1 1.232 kre /* $NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $ */ 2 1.85 thorpej 3 1.85 thorpej /*- 4 1.216 ad * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019 5 1.216 ad * The NetBSD Foundation, Inc. 6 1.85 thorpej * All rights reserved. 7 1.85 thorpej * 8 1.85 thorpej * This code is derived from software contributed to The NetBSD Foundation 9 1.85 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 1.151 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. 11 1.120 perry * 12 1.120 perry * Redistribution and use in source and binary forms, with or without 13 1.85 thorpej * modification, are permitted provided that the following conditions 14 1.85 thorpej * are met: 15 1.85 thorpej * 1. Redistributions of source code must retain the above copyright 16 1.85 thorpej * notice, this list of conditions and the following disclaimer. 17 1.85 thorpej * 2. Redistributions in binary form must reproduce the above copyright 18 1.85 thorpej * notice, this list of conditions and the following disclaimer in the 19 1.85 thorpej * documentation and/or other materials provided with the distribution. 20 1.120 perry * 21 1.85 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 1.85 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 1.85 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 1.85 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 1.85 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 1.85 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 1.85 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 1.85 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 1.85 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 1.85 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 1.85 thorpej * POSSIBILITY OF SUCH DAMAGE. 32 1.120 perry */ 33 1.19 cgd 34 1.16 cgd /* 35 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993 36 1.17 cgd * The Regents of the University of California. All rights reserved. 37 1.16 cgd * (c) UNIX System Laboratories, Inc. 38 1.16 cgd * All or some portions of this file are derived from material licensed 39 1.16 cgd * to the University of California by American Telephone and Telegraph 40 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 1.16 cgd * the permission of UNIX System Laboratories, Inc. 42 1.16 cgd * 43 1.16 cgd * Redistribution and use in source and binary forms, with or without 44 1.16 cgd * modification, are permitted provided that the following conditions 45 1.16 cgd * are met: 46 1.16 cgd * 1. Redistributions of source code must retain the above copyright 47 1.16 cgd * notice, this list of conditions and the following disclaimer. 48 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright 49 1.16 cgd * notice, this list of conditions and the following disclaimer in the 50 1.16 cgd * documentation and/or other materials provided with the distribution. 51 1.110 agc * 3. Neither the name of the University nor the names of its contributors 52 1.16 cgd * may be used to endorse or promote products derived from this software 53 1.16 cgd * without specific prior written permission. 54 1.16 cgd * 55 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 1.16 cgd * SUCH DAMAGE. 