97 #include <sys/prot.h>
98 #include <sys/ptrace.h>
99 #include <sys/ras.h>
100 #include <sys/sdt.h>
101 #include <sys/signalvar.h>
102 #include <sys/spawn.h>
103 #include <sys/stat.h>
104 #include <sys/syscall.h>
105 #include <sys/syscallargs.h>
106 #include <sys/syscallvar.h>
107 #include <sys/systm.h>
108 #include <sys/uidinfo.h>
109 #if NVERIEXEC > 0
110 #include <sys/verified_exec.h>
111 #endif /* NVERIEXEC > 0 */
112 #include <sys/vfs_syscalls.h>
113 #include <sys/vnode.h>
114 #include <sys/wait.h>
115
116 #include <uvm/uvm_extern.h>
117
118 #include <machine/reg.h>
119
120 #include <compat/common/compat_util.h>
121
122 #ifndef MD_TOPDOWN_INIT
123 #ifdef __USE_TOPDOWN_VM
124 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
125 #else
126 #define MD_TOPDOWN_INIT(epp)
127 #endif
128 #endif
129
130 struct execve_data;
131
132 extern int user_va0_disable;
133
134 static size_t calcargs(struct execve_data * restrict, const size_t);
135 static size_t calcstack(struct execve_data * restrict, const size_t);
136 static int copyoutargs(struct execve_data * restrict, struct lwp *,
137 char * const);
138 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
139 static int copyinargs(struct execve_data * restrict, char * const *,
140 char * const *, execve_fetch_element_t, char **);
141 static int copyinargstrs(struct execve_data * restrict, char * const *,
142 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
143 static int exec_sigcode_map(struct proc *, const struct emul *);
144
145 #if defined(DEBUG) && !defined(DEBUG_EXEC)
146 #define DEBUG_EXEC
147 #endif
148 #ifdef DEBUG_EXEC
149 #define DPRINTF(a) printf a
150 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
151 __LINE__, (s), (a), (b))
152 static void dump_vmcmds(const struct exec_package * const, size_t, int);
153 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
154 #else
155 #define DPRINTF(a)
156 #define COPYPRINTF(s, a, b)
157 #define DUMPVMCMDS(p, x, e) do {} while (0)
158 #endif /* DEBUG_EXEC */
159
160 /*
161 * DTrace SDT provider definitions
162 */
163 SDT_PROVIDER_DECLARE(proc);
164 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
165 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
166 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
167
168 /*
169 * Exec function switch:
170 *
171 * Note that each makecmds function is responsible for loading the
172 * exec package with the necessary functions for any exec-type-specific
173 * handling.
174 *
175 * Functions for specific exec types should be defined in their own
176 * header file.
177 */
178 static const struct execsw **execsw = NULL;
179 static int nexecs;
180
181 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
182
183 /* list of dynamically loaded execsw entries */
184 static LIST_HEAD(execlist_head, exec_entry) ex_head =
185 LIST_HEAD_INITIALIZER(ex_head);
186 struct exec_entry {
187 LIST_ENTRY(exec_entry) ex_list;
188 SLIST_ENTRY(exec_entry) ex_slist;
189 const struct execsw *ex_sw;
190 };
191
192 #ifndef __HAVE_SYSCALL_INTERN
193 void syscall(void);
194 #endif
195
196 /* NetBSD autoloadable syscalls */
197 #ifdef MODULAR
198 #include <kern/syscalls_autoload.c>
199 #endif
200
201 /* NetBSD emul struct */
202 struct emul emul_netbsd = {
203 .e_name = "netbsd",
204 #ifdef EMUL_NATIVEROOT
205 .e_path = EMUL_NATIVEROOT,
206 #else
207 .e_path = NULL,
208 #endif
209 #ifndef __HAVE_MINIMAL_EMUL
210 .e_flags = EMUL_HAS_SYS___syscall,
211 .e_errno = NULL,
212 .e_nosys = SYS_syscall,
213 .e_nsysent = SYS_NSYSENT,
214 #endif
215 #ifdef MODULAR
216 .e_sc_autoload = netbsd_syscalls_autoload,
217 #endif
218 .e_sysent = sysent,
219 .e_nomodbits = sysent_nomodbits,
220 #ifdef SYSCALL_DEBUG
221 .e_syscallnames = syscallnames,
222 #else
223 .e_syscallnames = NULL,
224 #endif
225 .e_sendsig = sendsig,
226 .e_trapsignal = trapsignal,
227 .e_sigcode = NULL,
228 .e_esigcode = NULL,
229 .e_sigobject = NULL,
230 .e_setregs = setregs,
231 .e_proc_exec = NULL,
232 .e_proc_fork = NULL,
233 .e_proc_exit = NULL,
234 .e_lwp_fork = NULL,
235 .e_lwp_exit = NULL,
236 #ifdef __HAVE_SYSCALL_INTERN
237 .e_syscall_intern = syscall_intern,
238 #else
239 .e_syscall = syscall,
240 #endif
241 .e_sysctlovly = NULL,
242 .e_vm_default_addr = uvm_default_mapaddr,
243 .e_usertrap = NULL,
244 .e_ucsize = sizeof(ucontext_t),
245 .e_startlwp = startlwp
246 };
247
248 /*
249 * Exec lock. Used to control access to execsw[] structures.
250 * This must not be static so that netbsd32 can access it, too.
251 */
252 krwlock_t exec_lock __cacheline_aligned;
253
254 /*
255 * Data used between a loadvm and execve part of an "exec" operation
256 */
257 struct execve_data {
258 struct exec_package ed_pack;
259 struct pathbuf *ed_pathbuf;
260 struct vattr ed_attr;
261 struct ps_strings ed_arginfo;
262 char *ed_argp;
263 const char *ed_pathstring;
264 char *ed_resolvedname;
265 size_t ed_ps_strings_sz;
266 int ed_szsigcode;
267 size_t ed_argslen;
268 long ed_argc;
269 long ed_envc;
270 };
271
272 /*
273 * data passed from parent lwp to child during a posix_spawn()
274 */
275 struct spawn_exec_data {
276 struct execve_data sed_exec;
277 struct posix_spawn_file_actions
278 *sed_actions;
279 struct posix_spawnattr *sed_attrs;
280 struct proc *sed_parent;
281 kcondvar_t sed_cv_child_ready;
282 kmutex_t sed_mtx_child;
283 int sed_error;
284 volatile uint32_t sed_refcnt;
285 };
286
287 static struct vm_map *exec_map;
288 static struct pool exec_pool;
289
290 static void *
291 exec_pool_alloc(struct pool *pp, int flags)
292 {
293
294 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
295 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
296 }
297
298 static void
299 exec_pool_free(struct pool *pp, void *addr)
300 {
301
302 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
303 }
304
305 static struct pool_allocator exec_palloc = {
306 .pa_alloc = exec_pool_alloc,
307 .pa_free = exec_pool_free,
308 .pa_pagesz = NCARGS
309 };
310
311 static void
312 exec_path_free(struct execve_data *data)
313 {
314 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
315 pathbuf_destroy(data->ed_pathbuf);
316 if (data->ed_resolvedname)
317 PNBUF_PUT(data->ed_resolvedname);
318 }
319
320 static int
321 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
322 char **rpath)
323 {
324 int error;
325 char *p;
326
327 KASSERT(rpath != NULL);
328
329 *rpath = PNBUF_GET();
330 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
331 if (error) {
332 DPRINTF(("%s: can't resolve name for %s, error %d\n",
333 __func__, epp->ep_kname, error));
334 PNBUF_PUT(*rpath);
335 *rpath = NULL;
336 return error;
337 }
338 epp->ep_resolvedname = *rpath;
339 if ((p = strrchr(*rpath, '/')) != NULL)
340 epp->ep_kname = p + 1;
341 return 0;
342 }
343
344
345 /*
346 * check exec:
347 * given an "executable" described in the exec package's namei info,
348 * see what we can do with it.
349 *
350 * ON ENTRY:
351 * exec package with appropriate namei info
352 * lwp pointer of exec'ing lwp
353 * NO SELF-LOCKED VNODES
354 *
355 * ON EXIT:
356 * error: nothing held, etc. exec header still allocated.
357 * ok: filled exec package, executable's vnode (unlocked).
358 *
359 * EXEC SWITCH ENTRY:
360 * Locked vnode to check, exec package, proc.
361 *
362 * EXEC SWITCH EXIT:
363 * ok: return 0, filled exec package, executable's vnode (unlocked).
364 * error: destructive:
365 * everything deallocated execept exec header.
366 * non-destructive:
367 * error code, executable's vnode (unlocked),
368 * exec header unmodified.
369 */
370 int
371 /*ARGSUSED*/
372 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
373 char **rpath)
374 {
375 int error, i;
376 struct vnode *vp;
377 size_t resid;
378
379 if (epp->ep_resolvedname) {
380 struct nameidata nd;
381
382 // grab the absolute pathbuf here before namei() trashes it.
383 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
384 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
385
386 /* first get the vnode */
387 if ((error = namei(&nd)) != 0)
388 return error;
389
390 epp->ep_vp = vp = nd.ni_vp;
391 #ifdef DIAGNOSTIC
392 /* paranoia (take this out once namei stuff stabilizes) */
393 memset(nd.ni_pnbuf, '~', PATH_MAX);
394 #endif
395 } else {
396 struct file *fp;
397
398 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
399 return error;
400 epp->ep_vp = vp = fp->f_vnode;
401 vref(vp);
402 fd_putfile(epp->ep_xfd);
403 if ((error = exec_resolvename(l, epp, vp, rpath)) != 0)
404 return error;
405 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
406 }
407
408 /* check access and type */
409 if (vp->v_type != VREG) {
410 error = SET_ERROR(EACCES);
411 goto bad1;
412 }
413 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
414 goto bad1;
415
416 /* get attributes */
417 /* XXX VOP_GETATTR is the only thing that needs LK_EXCLUSIVE here */
418 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
419 goto bad1;
420
421 /* Check mount point */
422 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
423 error = SET_ERROR(EACCES);
424 goto bad1;
425 }
426 if (vp->v_mount->mnt_flag & MNT_NOSUID)
427 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
428
429 /* try to open it */
430 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
431 goto bad1;
432
433 /* now we have the file, get the exec header */
434 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
435 UIO_SYSSPACE, IO_NODELOCKED, l->l_cred, &resid, NULL);
436 if (error)
437 goto bad1;
438
439 /* unlock vp, since we need it unlocked from here on out. */
440 VOP_UNLOCK(vp);
441
442 #if NVERIEXEC > 0
443 error = veriexec_verify(l, vp,
444 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
445 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
446 NULL);
447 if (error)
448 goto bad2;
449 #endif /* NVERIEXEC > 0 */
450
451 #ifdef PAX_SEGVGUARD
452 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
453 if (error)
454 goto bad2;
455 #endif /* PAX_SEGVGUARD */
456
457 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
458
459 /*
460 * Set up default address space limits. Can be overridden
461 * by individual exec packages.
