kern_fork.c revision 1.17 1 1.16 cgd /*
2 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 1.17 cgd * The Regents of the University of California. All rights reserved.
4 1.16 cgd * (c) UNIX System Laboratories, Inc.
5 1.16 cgd * All or some portions of this file are derived from material licensed
6 1.16 cgd * to the University of California by American Telephone and Telegraph
7 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 1.16 cgd * the permission of UNIX System Laboratories, Inc.
9 1.16 cgd *
10 1.16 cgd * Redistribution and use in source and binary forms, with or without
11 1.16 cgd * modification, are permitted provided that the following conditions
12 1.16 cgd * are met:
13 1.16 cgd * 1. Redistributions of source code must retain the above copyright
14 1.16 cgd * notice, this list of conditions and the following disclaimer.
15 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.16 cgd * notice, this list of conditions and the following disclaimer in the
17 1.16 cgd * documentation and/or other materials provided with the distribution.
18 1.16 cgd * 3. All advertising materials mentioning features or use of this software
19 1.16 cgd * must display the following acknowledgement:
20 1.16 cgd * This product includes software developed by the University of
21 1.16 cgd * California, Berkeley and its contributors.
22 1.16 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.16 cgd * may be used to endorse or promote products derived from this software
24 1.16 cgd * without specific prior written permission.
25 1.16 cgd *
26 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.16 cgd * SUCH DAMAGE.
37 1.16 cgd *
38 1.17 cgd * from: @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 1.17 cgd * $Id: kern_fork.c,v 1.17 1994/05/19 05:57:48 cgd Exp $
40 1.16 cgd */
41 1.16 cgd
42 1.16 cgd #include <sys/param.h>
43 1.16 cgd #include <sys/systm.h>
44 1.17 cgd #include <sys/map.h>
45 1.16 cgd #include <sys/filedesc.h>
46 1.16 cgd #include <sys/kernel.h>
47 1.16 cgd #include <sys/malloc.h>
48 1.16 cgd #include <sys/proc.h>
49 1.16 cgd #include <sys/resourcevar.h>
50 1.16 cgd #include <sys/vnode.h>
51 1.16 cgd #include <sys/file.h>
52 1.16 cgd #include <sys/acct.h>
53 1.16 cgd #include <sys/ktrace.h>
54 1.16 cgd
55 1.16 cgd /* ARGSUSED */
56 1.16 cgd fork(p, uap, retval)
57 1.16 cgd struct proc *p;
58 1.16 cgd void *uap;
59 1.16 cgd int retval[];
60 1.16 cgd {
61 1.16 cgd
62 1.16 cgd return (fork1(p, 0, retval));
63 1.16 cgd }
64 1.16 cgd
65 1.16 cgd /* ARGSUSED */
66 1.16 cgd vfork(p, uap, retval)
67 1.16 cgd struct proc *p;
68 1.16 cgd void *uap;
69 1.16 cgd int retval[];
70 1.16 cgd {
71 1.16 cgd
72 1.16 cgd return (fork1(p, 1, retval));
73 1.16 cgd }
74 1.16 cgd
75 1.16 cgd int nprocs = 1; /* process 0 */
76 1.16 cgd
77 1.16 cgd fork1(p1, isvfork, retval)
78 1.16 cgd register struct proc *p1;
79 1.16 cgd int isvfork, retval[];
80 1.16 cgd {
81 1.16 cgd register struct proc *p2;
82 1.17 cgd register uid_t uid;
83 1.17 cgd struct proc *newproc;
84 1.17 cgd struct proc **hash;
85 1.17 cgd int count;
86 1.16 cgd static int nextpid, pidchecked = 0;
87 1.16 cgd
88 1.16 cgd /*
89 1.17 cgd * Although process entries are dynamically created, we still keep
90 1.16 cgd * a global limit on the maximum number we will create. Don't allow
91 1.16 cgd * a nonprivileged user to use the last process; don't let root
92 1.17 cgd * exceed the limit. The variable nprocs is the current number of
93 1.16 cgd * processes, maxproc is the limit.
94 1.16 cgd */
95 1.17 cgd uid = p1->p_cred->p_ruid;
96 1.16 cgd if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
97 1.16 cgd tablefull("proc");
98 1.16 cgd return (EAGAIN);
99 1.16 cgd }
100 1.17 cgd /*
101 1.17 cgd * Increment the count of procs running with this uid. Don't allow
102 1.17 cgd * a nonprivileged user to exceed their current limit.
103 1.17 cgd */
104 1.17 cgd count = chgproccnt(uid, 1);
105 1.17 cgd if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
106 1.17 cgd (void)chgproccnt(uid, -1);
107 1.16 cgd return (EAGAIN);
108 1.17 cgd }
109 1.17 cgd
110 1.17 cgd /* Allocate new proc. */
111 1.17 cgd MALLOC(newproc, struct proc *, sizeof(struct proc), M_PROC, M_WAITOK);
112 1.16 cgd
113 1.16 cgd /*
114 1.17 cgd * Find an unused process ID. We remember a range of unused IDs
115 1.17 cgd * ready to use (from nextpid+1 through pidchecked-1).