66 1.16 cgd * 67 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 68 1.16 cgd */ 69 1.87 lukem 70 1.87 lukem #include <sys/cdefs.h> 71 1.232 kre __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $"); 72 1.38 mrg 73 1.43 thorpej #include "opt_ktrace.h" 74 1.194 christos #include "opt_dtrace.h" 75 1.16 cgd 76 1.16 cgd #include <sys/param.h> 77 1.16 cgd #include <sys/systm.h> 78 1.16 cgd #include <sys/filedesc.h> 79 1.16 cgd #include <sys/kernel.h> 80 1.44 thorpej #include <sys/pool.h> 81 1.29 christos #include <sys/mount.h> 82 1.16 cgd #include <sys/proc.h> 83 1.92 gmcgarry #include <sys/ras.h> 84 1.16 cgd #include <sys/resourcevar.h> 85 1.16 cgd #include <sys/vnode.h> 86 1.16 cgd #include <sys/file.h> 87 1.16 cgd #include <sys/acct.h> 88 1.16 cgd #include <sys/ktrace.h> 89 1.53 ross #include <sys/sched.h> 90 1.56 thorpej #include <sys/signalvar.h> 91 1.208 kamil #include <sys/syscall.h> 92 1.124 elad #include <sys/kauth.h> 93 1.151 ad #include <sys/atomic.h> 94 1.29 christos #include <sys/syscallargs.h> 95 1.171 pooka #include <sys/uidinfo.h> 96 1.176 darran #include <sys/sdt.h> 97 1.186 christos #include <sys/ptrace.h> 98 1.16 cgd 99 1.176 darran /* 100 1.176 darran * DTrace SDT provider definitions 101 1.176 darran */ 102 1.194 christos SDT_PROVIDER_DECLARE(proc); 103 1.194 christos SDT_PROBE_DEFINE3(proc, kernel, , create, 104 1.194 christos "struct proc *", /* new process */ 105 1.194 christos "struct proc *", /* parent process */ 106 1.194 christos "int" /* flags */); 107 1.176 darran 108 1.188 rmind u_int nprocs __cacheline_aligned = 1; /* process 0 */ 109 1.26 mycroft 110 1.103 jdolecek /* 111 1.103 jdolecek * Number of ticks to sleep if fork() would fail due to process hitting 112 1.231 andvar * limits. Exported in milliseconds to userland via sysctl. 113 1.103 jdolecek */ 114 1.103 jdolecek int forkfsleep = 0; 115 1.103 jdolecek 116 1.26 mycroft int 117 1.153 dsl sys_fork(struct lwp *l, const void *v, register_t *retval) 118 1.16 cgd { 119 1.16 cgd 120 1.204 kamil return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval); 121 1.16 cgd } 122 1.16 cgd 123 1.34 thorpej /* 124 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM). 125 1.34 thorpej * Address space is not shared, but parent is blocked until child exit. 126 1.34 thorpej */ 127 1.26 mycroft int 128 1.153 dsl sys_vfork(struct lwp *l, const void *v, register_t *retval) 129 1.16 cgd { 130 1.16 cgd 131 1.188 rmind return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL, 132 1.204 kamil retval); 133 1.16 cgd } 134 1.16 cgd 135 1.34 thorpej /* 136 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2) 137 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit. 138 1.34 thorpej */ 139 1.26 mycroft int 140 1.153 dsl sys___vfork14(struct lwp *l, const void *v, register_t *retval) 141 1.34 thorpej { 142 1.34 thorpej 143 1.188 rmind return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0, 144 1.204 kamil NULL, NULL, retval); 145 1.85 thorpej } 146 1.85 thorpej 147 1.85 thorpej /* 148 1.85 thorpej * Linux-compatible __clone(2) system call. 149 1.85 thorpej */ 150 1.85 thorpej int 151 1.188 rmind sys___clone(struct lwp *l, const struct sys___clone_args *uap, 152 1.188 rmind register_t *retval) 153 1.85 thorpej { 154 1.153 dsl /* { 155 1.85 thorpej syscallarg(int) flags; 156 1.85 thorpej syscallarg(void *) stack; 157 1.153 dsl } */ 158 1.85 thorpej int flags, sig; 159 1.85 thorpej 160 1.85 thorpej /* 161 