462 */
463 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
464 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
465
466 /*
467 * set up the vmcmds for creation of the process
468 * address space
469 */
470 error = nexecs == 0 ? SET_ERROR(ENOEXEC) : ENOEXEC;
471 for (i = 0; i < nexecs; i++) {
472 int newerror;
473
474 epp->ep_esch = execsw[i];
475 newerror = (*execsw[i]->es_makecmds)(l, epp);
476
477 if (!newerror) {
478 /* Seems ok: check that entry point is not too high */
479 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
480 #ifdef DIAGNOSTIC
481 printf("%s: rejecting %p due to "
482 "too high entry address (>= %p)\n",
483 __func__, (void *)epp->ep_entry,
484 (void *)epp->ep_vm_maxaddr);
485 #endif
486 error = SET_ERROR(ENOEXEC);
487 break;
488 }
489 /* Seems ok: check that entry point is not too low */
490 if (epp->ep_entry < epp->ep_vm_minaddr) {
491 #ifdef DIAGNOSTIC
492 printf("%s: rejecting %p due to "
493 "too low entry address (< %p)\n",
494 __func__, (void *)epp->ep_entry,
495 (void *)epp->ep_vm_minaddr);
496 #endif
497 error = SET_ERROR(ENOEXEC);
498 break;
499 }
500
501 /* check limits */
502 #ifdef DIAGNOSTIC
503 #define LMSG "%s: rejecting due to %s limit (%ju > %ju)\n"
504 #endif
505 #ifdef MAXTSIZ
506 if (epp->ep_tsize > MAXTSIZ) {
507 #ifdef DIAGNOSTIC
508 printf(LMSG, __func__, "text",
509 (uintmax_t)epp->ep_tsize,
510 (uintmax_t)MAXTSIZ);
511 #endif
512 error = SET_ERROR(ENOMEM);
513 break;
514 }
515 #endif
516 vsize_t dlimit =
517 (vsize_t)l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur;
518 if (epp->ep_dsize > dlimit) {
519 #ifdef DIAGNOSTIC
520 printf(LMSG, __func__, "data",
521 (uintmax_t)epp->ep_dsize,
522 (uintmax_t)dlimit);
523 #endif
524 error = SET_ERROR(ENOMEM);
525 break;
526 }
527 return 0;
528 }
529
530 /*
531 * Reset all the fields that may have been modified by the
532 * loader.
533 */
534 KASSERT(epp->ep_emul_arg == NULL);
535 if (epp->ep_emul_root != NULL) {
536 vrele(epp->ep_emul_root);
537 epp->ep_emul_root = NULL;
538 }
539 if (epp->ep_interp != NULL) {
540 vrele(epp->ep_interp);
541 epp->ep_interp = NULL;
542 }
543 epp->ep_pax_flags = 0;
544
545 /* make sure the first "interesting" error code is saved. */
546 if (error == ENOEXEC)
547 error = newerror;
548
549 if (epp->ep_flags & EXEC_DESTR)
550 /* Error from "#!" code, tidied up by recursive call */
551 return error;
552 }
553
554 /* not found, error */
555
556 /*
557 * free any vmspace-creation commands,
558 * and release their references
559 */
560 kill_vmcmds(&epp->ep_vmcmds);
561
562 #if NVERIEXEC > 0 || defined(PAX_SEGVGUARD)
563 bad2:
564 #endif
565 /*
566 * close and release the vnode, restore the old one, free the
567 * pathname buf, and punt.
568 */
569 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
570 VOP_CLOSE(vp, FREAD, l->l_cred);
571 vput(vp);
572 return error;
573
574 bad1:
575 /*
576 * free the namei pathname buffer, and put the vnode
577 * (which we don't yet have open).
578 */
579 vput(vp); /* was still locked */
580 return error;
581 }
582
583 #ifdef __MACHINE_STACK_GROWS_UP
584 #define STACK_PTHREADSPACE NBPG
585 #else
586 #define STACK_PTHREADSPACE 0
587 #endif
588
589 static int
590 execve_fetch_element(char * const *array, size_t index, char **value)
591 {
592 return copyin(array + index, value, sizeof(*value));
593 }
594
595 /*
596 * exec system call
597 */
598 int
599 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
600 {
601 /* {
602 syscallarg(const char *) path;
603 syscallarg(char * const *) argp;
604 syscallarg(char * const *) envp;
605 } */
606
607 return execve1(l, true, SCARG(uap, path), -1, SCARG(uap, argp),
608 SCARG(uap, envp), execve_fetch_element);
609 }
610
611 int
612 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
613 register_t *retval)
614 {
615 /* {
616 syscallarg(int) fd;
617 syscallarg(char * const *) argp;
618 syscallarg(char * const *) envp;
619 } */
620
621 return execve1(l, false, NULL, SCARG(uap, fd), SCARG(uap, argp),
622 SCARG(uap, envp), execve_fetch_element);
623 }
624
625 /*
626 * Load modules to try and execute an image that we do not understand.
627 * If no execsw entries are present, we load those likely to be needed
628 * in order to run native images only. Otherwise, we autoload all
629 * possible modules that could let us run the binary. XXX lame
630 */
631 static void
632 exec_autoload(void)
633 {
634 #ifdef MODULAR
635 static const char * const native[] = {
636 "exec_elf32",
637 "exec_elf64",
638 "exec_script",
639 NULL
640 };
641 static const char * const compat[] = {
642 "exec_elf32",
643 "exec_elf64",
644 "exec_script",
645 "exec_aout",
646 "exec_coff",
647 "exec_ecoff",
648 "compat_aoutm68k",
649 "compat_netbsd32",
650 #if 0
651 "compat_linux",
652 "compat_linux32",
653 #endif
654 "compat_sunos",
655 "compat_sunos32",
656 "compat_ultrix",
657 NULL
658 };
659 char const * const *list;
660 int i;
661
662 list = nexecs == 0 ? native : compat;
663 for (i = 0; list[i] != NULL; i++) {
664 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
665 continue;
666 }
667 yield();
668 }
669 #endif
670 }
671
672 /*
673 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
674 * making it absolute in the process, by prepending the current working
675 * directory if it is not. If offs is supplied it will contain the offset
676 * where the original supplied copy of upath starts.
677 */
678 int
679 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
680 struct pathbuf **pbp, size_t *offs)
681 {
682 char *path, *bp;
683 size_t len, tlen;
684 int error;
685 struct cwdinfo *cwdi;
686
687 path = PNBUF_GET();
688 if (seg == UIO_SYSSPACE) {
689 error = copystr(upath, path, MAXPATHLEN, &len);
690 } else {
691 error = copyinstr(upath, path, MAXPATHLEN, &len);
692 }
693 if (error)
694 goto err;
695
696 if (path[0] == '/') {
697 if (offs)
698 *offs = 0;
699 goto out;
700 }
701
702 len++;
703 if (len + 1 >= MAXPATHLEN) {
704 error = SET_ERROR(ENAMETOOLONG);
705 goto err;
706 }
707 bp = path + MAXPATHLEN - len;
708 memmove(bp, path, len);
709 *(--bp) = '/';
710
711 cwdi = l->l_proc->p_cwdi;
712 rw_enter(&cwdi->cwdi_lock, RW_READER);
713 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
714 GETCWD_CHECK_ACCESS, l);
715 rw_exit(&cwdi->cwdi_lock);
716
717 if (error)
718 goto err;
719 tlen = path + MAXPATHLEN - bp;
720
721 memmove(path, bp, tlen);
722 path[tlen - 1] = '\0';
723 if (offs)
724 *offs = tlen - len;
725 out:
726 *pbp = pathbuf_assimilate(path);
727 return 0;
728 err:
729 PNBUF_PUT(path);
730 return error;
731 }
732
733 vaddr_t
734 exec_vm_minaddr(vaddr_t va_min)
735 {
736 /*
737 * Increase va_min if we don't want NULL to be mappable by the
738 * process.
739 */
740 #define VM_MIN_GUARD PAGE_SIZE
741 if (user_va0_disable && (va_min < VM_MIN_GUARD))
742 return VM_MIN_GUARD;
743 return va_min;
744 }
745
746 static int
747 execve_loadvm(struct lwp *l, bool has_path, const char *path, int fd,
748 char * const *args, char * const *envs,
749 execve_fetch_element_t fetch_element,
750 struct execve_data * restrict data)
751 {
752 struct exec_package * const epp = &data->ed_pack;
753 int error;
754 struct proc *p;
755 char *dp;
756 u_int modgen;
757
758 KASSERT(data != NULL);
759
760 p = l->l_proc;
761 modgen = 0;
762
763 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
764
765 /*
766 * Check if we have exceeded our number of processes limit.
767 * This is so that we handle the case where a root daemon
768 * forked, ran setuid to become the desired user and is trying
769 * to exec. The obvious place to do the reference counting check
770 * is setuid(), but we don't do the reference counting check there
771 * like other OS's do because then all the programs that use setuid()
772 * must be modified to check the return code of setuid() and exit().
773 * It is dangerous to make setuid() fail, because it fails open and
774 * the program will continue to run as root. If we make it succeed
775 * and return an error code, again we are not enforcing the limit.
776 * The best place to enforce the limit is here, when the process tries
777 * to execute a new image, because eventually the process will need
778 * to call exec in order to do something useful.
779 */
780 retry:
781 if (p->p_flag & PK_SUGID) {
782 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
783 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
784 &p->p_rlimit[RLIMIT_NPROC],
785 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
786 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
787 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
788 return SET_ERROR(EAGAIN);
789 }
790
791 /*
792 * Drain existing references and forbid new ones. The process
793 * should be left alone until we're done here. This is necessary
794 * to avoid race conditions - e.g. in ptrace() - that might allow
795 * a local user to illicitly obtain elevated privileges.
796 */
797 rw_enter(&p->p_reflock, RW_WRITER);
798
799 if (has_path) {
800 size_t offs;
801 /*
802 * Init the namei data to point the file user's program name.
803 * This is done here rather than in check_exec(), so that it's
804 * possible to override this settings if any of makecmd/probe
805 * functions call check_exec() recursively - for example,
806 * see exec_script_makecmds().
807 */
808 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
809 &data->ed_pathbuf, &offs)) != 0)
810 goto clrflg;
811 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
812 epp->ep_kname = data->ed_pathstring + offs;
813 data->ed_resolvedname = PNBUF_GET();
814 epp->ep_resolvedname = data->ed_resolvedname;
815 epp->ep_xfd = -1;
816 } else {
817 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
818 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
819 epp->ep_kname = "*fexecve*";
820 data->ed_resolvedname = NULL;
821 epp->ep_resolvedname = NULL;
822 epp->ep_xfd = fd;
823 }
824
825
826 /*
827 * initialize the fields of the exec package.