116 1.16 cgd */
117 1.16 cgd nextpid++;
118 1.16 cgd retry:
119 1.16 cgd /*
120 1.16 cgd * If the process ID prototype has wrapped around,
121 1.16 cgd * restart somewhat above 0, as the low-numbered procs
122 1.16 cgd * tend to include daemons that don't exit.
123 1.16 cgd */
124 1.16 cgd if (nextpid >= PID_MAX) {
125 1.16 cgd nextpid = 100;
126 1.16 cgd pidchecked = 0;
127 1.16 cgd }
128 1.16 cgd if (nextpid >= pidchecked) {
129 1.16 cgd int doingzomb = 0;
130 1.16 cgd
131 1.16 cgd pidchecked = PID_MAX;
132 1.16 cgd /*
133 1.16 cgd * Scan the active and zombie procs to check whether this pid
134 1.16 cgd * is in use. Remember the lowest pid that's greater
135 1.16 cgd * than nextpid, so we can avoid checking for a while.
136 1.16 cgd */
137 1.16 cgd p2 = (struct proc *)allproc;
138 1.16 cgd again:
139 1.16 cgd for (; p2 != NULL; p2 = p2->p_next) {
140 1.16 cgd while (p2->p_pid == nextpid ||
141 1.16 cgd p2->p_pgrp->pg_id == nextpid) {
142 1.16 cgd nextpid++;
143 1.16 cgd if (nextpid >= pidchecked)
144 1.16 cgd goto retry;
145 1.16 cgd }
146 1.16 cgd if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
147 1.16 cgd pidchecked = p2->p_pid;
148 1.16 cgd if (p2->p_pgrp->pg_id > nextpid &&
149 1.16 cgd pidchecked > p2->p_pgrp->pg_id)
150 1.16 cgd pidchecked = p2->p_pgrp->pg_id;
151 1.16 cgd }
152 1.16 cgd if (!doingzomb) {
153 1.16 cgd doingzomb = 1;
154 1.16 cgd p2 = zombproc;
155 1.16 cgd goto again;
156 1.16 cgd }
157 1.16 cgd }
158 1.16 cgd
159 1.16 cgd
160 1.16 cgd /*
161 1.16 cgd * Link onto allproc (this should probably be delayed).
162 1.17 cgd * Heavy use of volatile here to prevent the compiler from
163 1.17 cgd * rearranging code. Yes, it *is* terribly ugly, but at least
164 1.17 cgd * it works.
165 1.16 cgd */
166 1.16 cgd nprocs++;
167 1.17 cgd p2 = newproc;
168 1.17 cgd #define Vp2 ((volatile struct proc *)p2)
169 1.17 cgd Vp2->p_stat = SIDL; /* protect against others */
170 1.16 cgd Vp2->p_pid = nextpid;
171 1.16 cgd /*
172 1.16 cgd * This is really:
173 1.16 cgd * p2->p_next = allproc;
174 1.16 cgd * allproc->p_prev = &p2->p_next;
175 1.16 cgd * p2->p_prev = &allproc;
176 1.16 cgd * allproc = p2;
177 1.16 cgd * The assignment via allproc is legal since it is never NULL.
178 1.16 cgd */
179 1.16 cgd *(volatile struct proc **)&Vp2->p_next = allproc;
180 1.16 cgd *(volatile struct proc ***)&allproc->p_prev =
181 1.16 cgd (volatile struct proc **)&Vp2->p_next;
182 1.16 cgd *(volatile struct proc ***)&Vp2->p_prev = &allproc;
183 1.16 cgd allproc = Vp2;
184 1.17 cgd #undef Vp2
185 1.17 cgd p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
186 1.16 cgd
187 1.17 cgd /* Insert on the hash chain. */
188 1.17 cgd hash = &pidhash[PIDHASH(p2->p_pid)];
189 1.17 cgd p2->p_hash = *hash;
190 1.17 cgd *hash = p2;
191 1.16 cgd
192 1.16 cgd /*
193 1.16 cgd * Make a proc table entry for the new process.
194 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
195 1.16 cgd * then copy the section that is copied directly from the parent.
196 1.16 cgd */
197 1.16 cgd bzero(&p2->p_startzero,
198 1.16 cgd (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
199 1.16 cgd bcopy(&p1->p_startcopy, &p2->p_startcopy,
200 1.16 cgd (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
201 1.16 cgd
202 1.16 cgd /*
203 1.16 cgd * Duplicate sub-structures as needed.
204 1.16 cgd * Increase reference counts on shared objects.
205 1.16 cgd * The p_stats and p_sigacts substructs are set in vm_fork.