1.225 kamil * We don't support the CLONE_PTRACE flag. 162 1.85 thorpej */ 163 1.225 kamil if (SCARG(uap, flags) & (CLONE_PTRACE)) 164 1.188 rmind return EINVAL; 165 1.86 fvdl 166 1.118 jdolecek /* 167 1.118 jdolecek * Linux enforces CLONE_VM with CLONE_SIGHAND, do same. 168 1.118 jdolecek */ 169 1.118 jdolecek if (SCARG(uap, flags) & CLONE_SIGHAND 170 1.118 jdolecek && (SCARG(uap, flags) & CLONE_VM) == 0) 171 1.188 rmind return EINVAL; 172 1.118 jdolecek 173 1.86 fvdl flags = 0; 174 1.85 thorpej 175 1.85 thorpej if (SCARG(uap, flags) & CLONE_VM) 176 1.85 thorpej flags |= FORK_SHAREVM; 177 1.85 thorpej if (SCARG(uap, flags) & CLONE_FS) 178 1.85 thorpej flags |= FORK_SHARECWD; 179 1.85 thorpej if (SCARG(uap, flags) & CLONE_FILES) 180 1.85 thorpej flags |= FORK_SHAREFILES; 181 1.85 thorpej if (SCARG(uap, flags) & CLONE_SIGHAND) 182 1.85 thorpej flags |= FORK_SHARESIGS; 183 1.85 thorpej if (SCARG(uap, flags) & CLONE_VFORK) 184 1.85 thorpej flags |= FORK_PPWAIT; 185 1.85 thorpej 186 1.85 thorpej sig = SCARG(uap, flags) & CLONE_CSIGNAL; 187 1.85 thorpej if (sig < 0 || sig >= _NSIG) 188 1.188 rmind return EINVAL; 189 1.85 thorpej 190 1.85 thorpej /* 191 1.232 kre * Linux doesn't have close-on-fork yet, so we don't 192 1.232 kre * know what they will do combining CLONE_FILES with 193 1.232 kre * close-on-fork (which are not really compatible). 194 1.232 kre * This might need to be changed in the future (another 195 1.232 kre * option would be to just disable FORK_SHAREFILES) 196 1.232 kre */ 197 1.232 kre if ((flags & FORK_SHAREFILES) != 0) { 198 1.232 kre if (l->l_fd != NULL && l->l_fd->fd_foclose) 199 1.232 kre return EINVAL; 200 1.232 kre } 201 1.232 kre 202 1.232 kre /* 203 1.85 thorpej * Note that the Linux API does not provide a portable way of 204 1.85 thorpej * specifying the stack area; the caller must know if the stack 205 1.85 thorpej * grows up or down. So, we pass a stack size of 0, so that the 206 1.85 thorpej * code that makes this adjustment is a noop. 207 1.85 thorpej */ 208 1.188 rmind return fork1(l, flags, sig, SCARG(uap, stack), 0, 209 1.204 kamil NULL, NULL, retval); 210 1.49 thorpej } 211 1.49 thorpej 212 1.188 rmind /* 213 1.188 rmind * Print the 'table full' message once per 10 seconds. 214 1.188 rmind */ 215 1.188 rmind static struct timeval fork_tfmrate = { 10, 0 }; 216 1.101 jdolecek 217 1.212 kamil /* 218 1.212 kamil * Check if a process is traced and shall inform about FORK events. 219 1.212 kamil */ 220 1.211 kamil static inline bool 221 1.211 kamil tracefork(struct proc *p, int flags) 222 1.211 kamil { 223 1.211 kamil 224 1.211 kamil return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) == 225 1.211 kamil (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0; 226 1.211 kamil } 227 1.211 kamil 228 1.212 kamil /* 229 1.212 kamil * Check if a process is traced and shall inform about VFORK events. 230 1.212 kamil */ 231 1.211 kamil static inline bool 232 1.211 kamil tracevfork(struct proc *p, int flags) 233 1.211 kamil { 234 1.211 kamil 235 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) == 236 1.211 kamil (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0; 237 1.211 kamil } 238 1.211 kamil 239 1.212 kamil /* 240 1.212 kamil * Check if a process is traced and shall inform about VFORK_DONE events. 