828 */
829 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
830 epp->ep_hdrlen = exec_maxhdrsz;
831 epp->ep_hdrvalid = 0;
832 epp->ep_emul_arg = NULL;
833 epp->ep_emul_arg_free = NULL;
834 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
835 epp->ep_vap = &data->ed_attr;
836 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
837 MD_TOPDOWN_INIT(epp);
838 epp->ep_emul_root = NULL;
839 epp->ep_interp = NULL;
840 epp->ep_esch = NULL;
841 epp->ep_pax_flags = 0;
842 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
843
844 rw_enter(&exec_lock, RW_READER);
845
846 /* see if we can run it. */
847 if ((error = check_exec(l, epp, data->ed_pathbuf,
848 &data->ed_resolvedname)) != 0) {
849 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
850 DPRINTF(("%s: check exec failed for %s, error %d\n",
851 __func__, epp->ep_kname, error));
852 }
853 goto freehdr;
854 }
855
856 /* allocate an argument buffer */
857 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
858 KASSERT(data->ed_argp != NULL);
859 dp = data->ed_argp;
860
861 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
862 goto bad;
863 }
864
865 /*
866 * Calculate the new stack size.
867 */
868
869 #ifdef __MACHINE_STACK_GROWS_UP
870 /*
871 * copyargs() fills argc/argv/envp from the lower address even on
872 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
873 * so that _rtld() use it.
874 */
875 #define RTLD_GAP 32
876 #else
877 #define RTLD_GAP 0
878 #endif
879
880 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
881
882 data->ed_argslen = calcargs(data, argenvstrlen);
883
884 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
885
886 if (len > epp->ep_ssize) {
887 /* in effect, compare to initial limit */
888 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
889 error = SET_ERROR(ENOMEM);
890 goto bad;
891 }
892 /* adjust "active stack depth" for process VSZ */
893 epp->ep_ssize = len;
894
895 return 0;
896
897 bad:
898 /* free the vmspace-creation commands, and release their references */
899 kill_vmcmds(&epp->ep_vmcmds);
900 /* kill any opened file descriptor, if necessary */
901 if (epp->ep_flags & EXEC_HASFD) {
902 epp->ep_flags &= ~EXEC_HASFD;
903 fd_close(epp->ep_fd);
904 }
905 /* close and put the exec'd file */
906 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
907 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
908 vput(epp->ep_vp);
909 pool_put(&exec_pool, data->ed_argp);
910
911 freehdr:
912 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
913 if (epp->ep_emul_root != NULL)
914 vrele(epp->ep_emul_root);
915 if (epp->ep_interp != NULL)
916 vrele(epp->ep_interp);
917
918 rw_exit(&exec_lock);
919
920 exec_path_free(data);
921
922 clrflg:
923 rw_exit(&p->p_reflock);
924
925 if (modgen != module_gen && error == ENOEXEC) {
926 modgen = module_gen;
927 exec_autoload();
928 goto retry;
929 }
930
931 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
932 return error;
933 }
934
935 static int
936 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
937 {
938 struct exec_package * const epp = &data->ed_pack;
939 struct proc *p = l->l_proc;
940 struct exec_vmcmd *base_vcp;
941 int error = 0;
942 size_t i;
943
944 /* record proc's vnode, for use by procfs and others */
945 if (p->p_textvp)
946 vrele(p->p_textvp);
947 vref(epp->ep_vp);
948 p->p_textvp = epp->ep_vp;
949
950 /* create the new process's VM space by running the vmcmds */
951 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
952
953 #ifdef TRACE_EXEC
954 DUMPVMCMDS(epp, 0, 0);
955 #endif
956
957 base_vcp = NULL;
958
959 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
960 struct exec_vmcmd *vcp;
961
962 vcp = &epp->ep_vmcmds.evs_cmds[i];
963 if (vcp->ev_flags & VMCMD_RELATIVE) {
964 KASSERTMSG(base_vcp != NULL,
965 "%s: relative vmcmd with no base", __func__);
966 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
967 "%s: illegal base & relative vmcmd", __func__);
968 vcp->ev_addr += base_vcp->ev_addr;
969 }
970 error = (*vcp->ev_proc)(l, vcp);
971 if (error)
972 DUMPVMCMDS(epp, i, error);
973 if (vcp->ev_flags & VMCMD_BASE)
974 base_vcp = vcp;
975 }
976
977 /* free the vmspace-creation commands, and release their references */
978 kill_vmcmds(&epp->ep_vmcmds);
979
980 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
981 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
982 vput(epp->ep_vp);
983
984 /* if an error happened, deallocate and punt */
985 if (error != 0) {
986 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
987 }
988 return error;
989 }
990
991 static void
992 execve_free_data(struct execve_data *data)
993 {
994 struct exec_package * const epp = &data->ed_pack;
995
996 /* free the vmspace-creation commands, and release their references */
997 kill_vmcmds(&epp->ep_vmcmds);
998 /* kill any opened file descriptor, if necessary */
999 if (epp->ep_flags & EXEC_HASFD) {
1000 epp->ep_flags &= ~EXEC_HASFD;
1001 fd_close(epp->ep_fd);
1002 }
1003
1004 /* close and put the exec'd file */
1005 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1006 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
1007 vput(epp->ep_vp);
1008 pool_put(&exec_pool, data->ed_argp);
1009
1010 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1011 if (epp->ep_emul_root != NULL)
1012 vrele(epp->ep_emul_root);
1013 if (epp->ep_interp != NULL)
1014 vrele(epp->ep_interp);
1015
1016 exec_path_free(data);
1017 }
1018
1019 static void
1020 pathexec(struct proc *p, const char *resolvedname)
1021 {
1022 /* set command name & other accounting info */
1023 const char *cmdname;
1024
1025 if (resolvedname == NULL) {
1026 cmdname = "*fexecve*";
1027 resolvedname = "/";
1028 } else {
1029 cmdname = strrchr(resolvedname, '/') + 1;
1030 }
1031 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1032 resolvedname);
1033
1034 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1035
1036 kmem_strfree(p->p_path);
1037 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1038 }
1039
1040 /* XXX elsewhere */
1041 static int
1042 credexec(struct lwp *l, struct execve_data *data)
1043 {
1044 struct proc *p = l->l_proc;
1045 struct vattr *attr = &data->ed_attr;
1046 int error;
1047
1048 /*
1049 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1050 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1051 * out additional references on the process for the moment.
1052 */
1053 if ((p->p_slflag & PSL_TRACED) == 0 &&
1054
1055 (((attr->va_mode & S_ISUID) != 0 &&
1056 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1057
1058 ((attr->va_mode & S_ISGID) != 0 &&
1059 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1060 /*
1061 * Mark the process as SUGID before we do
1062 * anything that might block.
1063 */
1064 proc_crmod_enter();
1065 proc_crmod_leave(NULL, NULL, true);
1066 if (data->ed_argc == 0) {
1067 DPRINTF((
1068 "%s: not executing set[ug]id binary with no args\n",
1069 __func__));
1070 return SET_ERROR(EINVAL);
1071 }
1072
1073 /* Make sure file descriptors 0..2 are in use. */
1074 if ((error = fd_checkstd()) != 0) {
1075 DPRINTF(("%s: fdcheckstd failed %d\n",
1076 __func__, error));
1077 return error;
1078 }
1079
1080 /*
1081 * Copy the credential so other references don't see our
1082 * changes.
1083 */
1084 l->l_cred = kauth_cred_copy(l->l_cred);
1085 #ifdef KTRACE
1086 /*
1087 * If the persistent trace flag isn't set, turn off.
1088 */
1089 if (p->p_tracep) {
1090 mutex_enter(&ktrace_lock);
1091 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1092 ktrderef(p);
1093 mutex_exit(&ktrace_lock);
1094 }
1095 #endif
1096 if (attr->va_mode & S_ISUID)
1097 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1098 if (attr->va_mode & S_ISGID)
1099 kauth_cred_setegid(l->l_cred, attr->va_gid);
1100 } else {
1101 if (kauth_cred_geteuid(l->l_cred) ==
1102 kauth_cred_getuid(l->l_cred) &&
1103 kauth_cred_getegid(l->l_cred) ==
1104 kauth_cred_getgid(l->l_cred))
1105 p->p_flag &= ~PK_SUGID;
1106 }
1107
1108 /*
1109 * Copy the credential so other references don't see our changes.
1110 * Test to see if this is necessary first, since in the common case
1111 * we won't need a private reference.
1112 */
1113 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1114 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1115 l->l_cred = kauth_cred_copy(l->l_cred);
1116 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1117 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1118 }
1119
1120 /* Update the master credentials. */
1121 if (l->l_cred != p->p_cred) {
1122 kauth_cred_t ocred;
1123 mutex_enter(p->p_lock);
1124 ocred = p->p_cred;
1125 p->p_cred = kauth_cred_hold(l->l_cred);
1126 mutex_exit(p->p_lock);
1127 kauth_cred_free(ocred);
1128 }
1129
1130 return 0;
1131 }
1132
1133 static void
1134 emulexec(struct lwp *l, struct exec_package *epp)
1135 {
1136 struct proc *p = l->l_proc;
1137
1138 /* The emulation root will usually have been found when we looked
1139 * for the elf interpreter (or similar), if not look now. */
1140 if (epp->ep_esch->es_emul->e_path != NULL &&
1141 epp->ep_emul_root == NULL)
1142 emul_find_root(l, epp);
1143
1144 /* Any old emulation root got removed by fdcloseexec */
1145 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1146 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1147 rw_exit(&p->p_cwdi->cwdi_lock);
1148 epp->ep_emul_root = NULL;
1149 if (epp->ep_interp != NULL)
1150 vrele(epp->ep_interp);
1151
1152 /*
1153 * Call emulation specific exec hook. This can setup per-process
1154 * p->p_emuldata or do any other per-process stuff an emulation needs.
1155 *
1156 * If we are executing process of different emulation than the
1157 * original forked process, call e_proc_exit() of the old emulation
1158 * first, then e_proc_exec() of new emulation. If the emulation is
1159 * same, the exec hook code should deallocate any old emulation
1160 * resources held previously by this process.
1161 */
1162 if (p->p_emul && p->p_emul->e_proc_exit
1163 && p->p_emul != epp->ep_esch->es_emul)
1164 (*p->p_emul->e_proc_exit)(p);
1165
1166 /*
1167 * Call exec hook. Emulation code may NOT store reference to anything
1168 * from &pack.
1169 */
1170 if (epp->ep_esch->es_emul->e_proc_exec)
1171 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1172
1173 /* update p_emul, the old value is no longer needed */
1174 p->p_emul = epp->ep_esch->es_emul;
1175
1176 /* ...and the same for p_execsw */
1177 p->p_execsw = epp->ep_esch;
1178
1179 #ifdef __HAVE_SYSCALL_INTERN
1180 (*p->p_emul->e_syscall_intern)(p);
1181 #endif
1182 ktremul();
1183 }
1184
1185 static int
1186 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1187 bool no_local_exec_lock, bool is_spawn)
1188 {
1189 struct exec_package * const epp = &data->ed_pack;
1190 int error = 0;
1191 struct proc *p;
1192 struct vmspace *vm;
1193
1194 /*
1195 * In case of a posix_spawn operation, the child doing the exec
1196 * might not hold the reader lock on exec_lock, but the parent
1197 * will do this instead.