206 1.16 cgd */
207 1.17 cgd p2->p_flag = P_INMEM;
208 1.17 cgd if (p1->p_flag & P_PROFIL)
209 1.17 cgd startprofclock(p2);
210 1.16 cgd MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
211 1.16 cgd M_SUBPROC, M_WAITOK);
212 1.16 cgd bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
213 1.16 cgd p2->p_cred->p_refcnt = 1;
214 1.16 cgd crhold(p1->p_ucred);
215 1.16 cgd
216 1.17 cgd /* bump references to the text vnode (for procfs) */
217 1.17 cgd p2->p_textvp = p1->p_textvp;
218 1.17 cgd if (p2->p_textvp)
219 1.16 cgd VREF(p2->p_textvp);
220 1.16 cgd
221 1.16 cgd p2->p_fd = fdcopy(p1);
222 1.16 cgd /*
223 1.16 cgd * If p_limit is still copy-on-write, bump refcnt,
224 1.16 cgd * otherwise get a copy that won't be modified.
225 1.16 cgd * (If PL_SHAREMOD is clear, the structure is shared
226 1.16 cgd * copy-on-write.)
227 1.16 cgd */
228 1.16 cgd if (p1->p_limit->p_lflags & PL_SHAREMOD)
229 1.16 cgd p2->p_limit = limcopy(p1->p_limit);
230 1.16 cgd else {
231 1.16 cgd p2->p_limit = p1->p_limit;
232 1.16 cgd p2->p_limit->p_refcnt++;
233 1.16 cgd }
234 1.16 cgd
235 1.16 cgd if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
236 1.16 cgd p2->p_flag |= P_CONTROLT;
237 1.16 cgd if (isvfork)
238 1.16 cgd p2->p_flag |= P_PPWAIT;
239 1.16 cgd p2->p_pgrpnxt = p1->p_pgrpnxt;
240 1.16 cgd p1->p_pgrpnxt = p2;
241 1.16 cgd p2->p_pptr = p1;
242 1.16 cgd p2->p_osptr = p1->p_cptr;
243 1.16 cgd if (p1->p_cptr)
244 1.16 cgd p1->p_cptr->p_ysptr = p2;
245 1.16 cgd p1->p_cptr = p2;
246 1.16 cgd #ifdef KTRACE
247 1.16 cgd /*
248 1.16 cgd * Copy traceflag and tracefile if enabled.
249 1.16 cgd * If not inherited, these were zeroed above.
250 1.16 cgd */
251 1.16 cgd if (p1->p_traceflag&KTRFAC_INHERIT) {
252 1.16 cgd p2->p_traceflag = p1->p_traceflag;
253 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
254 1.16 cgd VREF(p2->p_tracep);
255 1.16 cgd }
256 1.16 cgd #endif
257 1.16 cgd
258 1.16 cgd /*
259 1.16 cgd * This begins the section where we must prevent the parent
260 1.16 cgd * from being swapped.
261 1.16 cgd */
262 1.16 cgd p1->p_flag |= P_NOSWAP;
263 1.16 cgd /*
264 1.16 cgd * Set return values for child before vm_fork,
265 1.16 cgd * so they can be copied to child stack.
266 1.16 cgd * We return parent pid, and mark as child in retval[1].
267 1.16 cgd * NOTE: the kernel stack may be at a different location in the child
268 1.16 cgd * process, and thus addresses of automatic variables (including retval)
269 1.16 cgd * may be invalid after vm_fork returns in the child process.
270 1.16 cgd */
271 1.16 cgd retval[0] = p1->p_pid;
272 1.16 cgd retval[1] = 1;
273 1.16 cgd if (vm_fork(p1, p2, isvfork)) {
274 1.16 cgd /*
275 1.16 cgd * Child process. Set start time and get to work.
276 1.16 cgd */
277 1.16 cgd (void) splclock();
278 1.16 cgd p2->p_stats->p_start = time;
279 1.16 cgd (void) spl0();
280 1.16 cgd p2->p_acflag = AFORK;
281 1.16 cgd return (0);
282 1.16 cgd }
283 1.16 cgd
284 1.16 cgd /*
285 1.16 cgd * Make child runnable and add to run queue.
286 1.16 cgd */
287 1.16 cgd (void) splhigh();
288 1.16 cgd p2->p_stat = SRUN;
289 1.16 cgd setrunqueue(p2);
290 1.16 cgd (void) spl0();
291 1.16 cgd
292 1.16 cgd /*
293 1.16 cgd * Now can be swapped.
294 1.16 cgd */
295 1.16 cgd p1->p_flag &= ~P_NOSWAP;
296 1.16 cgd
297 1.16 cgd /*
298 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
299 1.17 cgd * child to exec or exit, set P_PPWAIT on child, and sleep on our
300 1.17 cgd * proc (in case of exit).
301 1.16 cgd */
302 1.16 cgd if (isvfork)
303 1.16 cgd while (p2->p_flag & P_PPWAIT)
304 1.17 cgd tsleep(p1, PWAIT, "ppwait", 0);
305 1.16 cgd
306 1.16 cgd /*
307 1.16 cgd * Return child pid to parent process,
308 1.16 cgd * marking us as parent via retval[1].
309 1.16 cgd */
310 1.16 cgd retval[0] = p2->p_pid;
311 1.16 cgd retval[1] = 0;
312 1.16 cgd return (0);
313 1.16 cgd }
314