241 1.212 kamil */ 242 1.211 kamil static inline bool 243 1.211 kamil tracevforkdone(struct proc *p, int flags) 244 1.211 kamil { 245 1.211 kamil 246 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) == 247 1.211 kamil (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT); 248 1.211 kamil } 249 1.211 kamil 250 1.130 ad /* 251 1.130 ad * General fork call. Note that another LWP in the process may call exec() 252 1.130 ad * or exit() while we are forking. It's safe to continue here, because 253 1.130 ad * neither operation will complete until all LWPs have exited the process. 254 1.188 rmind */ 255 1.34 thorpej int 256 1.105 thorpej fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize, 257 1.204 kamil void (*func)(void *), void *arg, register_t *retval) 258 1.16 cgd { 259 1.113 dsl struct proc *p1, *p2, *parent; 260 1.144 dsl struct plimit *p1_lim; 261 1.84 lukem uid_t uid; 262 1.105 thorpej struct lwp *l2; 263 1.130 ad int count; 264 1.84 lukem vaddr_t uaddr; 265 1.151 ad int tnprocs; 266 1.156 elad int error = 0; 267 1.16 cgd 268 1.105 thorpej p1 = l1->l_proc; 269 1.162 ad uid = kauth_cred_getuid(l1->l_cred); 270 1.151 ad tnprocs = atomic_inc_uint_nv(&nprocs); 271 1.156 elad 272 1.156 elad /* 273 1.156 elad * Although process entries are dynamically created, we still keep 274 1.156 elad * a global limit on the maximum number we will create. 275 1.156 elad */ 276 1.156 elad if (__predict_false(tnprocs >= maxproc)) 277 1.156 elad error = -1; 278 1.156 elad else 279 1.157 ad error = kauth_authorize_process(l1->l_cred, 280 1.156 elad KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 281 1.156 elad 282 1.156 elad if (error) { 283 1.101 jdolecek static struct timeval lasttfm; 284 1.151 ad atomic_dec_uint(&nprocs); 285 1.101 jdolecek if (ratecheck(&lasttfm, &fork_tfmrate)) 286 1.101 jdolecek tablefull("proc", "increase kern.maxproc or NPROC"); 287 1.103 jdolecek if (forkfsleep) 288 1.166 ad kpause("forkmx", false, forkfsleep, NULL); 289 1.188 rmind return EAGAIN; 290 1.16 cgd } 291 1.21 mycroft 292 1.17 cgd /* 293 1.150 elad * Enforce limits. 294 1.17 cgd */ 295 1.17 cgd count = chgproccnt(uid, 1); 296 1.189 elad if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 297 1.189 elad if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 298 1.189 elad p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 299 1.189 elad &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) { 300 1.189 elad (void)chgproccnt(uid, -1); 301 1.189 elad atomic_dec_uint(&nprocs); 302 1.189 elad if (forkfsleep) 303 1.189 elad kpause("forkulim", false, forkfsleep, NULL); 304 1.189 elad return EAGAIN; 305 1.189 elad } 306 1.17 cgd } 307 1.17 cgd 308 1.41 thorpej /* 309 1.41 thorpej * Allocate virtual address space for the U-area now, while it 310 1.41 thorpej * is still easy to abort the fork operation if we're out of 311 1.174 rmind * kernel virtual address space. 