1198 */
1199 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1200 KASSERT(!no_local_exec_lock || is_spawn);
1201 KASSERT(data != NULL);
1202
1203 p = l->l_proc;
1204
1205 /* Get rid of other LWPs. */
1206 if (p->p_nlwps > 1) {
1207 mutex_enter(p->p_lock);
1208 exit_lwps(l);
1209 mutex_exit(p->p_lock);
1210 }
1211 KDASSERT(p->p_nlwps == 1);
1212
1213 /*
1214 * All of the other LWPs got rid of their robust futexes
1215 * when they exited above, but we might still have some
1216 * to dispose of. Do that now.
1217 */
1218 if (__predict_false(l->l_robust_head != 0)) {
1219 futex_release_all_lwp(l);
1220 /*
1221 * Since this LWP will live on with a different
1222 * program image, we need to clear the robust
1223 * futex list pointer here.
1224 */
1225 l->l_robust_head = 0;
1226 }
1227
1228 /* Destroy any lwpctl info. */
1229 if (p->p_lwpctl != NULL)
1230 lwp_ctl_exit();
1231
1232 /* Remove POSIX timers */
1233 ptimers_free(p, TIMERS_POSIX);
1234
1235 /* Set the PaX flags. */
1236 pax_set_flags(epp, p);
1237
1238 /*
1239 * Do whatever is necessary to prepare the address space
1240 * for remapping. Note that this might replace the current
1241 * vmspace with another!
1242 *
1243 * vfork(): do not touch any user space data in the new child
1244 * until we have awoken the parent below, or it will defeat
1245 * lazy pmap switching (on x86).
1246 */
1247 if (is_spawn)
1248 uvmspace_spawn(l, epp->ep_vm_minaddr,
1249 epp->ep_vm_maxaddr,
1250 epp->ep_flags & EXEC_TOPDOWN_VM);
1251 else
1252 uvmspace_exec(l, epp->ep_vm_minaddr,
1253 epp->ep_vm_maxaddr,
1254 epp->ep_flags & EXEC_TOPDOWN_VM);
1255 vm = p->p_vmspace;
1256
1257 vm->vm_taddr = (void *)epp->ep_taddr;
1258 vm->vm_tsize = btoc(epp->ep_tsize);
1259 vm->vm_daddr = (void*)epp->ep_daddr;
1260 vm->vm_dsize = btoc(epp->ep_dsize);
1261 vm->vm_ssize = btoc(epp->ep_ssize);
1262 vm->vm_issize = 0;
1263 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1264 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1265
1266 pax_aslr_init_vm(l, vm, epp);
1267
1268 cwdexec(p);
1269 fd_closeexec(); /* handle close on exec */
1270
1271 if (__predict_false(ktrace_on))
1272 fd_ktrexecfd();
1273
1274 execsigs(p); /* reset caught signals */
1275
1276 mutex_enter(p->p_lock);
1277 l->l_ctxlink = NULL; /* reset ucontext link */
1278 p->p_acflag &= ~AFORK;
1279 p->p_flag |= PK_EXEC;
1280 mutex_exit(p->p_lock);
1281
1282 error = credexec(l, data);
1283 if (error)
1284 goto exec_abort;
1285
1286 #if defined(__HAVE_RAS)
1287 /*
1288 * Remove all RASs from the address space.
1289 */
1290 ras_purgeall();
1291 #endif
1292
1293 /*
1294 * Stop profiling.
1295 */
1296 if ((p->p_stflag & PST_PROFIL) != 0) {
1297 mutex_spin_enter(&p->p_stmutex);
1298 stopprofclock(p);
1299 mutex_spin_exit(&p->p_stmutex);
1300 }
1301
1302 /*
1303 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1304 * exited and exec()/exit() are the only places it will be cleared.
1305 *
1306 * Once the parent has been awoken, curlwp may teleport to a new CPU
1307 * in sched_vforkexec(), and it's then OK to start messing with user
1308 * data. See comment above.
1309 */
1310 if ((p->p_lflag & PL_PPWAIT) != 0) {
1311 bool samecpu;
1312 lwp_t *lp;
1313
1314 mutex_enter(&proc_lock);
1315 lp = p->p_vforklwp;
1316 p->p_vforklwp = NULL;
1317 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1318
1319 /* Clear flags after cv_broadcast() (scheduler needs them). */
1320 p->p_lflag &= ~PL_PPWAIT;
1321 lp->l_vforkwaiting = false;
1322
1323 /* If parent is still on same CPU, teleport curlwp elsewhere. */
1324 samecpu = (lp->l_cpu == curlwp->l_cpu);
1325 cv_broadcast(&lp->l_waitcv);
1326 mutex_exit(&proc_lock);
1327
1328 /* Give the parent its CPU back - find a new home. */
1329 KASSERT(!is_spawn);
1330 sched_vforkexec(l, samecpu);
1331 }
1332
1333 /* Now map address space. */
1334 error = execve_dovmcmds(l, data);
1335 if (error != 0)
1336 goto exec_abort;
1337
1338 pathexec(p, epp->ep_resolvedname);
1339
1340 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1341
1342 error = copyoutargs(data, l, newstack);
1343 if (error != 0)
1344 goto exec_abort;
1345
1346 doexechooks(p);
1347
1348 /*
1349 * Set initial SP at the top of the stack.
1350 *
1351 * Note that on machines where stack grows up (e.g. hppa), SP points to
1352 * the end of arg/env strings. Userland guesses the address of argc
1353 * via ps_strings::ps_argvstr.
1354 */
1355
1356 /* Setup new registers and do misc. setup. */
1357 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1358 if (epp->ep_esch->es_setregs)
1359 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1360
1361 /* Provide a consistent LWP private setting */
1362 (void)lwp_setprivate(l, NULL);
1363
1364 /* Discard all PCU state; need to start fresh */
1365 pcu_discard_all(l);
1366
1367 /* map the process's signal trampoline code */
1368 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1369 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1370 goto exec_abort;
1371 }
1372
1373 pool_put(&exec_pool, data->ed_argp);
1374
1375 /*
1376 * Notify anyone who might care that we've exec'd.
1377 *
1378 * This is slightly racy; someone could sneak in and
1379 * attach a knote after we've decided not to notify,
1380 * or vice-versa, but that's not particularly bothersome.
1381 * knote_proc_exec() will acquire p->p_lock as needed.
1382 */
1383 if (!SLIST_EMPTY(&p->p_klist)) {
1384 knote_proc_exec(p);
1385 }
1386
1387 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1388
1389 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1390
1391 emulexec(l, epp);
1392
1393 /* Allow new references from the debugger/procfs. */
1394 rw_exit(&p->p_reflock);
1395 if (!no_local_exec_lock)
1396 rw_exit(&exec_lock);
1397
1398 mutex_enter(&proc_lock);
1399
1400 /* posix_spawn(3) reports a single event with implied exec(3) */
1401 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1402 mutex_enter(p->p_lock);
1403 eventswitch(TRAP_EXEC, 0, 0);
1404 mutex_enter(&proc_lock);
1405 }
1406
1407 if (p->p_sflag & PS_STOPEXEC) {
1408 ksiginfoq_t kq;
1409
1410 KASSERT(l->l_blcnt == 0);
1411 p->p_pptr->p_nstopchild++;
1412 p->p_waited = 0;
1413 mutex_enter(p->p_lock);
1414 ksiginfo_queue_init(&kq);
1415 sigclearall(p, &contsigmask, &kq);
1416 lwp_lock(l);
1417 l->l_stat = LSSTOP;
1418 p->p_stat = SSTOP;
1419 p->p_nrlwps--;
1420 lwp_unlock(l);
1421 mutex_exit(p->p_lock);
1422 mutex_exit(&proc_lock);
1423 lwp_lock(l);
1424 spc_lock(l->l_cpu);
1425 mi_switch(l);
1426 ksiginfo_queue_drain(&kq);
1427 } else {
1428 mutex_exit(&proc_lock);
1429 }
1430
1431 exec_path_free(data);
1432 #ifdef TRACE_EXEC
1433 DPRINTF(("%s finished\n", __func__));
1434 #endif
1435 return EJUSTRETURN;
1436
1437 exec_abort:
1438 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1439 rw_exit(&p->p_reflock);
1440 if (!no_local_exec_lock)
1441 rw_exit(&exec_lock);
1442
1443 exec_path_free(data);
1444
1445 /*
1446 * the old process doesn't exist anymore. exit gracefully.
1447 * get rid of the (new) address space we have created, if any, get rid
1448 * of our namei data and vnode, and exit noting failure
1449 */
1450 if (vm != NULL) {
1451 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1452 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1453 }
1454
1455 exec_free_emul_arg(epp);
1456 pool_put(&exec_pool, data->ed_argp);
1457 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1458 if (epp->ep_emul_root != NULL)
1459 vrele(epp->ep_emul_root);
1460 if (epp->ep_interp != NULL)
1461 vrele(epp->ep_interp);
1462
1463 /* Acquire the sched-state mutex (exit1() will release it). */
1464 if (!is_spawn) {
1465 mutex_enter(p->p_lock);
1466 exit1(l, error, SIGABRT);
1467 }
1468
1469 return error;
1470 }
1471
1472 int
1473 execve1(struct lwp *l, bool has_path, const char *path, int fd,
1474 char * const *args, char * const *envs,
1475 execve_fetch_element_t fetch_element)
1476 {
1477 struct execve_data data;
1478 int error;
1479
1480 error = execve_loadvm(l, has_path, path, fd, args, envs, fetch_element,
1481 &data);
1482 if (error)
1483 return error;
1484 error = execve_runproc(l, &data, false, false);
1485 return error;
1486 }
1487
1488 static size_t
1489 fromptrsz(const struct exec_package *epp)
1490 {
1491 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1492 }
1493
1494 static size_t
1495 ptrsz(const struct exec_package *epp)
1496 {
1497 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1498 }
1499
1500 static size_t
1501 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1502 {
1503 struct exec_package * const epp = &data->ed_pack;
1504
1505 const size_t nargenvptrs =
1506 1 + /* long argc */
1507 data->ed_argc + /* char *argv[] */
1508 1 + /* \0 */
1509 data->ed_envc + /* char *env[] */
1510 1; /* \0 */
1511
1512 return (nargenvptrs * ptrsz(epp)) /* pointers */
1513 + argenvstrlen /* strings */
1514 + epp->ep_esch->es_arglen; /* auxinfo */
1515 }
1516
1517 static size_t
1518 calcstack(struct execve_data * restrict data, const size_t gaplen)
1519 {
1520 struct exec_package * const epp = &data->ed_pack;
1521
1522 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1523 epp->ep_esch->es_emul->e_sigcode;
1524
1525 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1526 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1527
1528 const size_t sigcode_psstr_sz =
1529 data->ed_szsigcode + /* sigcode */
1530 data->ed_ps_strings_sz + /* ps_strings */
1531 STACK_PTHREADSPACE; /* pthread space */
1532
1533 const size_t stacklen =
1534 data->ed_argslen +
1535 gaplen +
1536 sigcode_psstr_sz;
1537
1538 /* make the stack "safely" aligned */
1539 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1540 }
1541
1542 static int
1543 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1544 char * const newstack)
1545 {
1546 struct exec_package * const epp = &data->ed_pack;
1547 struct proc *p = l->l_proc;
1548 int error;
1549
1550 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1551
1552 /* remember information about the process */
1553 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1554 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1555
1556 /*
1557 * Allocate the stack address passed to the newly execve()'ed process.
1558 *
1559 * The new stack address will be set to the SP (stack pointer) register
1560 * in setregs().
1561 */
1562
1563 char *newargs = STACK_ALLOC(
1564 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1565
1566 error = (*epp->ep_esch->es_copyargs)(l, epp,
1567 &data->ed_arginfo, &newargs, data->ed_argp);
1568
1569 if (error) {
1570 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1571 return error;
1572 }
1573
1574 error = copyoutpsstrs(data, p);
1575 if (error != 0)
1576 return error;
1577
1578 return 0;
1579 }
1580
1581 static int
1582 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1583 {
1584 struct exec_package * const epp = &data->ed_pack;
1585 struct ps_strings32 arginfo32;
1586 void *aip;
1587 int error;
1588
1589 /* fill process ps_strings info */
1590 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1591 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1592
1593 if (epp->ep_flags & EXEC_32) {
1594 aip = &arginfo32;
1595 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1596 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1597 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1598 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1599 } else
1600 aip = &data->ed_arginfo;
1601
1602 /* copy out the process's ps_strings structure */
1603 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1604 != 0) {
1605 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1606 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1607 return error;
1608 }
1609
1610 return 0;
1611 }
1612
1613 static int
1614 copyinargs(struct execve_data * restrict data, char * const *args,
1615 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1616 {
1617 struct exec_package * const epp = &data->ed_pack;
1618 char *dp;
1619 size_t i;
1620 int error;
1621
1622 dp = *dpp;
1623
1624 data->ed_argc = 0;
1625
1626 /* copy the fake args list, if there's one, freeing it as we go */
1627 if (epp->ep_flags & EXEC_HASARGL) {
1628 struct exec_fakearg *fa = epp->ep_fa;
1629
1630 while (fa->fa_arg != NULL) {
1631 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1632 size_t len;
1633
1634 len = strlcpy(dp, fa->fa_arg, maxlen);
1635 /* Count NUL into len. */
1636 if (len < maxlen)
1637 len++;
1638 else {
1639 while (fa->fa_arg != NULL) {
1640 kmem_free(fa->fa_arg, fa->fa_len);
1641 fa++;
1642 }
1643 kmem_free(epp->ep_fa, epp->ep_fa_len);
1644 epp->ep_flags &= ~EXEC_HASARGL;
1645 return SET_ERROR(E2BIG);
1646 }
1647 ktrexecarg(fa->fa_arg, len - 1);
1648 dp += len;
1649
1650 kmem_free(fa->fa_arg, fa->fa_len);
1651 fa++;
1652 data->ed_argc++;
1653 }
1654 kmem_free(epp->ep_fa, epp->ep_fa_len);
1655 epp->ep_flags &= ~EXEC_HASARGL;
1656 }
1657
1658 /*
1659 * Read and count argument strings from user.
1660 */
1661
1662 if (args == NULL) {
1663 DPRINTF(("%s: null args\n", __func__));
1664 return SET_ERROR(EINVAL);
1665 }
1666 if (epp->ep_flags & EXEC_SKIPARG)
1667 args = (const void *)((const char *)args + fromptrsz(epp));
1668 i = 0;
1669 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1670 if (error != 0) {
1671 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1672 return error;
1673 }
1674 data->ed_argc += i;
1675
1676 /*
1677 * Read and count environment strings from user.
1678 */
1679
1680 data->ed_envc = 0;
1681 /* environment need not be there */
1682 if (envs == NULL)
1683 goto done;
1684 i = 0;
1685 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1686 if (error != 0) {
1687 DPRINTF(("%s: copyin env %d\n", __func__, error));
1688 return error;
1689 }
1690 data->ed_envc += i;
1691
1692 done:
1693 *dpp = dp;
1694
1695 return 0;
1696 }
1697
1698 static int
1699 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1700 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1701 void (*ktr)(const void *, size_t))
1702 {
1703 char *dp, *sp;
1704 size_t i;
1705 int error;
1706
1707 dp = *dpp;
1708
1709 i = 0;
1710 while (1) {
1711 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1712 size_t len;
1713
1714 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1715 return error;
1716 }
1717 if (!sp)
1718 break;
1719 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1720 if (error == ENAMETOOLONG)
1721 error = SET_ERROR(E2BIG);
1722 return error;
1723 }
1724 if (__predict_false(ktrace_on))
1725 (*ktr)(dp, len - 1);
1726 dp += len;
1727 i++;
1728 }
1729
1730 *dpp = dp;
1731 *ip = i;
1732
1733 return 0;
1734 }
1735
1736 /*
1737 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1738 * Those strings are located just after auxinfo.
1739 */
1740 int
1741 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1742 char **stackp, void *argp)
1743 {
1744 char **cpp, *dp, *sp;
1745 size_t len;
1746 void *nullp;
1747 long argc, envc;
1748 int error;
1749
1750 cpp = (char **)*stackp;
1751 nullp = NULL;
1752 argc = arginfo->ps_nargvstr;
1753 envc = arginfo->ps_nenvstr;
1754
1755 /* argc on stack is long */
1756 CTASSERT(sizeof(*cpp) == sizeof(argc));
1757
1758 dp = (char *)(cpp +
1759 1 + /* long argc */
1760 argc + /* char *argv[] */
1761 1 + /* \0 */
1762 envc + /* char *env[] */
1763 1) + /* \0 */
1764 pack->ep_esch->es_arglen; /* auxinfo */
1765 sp = argp;
1766
1767 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1768 COPYPRINTF("", cpp - 1, sizeof(argc));
1769 return error;
1770 }
1771
1772 /* XXX don't copy them out, remap them! */
1773 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1774
1775 for (; --argc >= 0; sp += len, dp += len) {
1776 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1777 COPYPRINTF("", cpp - 1, sizeof(dp));
1778 return error;
1779 }
1780 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1781 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1782 return error;
1783 }
1784 }
1785
1786 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1787 COPYPRINTF("", cpp - 1, sizeof(nullp));
1788 return error;
1789 }
1790
1791 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1792
1793 for (; --envc >= 0; sp += len, dp += len) {
1794 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1795 COPYPRINTF("", cpp - 1, sizeof(dp));
1796 return error;
1797 }
1798 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1799 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1800 return error;
1801 }
1802
1803 }
1804
1805 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1806 COPYPRINTF("", cpp - 1, sizeof(nullp));
1807 return error;
1808 }
1809
1810 *stackp = (char *)cpp;
1811 return 0;
1812 }
1813
1814
1815 /*
1816 * Add execsw[] entries.
1817 */
1818 int
1819 exec_add(struct execsw *esp, int count)
1820 {
1821 struct exec_entry *it;
1822 int i, error = 0;
1823
1824 if (count == 0) {
1825 return 0;
1826 }
1827
1828 /* Check for duplicates. */
1829 rw_enter(&exec_lock, RW_WRITER);
1830 for (i = 0; i < count; i++) {
1831 LIST_FOREACH(it, &ex_head, ex_list) {
1832 /* assume unique (makecmds, probe_func, emulation) */
1833 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1834 it->ex_sw->u.elf_probe_func ==
1835 esp[i].u.elf_probe_func &&
1836 it->ex_sw->es_emul == esp[i].es_emul) {
1837 rw_exit(&exec_lock);
1838 return SET_ERROR(EEXIST);
1839 }
1840 }
1841 }
1842
1843 /* Allocate new entries. */
1844 for (i = 0; i < count; i++) {
1845 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1846 it->ex_sw = &esp[i];
1847 error = exec_sigcode_alloc(it->ex_sw->es_emul);
1848 if (error != 0) {
1849 kmem_free(it, sizeof(*it));
1850 break;
1851 }
1852 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1853 }
1854 /* If even one fails, remove them all back. */
1855 if (error != 0) {
1856 for (i--; i >= 0; i--) {
1857 it = LIST_FIRST(&ex_head);
1858 LIST_REMOVE(it, ex_list);
1859 exec_sigcode_free(it->ex_sw->es_emul);
1860 kmem_free(it, sizeof(*it));
1861 }
1862 rw_exit(&exec_lock);
1863 return error;
1864 }
1865
1866 /* update execsw[] */
1867 exec_init(0);
1868 rw_exit(&exec_lock);
1869 return 0;
1870 }
1871
1872 /*
1873 * Remove execsw[] entry.
1874 */
1875 int
1876 exec_remove(struct execsw *esp, int count)
1877 {
1878 struct exec_entry *it, *next;
1879 int i;
1880 const struct proclist_desc *pd;
1881 proc_t *p;
1882
1883 if (count == 0) {
1884 return 0;
1885 }
1886
1887 /* Abort if any are busy. */
1888 rw_enter(&exec_lock, RW_WRITER);
1889 for (i = 0; i < count; i++) {
1890 mutex_enter(&proc_lock);
1891 for (pd = proclists; pd->pd_list != NULL; pd++) {
1892 PROCLIST_FOREACH(p, pd->pd_list) {
1893 if (p->p_execsw == &esp[i]) {
1894 mutex_exit(&proc_lock);
1895 rw_exit(&exec_lock);
1896 return SET_ERROR(EBUSY);
1897 }
1898 }
1899 }
1900 mutex_exit(&proc_lock);
1901 }
1902
1903 /* None are busy, so remove them all. */
1904 for (i = 0; i < count; i++) {
1905 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1906 next = LIST_NEXT(it, ex_list);
1907 if (it->ex_sw == &esp[i]) {
1908 LIST_REMOVE(it, ex_list);
1909 exec_sigcode_free(it->ex_sw->es_emul);
1910 kmem_free(it, sizeof(*it));
1911 break;
1912 }
1913 }
1914 }
1915
1916 /* update execsw[] */
1917 exec_init(0);
1918 rw_exit(&exec_lock);
1919 return 0;
1920 }
1921
1922 /*
1923 * Initialize exec structures. If init_boot is true, also does necessary
1924 * one-time initialization (it's called from main() that way).
1925 * Once system is multiuser, this should be called with exec_lock held,
1926 * i.e. via exec_{add|remove}().