312 1.41 thorpej */ 313 1.174 rmind uaddr = uvm_uarea_alloc(); 314 1.64 thorpej if (__predict_false(uaddr == 0)) { 315 1.41 thorpej (void)chgproccnt(uid, -1); 316 1.151 ad atomic_dec_uint(&nprocs); 317 1.188 rmind return ENOMEM; 318 1.41 thorpej } 319 1.41 thorpej 320 1.223 thorpej /* Allocate new proc. */ 321 1.223 thorpej p2 = proc_alloc(); 322 1.223 thorpej if (p2 == NULL) { 323 1.223 thorpej /* We were unable to allocate a process ID. */ 324 1.228 riastrad uvm_uarea_free(uaddr); 325 1.228 riastrad mutex_enter(p1->p_lock); 326 1.229 prlw1 uid = kauth_cred_getuid(p1->p_cred); 327 1.228 riastrad (void)chgproccnt(uid, -1); 328 1.228 riastrad mutex_exit(p1->p_lock); 329 1.228 riastrad atomic_dec_uint(&nprocs); 330 1.223 thorpej return EAGAIN; 331 1.223 thorpej } 332 1.223 thorpej 333 1.41 thorpej /* 334 1.41 thorpej * We are now committed to the fork. From here on, we may 335 1.41 thorpej * block on resources, but resource allocation may NOT fail. 336 1.41 thorpej */ 337 1.41 thorpej 338 1.16 cgd /* 339 1.16 cgd * Make a proc table entry for the new process. 340 1.16 cgd * Start by zeroing the section of proc that is zero-initialized, 341 1.16 cgd * then copy the section that is copied directly from the parent. 342 1.16 cgd */ 343 1.45 perry memset(&p2->p_startzero, 0, 344 1.135 christos (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 345 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy, 346 1.135 christos (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 347 1.66 thorpej 348 1.193 christos TAILQ_INIT(&p2->p_sigpend.sp_info); 349 1.130 ad 350 1.105 thorpej LIST_INIT(&p2->p_lwps); 351 1.130 ad LIST_INIT(&p2->p_sigwaiters); 352 1.16 cgd 353 1.16 cgd /* 354 1.16 cgd * Duplicate sub-structures as needed. 355 1.16 cgd * Increase reference counts on shared objects. 356 1.122 cube * Inherit flags we want to keep. The flags related to SIGCHLD 357 1.122 cube * handling are important in order to keep a consistent behaviour 358 1.179 matt * for the child after the fork. If we are a 32-bit process, the 359 1.179 matt * child will be too. 360 1.16 cgd */ 361 1.179 matt p2->p_flag = 362 1.179 matt p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 363 1.21 mycroft p2->p_emul = p1->p_emul; 364 1.88 thorpej p2->p_execsw = p1->p_execsw; 365 1.83 fvdl 366 1.130 ad if (flags & FORK_SYSTEM) { 367 1.130 ad /* 368 1.130 ad * Mark it as a system process. Set P_NOCLDWAIT so that 369 1.188 rmind * children are reparented to init(8) when they exit. 370 1.130 ad * init(8) can easily wait them out for us. 371 1.130 ad */ 372 1.132 pavel p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT); 373 1.130 ad } 374 1.130 ad 375 1.152 ad mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 376 1.155 ad mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 377 1.147 ad rw_init(&p2->p_reflock); 378 1.130 ad cv_init(&p2->p_waitcv, "wait"); 379 1.130 ad cv_init(&p2->p_lwpcv, "lwpwait"); 380 1.124 elad 381 1.162 ad /* 382 1.162 ad * Share a lock between the processes if they are to share signal 383 1.162 ad * state: we must synchronize access to it. 384 1.162 ad */ 385 1.162 ad if (flags & FORK_SHARESIGS) { 386 1.162 ad p2->p_lock = p1->p_lock; 387 1.162 ad mutex_obj_hold(p1->p_lock); 388 1.162 ad } else 389 1.162 ad p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 390 1.162 ad 391 1.129 elad kauth_proc_fork(p1, p2); 392 1.92 gmcgarry 393 1.145 ad p2->p_raslist = NULL; 394 1.92 gmcgarry #if defined(__HAVE_RAS) 395 1.92 gmcgarry ras_fork(p1, p2); 396 1.92 gmcgarry #endif 397 1.51 sommerfe 398 1.17 cgd /* bump references to the text vnode (for procfs) */ 399 1.17 cgd p2->p_textvp = p1->p_textvp; 400 1.17 cgd if (p2->p_textvp) 401 1.175 pooka vref(p2->p_textvp); 402 1.203 christos if (p1->p_path) 403 1.203 christos