1927 */
1928 int
1929 exec_init(int init_boot)
1930 {
1931 const struct execsw **sw;
1932 struct exec_entry *ex;
1933 SLIST_HEAD(,exec_entry) first;
1934 SLIST_HEAD(,exec_entry) any;
1935 SLIST_HEAD(,exec_entry) last;
1936 int i, sz;
1937
1938 if (init_boot) {
1939 /* do one-time initializations */
1940 vaddr_t vmin = 0, vmax;
1941
1942 rw_init(&exec_lock);
1943 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1944 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1945 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1946 "execargs", &exec_palloc, IPL_NONE);
1947 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1948 } else {
1949 KASSERT(rw_write_held(&exec_lock));
1950 }
1951
1952 /* Sort each entry onto the appropriate queue. */
1953 SLIST_INIT(&first);
1954 SLIST_INIT(&any);
1955 SLIST_INIT(&last);
1956 sz = 0;
1957 LIST_FOREACH(ex, &ex_head, ex_list) {
1958 switch(ex->ex_sw->es_prio) {
1959 case EXECSW_PRIO_FIRST:
1960 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1961 break;
1962 case EXECSW_PRIO_ANY:
1963 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1964 break;
1965 case EXECSW_PRIO_LAST:
1966 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1967 break;
1968 default:
1969 panic("%s", __func__);
1970 break;
1971 }
1972 sz++;
1973 }
1974
1975 /*
1976 * Create new execsw[]. Ensure we do not try a zero-sized
1977 * allocation.
1978 */
1979 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1980 i = 0;
1981 SLIST_FOREACH(ex, &first, ex_slist) {
1982 sw[i++] = ex->ex_sw;
1983 }
1984 SLIST_FOREACH(ex, &any, ex_slist) {
1985 sw[i++] = ex->ex_sw;
1986 }
1987 SLIST_FOREACH(ex, &last, ex_slist) {
1988 sw[i++] = ex->ex_sw;
1989 }
1990
1991 /* Replace old execsw[] and free used memory. */
1992 if (execsw != NULL) {
1993 kmem_free(__UNCONST(execsw),
1994 nexecs * sizeof(struct execsw *) + 1);
1995 }
1996 execsw = sw;
1997 nexecs = sz;
1998
1999 /* Figure out the maximum size of an exec header. */
2000 exec_maxhdrsz = sizeof(int);
2001 for (i = 0; i < nexecs; i++) {
2002 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
2003 exec_maxhdrsz = execsw[i]->es_hdrsz;
2004 }
2005
2006 return 0;
2007 }
2008
2009 int
2010 exec_sigcode_alloc(const struct emul *e)
2011 {
2012 vaddr_t va;
2013 vsize_t sz;
2014 int error;
2015 struct uvm_object *uobj;
2016
2017 KASSERT(rw_lock_held(&exec_lock));
2018
2019 if (e == NULL || e->e_sigobject == NULL)
2020 return 0;
2021
2022 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2023 if (sz == 0)
2024 return 0;
2025
2026 /*
2027 * Create a sigobject for this emulation.
2028 *
2029 * sigobject is an anonymous memory object (just like SYSV shared
2030 * memory) that we keep a permanent reference to and that we map
2031 * in all processes that need this sigcode. The creation is simple,
2032 * we create an object, add a permanent reference to it, map it in
2033 * kernel space, copy out the sigcode to it and unmap it.
2034 * We map it with PROT_READ|PROT_EXEC into the process just
2035 * the way sys_mmap() would map it.
2036 */
2037 if (*e->e_sigobject == NULL) {
2038 uobj = uao_create(sz, 0);
2039 (*uobj->pgops->pgo_reference)(uobj);
2040 va = vm_map_min(kernel_map);
2041 if ((error = uvm_map(kernel_map, &va, round_page(sz),
2042 uobj, 0, 0,
2043 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2044 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
2045 printf("sigcode kernel mapping failed %d\n", error);
2046 (*uobj->pgops->pgo_detach)(uobj);
2047 return error;
2048 }
2049 memcpy((void *)va, e->e_sigcode, sz);
2050 #ifdef PMAP_NEED_PROCWR
2051 pmap_procwr(&proc0, va, sz);
2052 #endif
2053 uvm_unmap(kernel_map, va, va + round_page(sz));
2054 *e->e_sigobject = uobj;
2055 KASSERT(uobj->uo_refs == 1);
2056 } else {
2057 /* if already created, reference++ */
2058 uobj = *e->e_sigobject;
2059 (*uobj->pgops->pgo_reference)(uobj);
2060 }
2061
2062 return 0;
2063 }
2064
2065 void
2066 exec_sigcode_free(const struct emul *e)
2067 {
2068 struct uvm_object *uobj;
2069
2070 KASSERT(rw_lock_held(&exec_lock));
2071
2072 if (e == NULL || e->e_sigobject == NULL)
2073 return;
2074
2075 uobj = *e->e_sigobject;
2076 if (uobj == NULL)
2077 return;
2078
2079 if (uobj->uo_refs == 1)
2080 *e->e_sigobject = NULL; /* I'm the last person to reference. */
2081 (*uobj->pgops->pgo_detach)(uobj);
2082 }
2083
2084 static int
2085 exec_sigcode_map(struct proc *p, const struct emul *e)
2086 {
2087 vaddr_t va;
2088 vsize_t sz;
2089 int error;
2090 struct uvm_object *uobj;
2091
2092 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
2093 if (e->e_sigobject == NULL || sz == 0)
2094 return 0;
2095
2096 uobj = *e->e_sigobject;
2097 if (uobj == NULL)
2098 return 0;
2099
2100 /* Just a hint to uvm_map where to put it. */
2101 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
2102 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
2103
2104 #ifdef __alpha__
2105 /*
2106 * Tru64 puts /sbin/loader at the end of user virtual memory,
2107 * which causes the above calculation to put the sigcode at
2108 * an invalid address. Put it just below the text instead.
2109 */
2110 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
2111 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
2112 }
2113 #endif
2114
2115 (*uobj->pgops->pgo_reference)(uobj);
2116 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
2117 uobj, 0, 0,
2118 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
2119 UVM_ADV_RANDOM, 0));
2120 if (error) {
2121 DPRINTF(("%s, %d: map %p "
2122 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2123 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2124 va, error));
2125 (*uobj->pgops->pgo_detach)(uobj);
2126 return error;
2127 }
2128 p->p_sigctx.ps_sigcode = (void *)va;
2129 return 0;
2130 }
2131
2132 /*
2133 * Release a refcount on spawn_exec_data and destroy memory, if this
2134 * was the last one.
2135 */
2136 static void
2137 spawn_exec_data_release(struct spawn_exec_data *data)
2138 {
2139
2140 membar_release();
2141 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2142 return;
2143 membar_acquire();
2144
2145 cv_destroy(&data->sed_cv_child_ready);
2146 mutex_destroy(&data->sed_mtx_child);
2147
2148 if (data->sed_actions)
2149 posix_spawn_fa_free(data->sed_actions,
2150 data->sed_actions->len);
2151 if (data->sed_attrs)
2152 kmem_free(data->sed_attrs,
2153 sizeof(*data->sed_attrs));
2154 kmem_free(data, sizeof(*data));
2155 }
2156
2157 static int
2158 handle_posix_spawn_file_actions(struct posix_spawn_file_actions *actions)
2159 {
2160 struct lwp *l = curlwp;
2161 register_t retval;
2162 int error, newfd;
2163
2164 if (actions == NULL)
2165 return 0;
2166
2167 for (size_t i = 0; i < actions->len; i++) {
2168 const struct posix_spawn_file_actions_entry *fae =
2169 &actions->fae[i];
2170 switch (fae->fae_action) {
2171 case FAE_OPEN:
2172 if (fd_getfile(fae->fae_fildes) != NULL) {
2173 error = fd_close(fae->fae_fildes);
2174 if (error)
2175 return error;
2176 }
2177 error = fd_open(fae->fae_path, fae->fae_oflag,
2178 fae->fae_mode, &newfd);
2179 if (error)
2180 return error;
2181 if (newfd != fae->fae_fildes) {
2182 error = dodup(l, newfd,
2183 fae->fae_fildes, 0, &retval);
2184 if (fd_getfile(newfd) != NULL)
2185 fd_close(newfd);
2186 }
2187 break;
2188 case FAE_DUP2:
2189 error = dodup(l, fae->fae_fildes,
2190 fae->fae_newfildes, 0, &retval);
2191 break;
2192 case FAE_CLOSE:
2193 if (fd_getfile(fae->fae_fildes) == NULL) {
2194 return SET_ERROR(EBADF);
2195 }
2196 error = fd_close(fae->fae_fildes);
2197 break;
2198 case FAE_CHDIR:
2199 error = do_sys_chdir(l, fae->fae_chdir_path,
2200 UIO_SYSSPACE, &retval);
2201 break;
2202 case FAE_FCHDIR:
2203 error = do_sys_fchdir(l, fae->fae_fildes, &retval);
2204 break;
2205 }
2206 if (error)
2207 return error;
2208 }
2209 return 0;
2210 }
2211
2212 static int
2213 handle_posix_spawn_attrs(struct posix_spawnattr *attrs, struct proc *parent)
2214 {
2215 struct sigaction sigact;
2216 int error;
2217 struct proc *p = curproc;
2218 struct lwp *l = curlwp;
2219
2220 if (attrs == NULL)
2221 return 0;
2222
2223 memset(&sigact, 0, sizeof(sigact));
2224 sigact._sa_u._sa_handler = SIG_DFL;
2225 sigact.sa_flags = 0;
2226
2227 /*
2228 * set state to SSTOP so that this proc can be found by pid.
2229 * see proc_enterprp, do_sched_setparam below
2230 */
2231 mutex_enter(&proc_lock);
2232 /*
2233 * p_stat should be SACTIVE, so we need to adjust the
2234 * parent's p_nstopchild here. For safety, just make
2235 * we're on the good side of SDEAD before we adjust.
2236 */
2237 int ostat = p->p_stat;
2238 KASSERT(ostat < SSTOP);
2239 p->p_stat = SSTOP;
2240 p->p_waited = 0;
2241 p->p_pptr->p_nstopchild++;
2242 mutex_exit(&proc_lock);
2243
2244 /* Set process group */
2245 if (attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2246 pid_t mypid = p->p_pid;
2247 pid_t pgrp = attrs->sa_pgroup;
2248
2249 if (pgrp == 0)
2250 pgrp = mypid;
2251
2252 error = proc_enterpgrp(parent, mypid, pgrp, false);
2253 if (error)
2254 goto out;
2255 }
2256
2257 /* Set scheduler policy */
2258 if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2259 error = do_sched_setparam(p->p_pid, 0, attrs->sa_schedpolicy,
2260 &attrs->sa_schedparam);
2261 else if (attrs->sa_flags & POSIX_SPAWN_SETSCHEDPARAM) {
2262 error = do_sched_setparam(parent->p_pid, 0,
2263 SCHED_NONE, &attrs->sa_schedparam);
2264 }
2265 if (error)
2266 goto out;
2267
2268 /* Reset user ID's */
2269 if (attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2270 error = do_setresgid(l, -1, kauth_cred_getgid(l->l_cred), -1,
2271 ID_E_EQ_R | ID_E_EQ_S);
2272 if (error)
2273 return error;
2274 error = do_setresuid(l, -1, kauth_cred_getuid(l->l_cred), -1,
2275 ID_E_EQ_R | ID_E_EQ_S);
2276 if (error)
2277 goto out;
2278 }
2279
2280 /* Set signal masks/defaults */
2281 if (attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2282 mutex_enter(p->p_lock);
2283 error = sigprocmask1(l, SIG_SETMASK, &attrs->sa_sigmask, NULL);
2284 mutex_exit(p->p_lock);
2285 if (error)
2286 goto out;
2287 }
2288
2289 if (attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2290 /*
2291 * The following sigaction call is using a sigaction
2292 * version 0 trampoline which is in the compatibility
2293 * code only. This is not a problem because for SIG_DFL
2294 * and SIG_IGN, the trampolines are now ignored. If they
2295 * were not, this would be a problem because we are
2296 * holding the exec_lock, and the compat code needs
2297 * to do the same in order to replace the trampoline
2298 * code of the process.