p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP); 404 1.203 christos else 405 1.203 christos p2->p_path = NULL; 406 1.16 cgd 407 1.57 thorpej if (flags & FORK_SHAREFILES) 408 1.159 ad fd_share(p2); 409 1.91 pooka else if (flags & FORK_CLEANFILES) 410 1.159 ad p2->p_fd = fd_init(NULL); 411 1.57 thorpej else 412 1.159 ad p2->p_fd = fd_copy(); 413 1.57 thorpej 414 1.181 rmind /* XXX racy */ 415 1.181 rmind p2->p_mqueue_cnt = p1->p_mqueue_cnt; 416 1.181 rmind 417 1.57 thorpej if (flags & FORK_SHARECWD) 418 1.159 ad cwdshare(p2); 419 1.57 thorpej else 420 1.159 ad p2->p_cwdi = cwdinit(); 421 1.55 thorpej 422 1.16 cgd /* 423 1.183 rmind * Note: p_limit (rlimit stuff) is copy-on-write, so normally 424 1.183 rmind * we just need increase pl_refcnt. 425 1.144 dsl */ 426 1.144 dsl p1_lim = p1->p_limit; 427 1.183 rmind if (!p1_lim->pl_writeable) { 428 1.144 dsl lim_addref(p1_lim); 429 1.144 dsl p2->p_limit = p1_lim; 430 1.183 rmind } else { 431 1.183 rmind p2->p_limit = lim_copy(p1_lim); 432 1.16 cgd } 433 1.16 cgd 434 1.190 rmind if (flags & FORK_PPWAIT) { 435 1.190 rmind /* Mark ourselves as waiting for a child. */ 436 1.190 rmind p2->p_lflag = PL_PPWAIT; 437 1.213 kamil l1->l_vforkwaiting = true; 438 1.190 rmind p2->p_vforklwp = l1; 439 1.190 rmind } else { 440 1.190 rmind p2->p_lflag = 0; 441 1.213 kamil l1->l_vforkwaiting = false; 442 1.190 rmind } 443 1.170 ad p2->p_sflag = 0; 444 1.130 ad p2->p_slflag = 0; 445 1.113 dsl parent = (flags & FORK_NOWAIT) ? initproc : p1; 446 1.113 dsl p2->p_pptr = parent; 447 1.169 ad p2->p_ppid = parent->p_pid; 448 1.107 dsl LIST_INIT(&p2->p_children); 449 1.107 dsl 450 1.138 rmind p2->p_aio = NULL; 451 1.62 thorpej 452 1.16 cgd #ifdef KTRACE 453 1.16 cgd /* 454 1.16 cgd * Copy traceflag and tracefile if enabled. 455 1.16 cgd * If not inherited, these were zeroed above. 456 1.16 cgd */ 457 1.83 fvdl if (p1->p_traceflag & KTRFAC_INHERIT) { 458 1.142 ad mutex_enter(&ktrace_lock); 459 1.16 cgd p2->p_traceflag = p1->p_traceflag; 460 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL) 461 1.42 christos ktradref(p2); 462 1.142 ad mutex_exit(&ktrace_lock); 463 1.16 cgd } 464 1.16 cgd #endif 465 1.83 fvdl 466 1.56 thorpej /* 467 1.56 thorpej * Create signal actions for the child process. 468 1.56 thorpej */ 469 1.148 ad p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS); 470 1.162 ad mutex_enter(p1->p_lock); 471 1.130 ad p2->p_sflag |= 472 1.130 ad (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 473 1.139 yamt sched_proc_fork(p1, p2); 474 1.162 ad mutex_exit(p1->p_lock); 475 1.130 ad 476 1.130 ad p2->p_stflag = p1->p_stflag; 477 1.75 jdolecek 478 1.75 jdolecek /* 479 1.120 perry * p_stats. 480 1.105 thorpej * Copy parts of p_stats, and zero out the rest. 481 1.105 thorpej */ 482 1.105 thorpej p2->p_stats = pstatscopy(p1->p_stats); 483 1.105 thorpej 484 1.105 thorpej /* 485 1.178 chs * Set up the new process address space. 486 1.178 chs */ 487 1.178 chs uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false); 488 1.178 chs 489 1.178 chs /* 490 1.178 chs * Finish creating the child process. 491 1.178 chs * It will return through a different path later. 492 1.178 chs */ 493 1.178 chs lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0, 494 1.178 chs stack, stacksize, (func != NULL) ? func : child_return, arg, &l2, 495 1.202 christos l1->l_class, &l1->l_sigmask, &l1->l_sigstk); 496 1.185 christos 497 1.185 christos /* 498 1.185 christos * Inherit l_private from the parent. 