2299 */
2300 for (int i = 1; i <= NSIG; i++) {
2301 if (sigismember(&attrs->sa_sigdefault, i))
2302 sigaction1(l, i, &sigact, NULL, NULL, 0);
2303 }
2304 }
2305 error = 0;
2306 out:
2307 mutex_enter(&proc_lock);
2308 p->p_stat = ostat;
2309 p->p_pptr->p_nstopchild--;
2310 mutex_exit(&proc_lock);
2311 return error;
2312 }
2313
2314 /*
2315 * A child lwp of a posix_spawn operation starts here and ends up in
2316 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2317 * manipulations in between.
2318 * The parent waits for the child, as it is not clear whether the child
2319 * will be able to acquire its own exec_lock. If it can, the parent can
2320 * be released early and continue running in parallel. If not (or if the
2321 * magic debug flag is passed in the scheduler attribute struct), the
2322 * child rides on the parent's exec lock until it is ready to return to
2323 * to userland - and only then releases the parent. This method loses
2324 * concurrency, but improves error reporting.
2325 */
2326 static void
2327 spawn_return(void *arg)
2328 {
2329 struct spawn_exec_data *spawn_data = arg;
2330 struct lwp *l = curlwp;
2331 struct proc *p = l->l_proc;
2332 int error;
2333 bool have_reflock;
2334 bool parent_is_waiting = true;
2335
2336 /*
2337 * Check if we can release parent early.
2338 * We either need to have no sed_attrs, or sed_attrs does not
2339 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2340 * safe access to the parent proc (passed in sed_parent).
2341 * We then try to get the exec_lock, and only if that works, we can
2342 * release the parent here already.
2343 */
2344 struct posix_spawnattr *attrs = spawn_data->sed_attrs;
2345 if ((!attrs || (attrs->sa_flags
2346 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2347 && rw_tryenter(&exec_lock, RW_READER)) {
2348 parent_is_waiting = false;
2349 mutex_enter(&spawn_data->sed_mtx_child);
2350 cv_signal(&spawn_data->sed_cv_child_ready);
2351 mutex_exit(&spawn_data->sed_mtx_child);
2352 }
2353
2354 /* don't allow debugger access yet */
2355 rw_enter(&p->p_reflock, RW_WRITER);
2356 have_reflock = true;
2357
2358 /* handle posix_spawnattr */
2359 error = handle_posix_spawn_attrs(attrs, spawn_data->sed_parent);
2360 if (error)
2361 goto report_error;
2362
2363 /* handle posix_spawn_file_actions */
2364 error = handle_posix_spawn_file_actions(spawn_data->sed_actions);
2365 if (error)
2366 goto report_error;
2367
2368 /* now do the real exec */
2369 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2370 true);
2371 have_reflock = false;
2372 if (error == EJUSTRETURN)
2373 error = 0;
2374 else if (error)
2375 goto report_error;
2376
2377 if (parent_is_waiting) {
2378 mutex_enter(&spawn_data->sed_mtx_child);
2379 cv_signal(&spawn_data->sed_cv_child_ready);
2380 mutex_exit(&spawn_data->sed_mtx_child);
2381 }
2382
2383 /* release our refcount on the data */
2384 spawn_exec_data_release(spawn_data);
2385
2386 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
2387 (PSL_TRACED|PSL_TRACEDCHILD)) {
2388 eventswitchchild(p, TRAP_CHLD, PTRACE_POSIX_SPAWN);
2389 }
2390
2391 /* and finally: leave to userland for the first time */
2392 cpu_spawn_return(l);
2393
2394 /* NOTREACHED */
2395 return;
2396
2397 report_error:
2398 if (have_reflock) {
2399 /*
2400 * We have not passed through execve_runproc(),
2401 * which would have released the p_reflock and also
2402 * taken ownership of the sed_exec part of spawn_data,
2403 * so release/free both here.
2404 */
2405 rw_exit(&p->p_reflock);
2406 execve_free_data(&spawn_data->sed_exec);
2407 }
2408
2409 if (parent_is_waiting) {
2410 /* pass error to parent */
2411 mutex_enter(&spawn_data->sed_mtx_child);
2412 spawn_data->sed_error = error;
2413 cv_signal(&spawn_data->sed_cv_child_ready);
2414 mutex_exit(&spawn_data->sed_mtx_child);
2415 } else {
2416 rw_exit(&exec_lock);
2417 }
2418
2419 /* release our refcount on the data */
2420 spawn_exec_data_release(spawn_data);
2421
2422 /* done, exit */
2423 mutex_enter(p->p_lock);
2424 /*
2425 * Posix explicitly asks for an exit code of 127 if we report
2426 * errors from the child process - so, unfortunately, there
2427 * is no way to report a more exact error code.
2428 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2429 * flag bit in the attrp argument to posix_spawn(2), see above.
2430 */
2431 exit1(l, 127, 0);
2432 }
2433
2434 static __inline char **
2435 posix_spawn_fae_path(struct posix_spawn_file_actions_entry *fae)
2436 {
2437 switch (fae->fae_action) {
2438 case FAE_OPEN:
2439 return &fae->fae_path;
2440 case FAE_CHDIR:
2441 return &fae->fae_chdir_path;
2442 default:
2443 return NULL;
2444 }
2445 }
2446
2447 void
2448 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2449 {
2450
2451 for (size_t i = 0; i < len; i++) {
2452 char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2453 if (pathp)
2454 kmem_strfree(*pathp);
2455 }
2456 if (fa->len > 0)
2457 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2458 kmem_free(fa, sizeof(*fa));
2459 }
2460
2461 static int
2462 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2463 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2464 {
2465 struct posix_spawn_file_actions *fa;
2466 struct posix_spawn_file_actions_entry *fae;
2467 char *pbuf = NULL;
2468 int error;
2469 size_t i = 0;
2470
2471 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2472 error = copyin(ufa, fa, sizeof(*fa));
2473 if (error || fa->len == 0) {
2474 kmem_free(fa, sizeof(*fa));
2475 return error; /* 0 if not an error, and len == 0 */
2476 }
2477
2478 if (fa->len > lim) {
2479 kmem_free(fa, sizeof(*fa));
2480 return SET_ERROR(EINVAL);
2481 }
2482
2483 fa->size = fa->len;
2484 size_t fal = fa->len * sizeof(*fae);
2485 fae = fa->fae;
2486 fa->fae = kmem_alloc(fal, KM_SLEEP);
2487 error = copyin(fae, fa->fae, fal);
2488 if (error)
2489 goto out;
2490
2491 pbuf = PNBUF_GET();
2492 for (; i < fa->len; i++) {
2493 char **pathp = posix_spawn_fae_path(&fa->fae[i]);
2494 if (pathp == NULL)
2495 continue;
2496 error = copyinstr(*pathp, pbuf, MAXPATHLEN, &fal);
2497 if (error)
2498 goto out;
2499 *pathp = kmem_alloc(fal, KM_SLEEP);
2500 memcpy(*pathp, pbuf, fal);
2501 }
2502 PNBUF_PUT(pbuf);
2503
2504 *fap = fa;
2505 return 0;
2506 out:
2507 if (pbuf)
2508 PNBUF_PUT(pbuf);
2509 posix_spawn_fa_free(fa, i);
2510 return error;
2511 }
2512
2513 /*
2514 * N.B. increments nprocs upon success. Callers need to drop nprocs if
2515 * they fail for some other reason.
2516 */
2517 int
2518 check_posix_spawn(struct lwp *l1)
2519 {
2520 int error, tnprocs, count;
2521 uid_t uid;
2522 struct proc *p1;
2523
2524 p1 = l1->l_proc;
2525 uid = kauth_cred_getuid(l1->l_cred);
2526 tnprocs = atomic_inc_uint_nv(&nprocs);
2527
2528 /*
2529 * Although process entries are dynamically created, we still keep
2530 * a global limit on the maximum number we will create.
2531 */
2532 if (__predict_false(tnprocs >= maxproc))
2533 error = -1;
2534 else
2535 error = kauth_authorize_process(l1->l_cred,
2536 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2537
2538 if (error) {
2539 atomic_dec_uint(&nprocs);
2540 return SET_ERROR(EAGAIN);
2541 }
2542
2543 /*
2544 * Enforce limits.
2545 */
2546 count = chgproccnt(uid, 1);
2547 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2548 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2549 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2550 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2551 (void)chgproccnt(uid, -1);
2552 atomic_dec_uint(&nprocs);
2553 return SET_ERROR(EAGAIN);
2554 }
2555
2556 return 0;
2557 }
2558
2559 int
2560 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2561 struct posix_spawn_file_actions *fa,
2562 struct posix_spawnattr *sa,
2563 char *const *argv, char *const *envp,
2564 execve_fetch_element_t fetch)
2565 {
2566
2567 struct proc *p1, *p2;
2568 struct lwp *l2;
2569 int error;
2570 struct spawn_exec_data *spawn_data;
2571 vaddr_t uaddr = 0;
2572 pid_t pid;
2573 bool have_exec_lock = false;
2574
2575 p1 = l1->l_proc;
2576
2577 /* Allocate and init spawn_data */
2578 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2579 spawn_data->sed_refcnt = 1; /* only parent so far */
2580 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2581 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2582 mutex_enter(&spawn_data->sed_mtx_child);
2583
2584 /*
2585 * Do the first part of the exec now, collect state
2586 * in spawn_data.
2587 */
2588 error = execve_loadvm(l1, true, path, -1, argv,
2589 envp, fetch, &spawn_data->sed_exec);
2590 if (error == EJUSTRETURN)
2591 error = 0;
2592 else if (error)
2593 goto error_exit;
2594
2595 have_exec_lock = true;
2596
2597 /*
2598 * Allocate virtual address space for the U-area now, while it
2599 * is still easy to abort the fork operation if we're out of
2600 * kernel virtual address space.
2601 */
2602 uaddr = uvm_uarea_alloc();
2603 if (__predict_false(uaddr == 0)) {
2604 error = SET_ERROR(ENOMEM);
2605 goto error_exit;
2606 }
2607
2608 /*
2609 * Allocate new proc. Borrow proc0 vmspace for it, we will
2610 * replace it with its own before returning to userland
2611 * in the child.