499 1.185 christos * Note that we cannot use lwp_setprivate() here since that 500 1.185 christos * also sets the CPU TLS register, which is incorrect if the 501 1.185 christos * process has changed that without letting the kernel know. 502 1.185 christos */ 503 1.185 christos l2->l_private = l1->l_private; 504 1.178 chs 505 1.178 chs /* 506 1.178 chs * If emulation has a process fork hook, call it now. 507 1.75 jdolecek */ 508 1.75 jdolecek if (p2->p_emul->e_proc_fork) 509 1.178 chs (*p2->p_emul->e_proc_fork)(p2, l1, flags); 510 1.106 thorpej 511 1.106 thorpej /* 512 1.106 thorpej * ...and finally, any other random fork hooks that subsystems 513 1.106 thorpej * might have registered. 514 1.106 thorpej */ 515 1.106 thorpej doforkhooks(p2, p1); 516 1.16 cgd 517 1.194 christos SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0); 518 1.176 darran 519 1.26 mycroft /* 520 1.130 ad * It's now safe for the scheduler and other processes to see the 521 1.130 ad * child process. 522 1.130 ad */ 523 1.226 ad mutex_enter(&proc_lock); 524 1.130 ad 525 1.130 ad if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 526 1.130 ad p2->p_lflag |= PL_CONTROLT; 527 1.130 ad 528 1.130 ad LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling); 529 1.95 christos p2->p_exitsig = exitsig; /* signal for parent on exit */ 530 1.130 ad 531 1.187 christos /* 532 1.199 kamil * Trace fork(2) and vfork(2)-like events on demand in a debugger. 533 1.187 christos */ 534 1.224 kamil if (tracefork(p1, flags) || tracevfork(p1, flags)) { 535 1.205 kamil proc_changeparent(p2, p1->p_pptr); 536 1.224 kamil SET(p2->p_slflag, PSL_TRACEDCHILD); 537 1.224 kamil } 538 1.222 kamil 539 1.222 kamil p2->p_oppid = p1->p_pid; /* Remember the original parent id. */ 540 1.186 christos 541 1.130 ad LIST_INSERT_AFTER(p1, p2, p_pglist); 542 1.95 christos LIST_INSERT_HEAD(&allproc, p2, p_list); 543 1.130 ad 544 1.158 dsl p2->p_trace_enabled = trace_is_enabled(p2); 545 1.98 provos #ifdef __HAVE_SYSCALL_INTERN 546 1.98 provos (*p2->p_emul->e_syscall_intern)(p2); 547 1.98 provos #endif 548 1.16 cgd 549 1.16 cgd /* 550 1.34 thorpej * Update stats now that we know the fork was successful. 551 1.34 thorpej */ 552 1.217 ad KPREEMPT_DISABLE(l1); 553 1.217 ad CPU_COUNT(CPU_COUNT_FORKS, 1); 554 1.37 mrg if (flags & FORK_PPWAIT) 555 1.217 ad CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1); 556 1.37 mrg if (flags & FORK_SHAREVM) 557 1.217 ad CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1); 558 1.217 ad KPREEMPT_ENABLE(l1); 559 1.35 thorpej 560 1.142 ad if (ktrpoint(KTR_EMUL)) 561 1.114 enami p2->p_traceflag |= KTRFAC_TRC_EMUL; 562 1.78 jdolecek 563 1.34 thorpej /* 564 1.161 ad * Notify any interested parties about the new process. 565 1.161 ad */ 566 1.161 ad if (!SLIST_EMPTY(&p1->p_klist)) { 567 1.226 ad mutex_exit(&proc_lock); 568 1.227 thorpej knote_proc_fork(p1, p2); 569 1.226 ad mutex_enter(&proc_lock); 570 1.161 ad } 571 1.161 ad 572 1.161 ad /* 573 1.130 ad * Make child runnable, set start time, and add to run queue except 574 1.130 ad * if the parent requested the child to start in SSTOP state. 