2612 */
2613 p2 = proc_alloc();
2614 if (p2 == NULL) {
2615 /* We were unable to allocate a process ID. */
2616 error = SET_ERROR(EAGAIN);
2617 goto error_exit;
2618 }
2619
2620 /*
2621 * This is a point of no return, we will have to go through
2622 * the child proc to properly clean it up past this point.
2623 */
2624 pid = p2->p_pid;
2625
2626 /*
2627 * Make a proc table entry for the new process.
2628 * Start by zeroing the section of proc that is zero-initialized,
2629 * then copy the section that is copied directly from the parent.
2630 */
2631 memset(&p2->p_startzero, 0,
2632 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2633 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2634 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2635 p2->p_vmspace = proc0.p_vmspace;
2636
2637 TAILQ_INIT(&p2->p_sigpend.sp_info);
2638
2639 LIST_INIT(&p2->p_lwps);
2640 LIST_INIT(&p2->p_sigwaiters);
2641
2642 /*
2643 * Duplicate sub-structures as needed.
2644 * Increase reference counts on shared objects.
2645 * Inherit flags we want to keep. The flags related to SIGCHLD
2646 * handling are important in order to keep a consistent behaviour
2647 * for the child after the fork. If we are a 32-bit process, the
2648 * child will be too.
2649 */
2650 p2->p_flag =
2651 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2652 p2->p_emul = p1->p_emul;
2653 p2->p_execsw = p1->p_execsw;
2654
2655 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2656 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2657 rw_init(&p2->p_reflock);
2658 cv_init(&p2->p_waitcv, "wait");
2659 cv_init(&p2->p_lwpcv, "lwpwait");
2660
2661 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2662
2663 kauth_proc_fork(p1, p2);
2664
2665 p2->p_raslist = NULL;
2666 p2->p_fd = fd_copy();
2667
2668 /* XXX racy */
2669 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2670
2671 p2->p_cwdi = cwdinit();
2672
2673 /*
2674 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2675 * we just need increase pl_refcnt.
2676 */
2677 if (!p1->p_limit->pl_writeable) {
2678 lim_addref(p1->p_limit);
2679 p2->p_limit = p1->p_limit;
2680 } else {
2681 p2->p_limit = lim_copy(p1->p_limit);
2682 }
2683
2684 p2->p_lflag = 0;
2685 l1->l_vforkwaiting = false;
2686 p2->p_sflag = 0;
2687 p2->p_slflag = 0;
2688 p2->p_pptr = p1;
2689 p2->p_ppid = p1->p_pid;
2690 LIST_INIT(&p2->p_children);
2691
2692 p2->p_aio = NULL;
2693
2694 #ifdef KTRACE
2695 /*
2696 * Copy traceflag and tracefile if enabled.
2697 * If not inherited, these were zeroed above.
2698 */
2699 if (p1->p_traceflag & KTRFAC_INHERIT) {
2700 mutex_enter(&ktrace_lock);
2701 p2->p_traceflag = p1->p_traceflag;
2702 if ((p2->p_tracep = p1->p_tracep) != NULL)
2703 ktradref(p2);
2704 mutex_exit(&ktrace_lock);
2705 }
2706 #endif
2707
2708 /*
2709 * Create signal actions for the child process.
2710 */
2711 p2->p_sigacts = sigactsinit(p1, 0);
2712 mutex_enter(p1->p_lock);
2713 p2->p_sflag |=
2714 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2715 sched_proc_fork(p1, p2);
2716 mutex_exit(p1->p_lock);
2717
2718 p2->p_stflag = p1->p_stflag;
2719
2720 /*
2721 * p_stats.
2722 * Copy parts of p_stats, and zero out the rest.
2723 */
2724 p2->p_stats = pstatscopy(p1->p_stats);
2725
2726 /* copy over machdep flags to the new proc */
2727 cpu_proc_fork(p1, p2);
2728
2729 /*
2730 * Prepare remaining parts of spawn data
2731 */
2732 spawn_data->sed_actions = fa;
2733 spawn_data->sed_attrs = sa;
2734
2735 spawn_data->sed_parent = p1;
2736
2737 /* create LWP */
2738 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2739 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2740 l2->l_ctxlink = NULL; /* reset ucontext link */
2741
2742 /*
2743 * Copy the credential so other references don't see our changes.
2744 * Test to see if this is necessary first, since in the common case
2745 * we won't need a private reference.
2746 */
2747 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2748 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2749 l2->l_cred = kauth_cred_copy(l2->l_cred);
2750 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2751 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2752 }
2753
2754 /* Update the master credentials. */
2755 if (l2->l_cred != p2->p_cred) {
2756 kauth_cred_t ocred;
2757 mutex_enter(p2->p_lock);
2758 ocred = p2->p_cred;
2759 p2->p_cred = kauth_cred_hold(l2->l_cred);
2760 mutex_exit(p2->p_lock);
2761 kauth_cred_free(ocred);
2762 }
2763
2764 *child_ok = true;
2765 spawn_data->sed_refcnt = 2; /* child gets it as well */
2766 #if 0
2767 l2->l_nopreempt = 1; /* start it non-preemptable */
2768 #endif
2769
2770 /*
2771 * It's now safe for the scheduler and other processes to see the
2772 * child process.
2773 */
2774 mutex_enter(&proc_lock);
2775
2776 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2777 p2->p_lflag |= PL_CONTROLT;
2778
2779 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2780 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2781
2782 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2783 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2784 proc_changeparent(p2, p1->p_pptr);
2785 SET(p2->p_slflag, PSL_TRACEDCHILD);
2786 }
2787
2788 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
2789
2790 LIST_INSERT_AFTER(p1, p2, p_pglist);
2791 LIST_INSERT_HEAD(&allproc, p2, p_list);
2792
2793 p2->p_trace_enabled = trace_is_enabled(p2);
2794 #ifdef __HAVE_SYSCALL_INTERN
2795 (*p2->p_emul->e_syscall_intern)(p2);
2796 #endif
2797
2798 /*
2799 * Make child runnable, set start time, and add to run queue except
2800 * if the parent requested the child to start in SSTOP state.
2801 */
2802 mutex_enter(p2->p_lock);
2803
2804 getmicrotime(&p2->p_stats->p_start);
2805
2806 lwp_lock(l2);
2807 KASSERT(p2->p_nrlwps == 1);
2808 KASSERT(l2->l_stat == LSIDL);
2809 p2->p_nrlwps = 1;
2810 p2->p_stat = SACTIVE;
2811 setrunnable(l2);
2812 /* LWP now unlocked */
2813
2814 mutex_exit(p2->p_lock);
2815 mutex_exit(&proc_lock);
2816
2817 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2818 error = spawn_data->sed_error;
2819 mutex_exit(&spawn_data->sed_mtx_child);
2820 spawn_exec_data_release(spawn_data);
2821
2822 rw_exit(&p1->p_reflock);
2823 rw_exit(&exec_lock);
2824 have_exec_lock = false;
2825
2826 *pid_res = pid;
2827
2828 if (error)
2829 return error;
2830
2831 if (p1->p_slflag & PSL_TRACED) {
2832 /* Paranoid check */
2833 mutex_enter(&proc_lock);
2834 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2835 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2836 mutex_exit(&proc_lock);
2837 return 0;
2838 }
2839
2840 mutex_enter(p1->p_lock);
2841 eventswitch(TRAP_CHLD, PTRACE_POSIX_SPAWN, pid);
2842 }
2843 return 0;
2844
2845 error_exit:
2846 if (have_exec_lock) {
2847 execve_free_data(&spawn_data->sed_exec);
2848 rw_exit(&p1->p_reflock);
2849 rw_exit(&exec_lock);
2850 }
2851 mutex_exit(&spawn_data->sed_mtx_child);
2852 spawn_exec_data_release(spawn_data);
2853 if (uaddr != 0)
2854 uvm_uarea_free(uaddr);
2855
2856 return error;
2857 }
2858
2859 int
2860 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2861 register_t *retval)
2862 {
2863 /* {
2864 syscallarg(pid_t *) pid;
2865 syscallarg(const char *) path;
2866 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2867 syscallarg(const struct posix_spawnattr *) attrp;
2868 syscallarg(char *const *) argv;
2869 syscallarg(char *const *) envp;
2870 } */
2871
2872 int error;
2873 struct posix_spawn_file_actions *fa = NULL;
2874 struct posix_spawnattr *sa = NULL;
2875 pid_t pid;
2876 bool child_ok = false;
2877 rlim_t max_fileactions;
2878 proc_t *p = l1->l_proc;
2879
2880 /* check_posix_spawn() increments nprocs for us. */
2881 error = check_posix_spawn(l1);
2882 if (error) {
2883 *retval = error;
2884 return 0;
2885 }
2886
2887 /* copy in file_actions struct */
2888 if (SCARG(uap, file_actions) != NULL) {
2889 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2890 maxfiles);
2891 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2892 max_fileactions);
2893 if (error)
2894 goto error_exit;
2895 }
2896
2897 /* copyin posix_spawnattr struct */
2898 if (SCARG(uap, attrp) != NULL) {
2899 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2900 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2901 if (error)
2902 goto error_exit;
2903 }
2904
2905 /*
2906 * Do the spawn
2907 */
2908 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2909 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2910 if (error)
2911 goto error_exit;
2912
2913 if (error == 0 && SCARG(uap, pid) != NULL)
2914 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2915
2916 *retval = error;
2917 return 0;
2918
2919 error_exit:
2920 if (!child_ok) {
2921 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2922 atomic_dec_uint(&nprocs);
2923
2924 if (sa)
2925 kmem_free(sa, sizeof(*sa));
2926 if (fa)
2927 posix_spawn_fa_free(fa, fa->len);
2928 }
2929
2930 *retval = error;
2931 return 0;
2932 }
2933
2934 void
2935 exec_free_emul_arg(struct exec_package *epp)
2936 {
2937 if (epp->ep_emul_arg_free != NULL) {
2938 KASSERT(epp->ep_emul_arg != NULL);
2939 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2940 epp->ep_emul_arg_free = NULL;
2941 epp->ep_emul_arg = NULL;
2942 } else {
2943 KASSERT(epp->ep_emul_arg == NULL);
2944 }
2945 }
2946
2947 #ifdef DEBUG_EXEC
2948 static void
2949 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2950 {
2951 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2952 size_t j;
2953
2954 if (error == 0)
2955 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2956 else
2957 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2958 epp->ep_vmcmds.evs_used, error));
2959
2960 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2961 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2962 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2963 PRIxVSIZE" prot=0%o flags=%d\n", j,
2964 vp[j].ev_proc == vmcmd_map_pagedvn ?
2965 "pagedvn" :
2966 vp[j].ev_proc == vmcmd_map_readvn ?
2967 "readvn" :
2968 vp[j].ev_proc == vmcmd_map_zero ?
2969 "zero" : "*unknown*",
2970 vp[j].ev_addr, vp[j].ev_len,
2971 vp[j].ev_offset, vp[j].ev_prot,
2972 vp[j].ev_flags));
2973 if (error != 0 && j == x)
2974 DPRINTF((" ^--- failed\n"));
2975 }
2976 }
2977 #endif
2978