575 1.130 ad */ 576 1.162 ad mutex_enter(p2->p_lock); 577 1.130 ad 578 1.165 ad /* 579 1.165 ad * Start profiling. 580 1.165 ad */ 581 1.165 ad if ((p2->p_stflag & PST_PROFIL) != 0) { 582 1.165 ad mutex_spin_enter(&p2->p_stmutex); 583 1.165 ad startprofclock(p2); 584 1.165 ad mutex_spin_exit(&p2->p_stmutex); 585 1.165 ad } 586 1.165 ad 587 1.130 ad getmicrotime(&p2->p_stats->p_start); 588 1.130 ad p2->p_acflag = AFORK; 589 1.165 ad lwp_lock(l2); 590 1.177 yamt KASSERT(p2->p_nrlwps == 1); 591 1.216 ad KASSERT(l2->l_stat == LSIDL); 592 1.130 ad if (p2->p_sflag & PS_STOPFORK) { 593 1.130 ad p2->p_nrlwps = 0; 594 1.130 ad p2->p_stat = SSTOP; 595 1.130 ad p2->p_waited = 0; 596 1.130 ad p1->p_nstopchild++; 597 1.130 ad l2->l_stat = LSSTOP; 598 1.184 rmind KASSERT(l2->l_wchan == NULL); 599 1.216 ad lwp_unlock(l2); 600 1.130 ad } else { 601 1.130 ad p2->p_nrlwps = 1; 602 1.130 ad p2->p_stat = SACTIVE; 603 1.216 ad setrunnable(l2); 604 1.216 ad /* LWP now unlocked */ 605 1.130 ad } 606 1.190 rmind 607 1.190 rmind /* 608 1.190 rmind * Return child pid to parent process, 609 1.190 rmind * marking us as parent via retval[1]. 610 1.190 rmind */ 611 1.190 rmind if (retval != NULL) { 612 1.190 rmind retval[0] = p2->p_pid; 613 1.190 rmind retval[1] = 0; 614 1.190 rmind } 615 1.205 kamil 616 1.167 ad mutex_exit(p2->p_lock); 617 1.130 ad 618 1.130 ad /* 619 1.205 kamil * Let the parent know that we are tracing its child. 620 1.205 kamil */ 621 1.211 kamil if (tracefork(p1, flags) || tracevfork(p1, flags)) { 622 1.205 kamil mutex_enter(p1->p_lock); 623 1.214 kamil eventswitch(TRAP_CHLD, 624 1.214 kamil tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK, 625 1.214 kamil retval[0]); 626 1.226 ad mutex_enter(&proc_lock); 627 1.205 kamil } 628 1.205 kamil 629 1.205 kamil /* 630 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for 631 1.213 kamil * child to exec or exit, sleep until it clears p_vforkwaiting. 632 1.16 cgd */ 633 1.213 kamil while (l1->l_vforkwaiting) 634 1.226 ad cv_wait(&l1->l_waitcv, &proc_lock); 635 1.130 ad 636 1.188 rmind /* 637 1.188 rmind * Let the parent know that we are tracing its child. 638 1.188 rmind */ 639 1.211 kamil if (tracevforkdone(p1, flags)) { 640 1.206 kamil mutex_enter(p1->p_lock); 641 1.214 kamil eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]); 642 1.206 kamil } else 643 1.226 ad mutex_exit(&proc_lock); 644 1.16 cgd 645 1.188 rmind return 0; 646 1.16 cgd } 647 1.208 kamil 648 1.212 kamil /* 649 1.212 kamil * MI code executed in each newly spawned process before returning to userland. 650 1.212 kamil */ 651 1.208 kamil void 652 1.208 kamil child_return(void *arg) 653 1.208 kamil { 654 1.219 ad struct lwp *l = curlwp; 655 1.208 kamil struct proc *p = l->l_proc; 656 1.208 kamil 657 1.224 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) == 658 1.224 kamil (PSL_TRACED|PSL_TRACEDCHILD)) { 659 1.230 skrll eventswitchchild(p, TRAP_CHLD, 660 1.220 christos ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK); 661 1.208 kamil } 662 1.208 kamil 663 1.208 kamil md_child_return(l); 664 1.208 kamil 665 1.208 kamil /* 666 1.208 kamil * Return SYS_fork for all fork types, including vfork(2) and clone(2). 667 1.208 kamil * 668 1.208 kamil * This approach simplifies the code and avoids extra locking. 669 1.208 kamil */ 670 1.208 kamil ktrsysret(SYS_fork, 0, 0); 671 1.208 kamil } 672