kern_fork.c revision 1.211 1 1.211 kamil /* $NetBSD: kern_fork.c,v 1.211 2019/05/01 18:01:54 kamil Exp $ */
2 1.85 thorpej
3 1.85 thorpej /*-
4 1.159 ad * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.85 thorpej * All rights reserved.
6 1.85 thorpej *
7 1.85 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.85 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.151 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.120 perry *
11 1.120 perry * Redistribution and use in source and binary forms, with or without
12 1.85 thorpej * modification, are permitted provided that the following conditions
13 1.85 thorpej * are met:
14 1.85 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.85 thorpej * notice, this list of conditions and the following disclaimer.
16 1.85 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.85 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.85 thorpej * documentation and/or other materials provided with the distribution.
19 1.120 perry *
20 1.85 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.85 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.85 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.85 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.85 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.85 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.85 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.85 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.85 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.85 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.85 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.120 perry */
32 1.19 cgd
33 1.16 cgd /*
34 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.17 cgd * The Regents of the University of California. All rights reserved.
36 1.16 cgd * (c) UNIX System Laboratories, Inc.
37 1.16 cgd * All or some portions of this file are derived from material licensed
38 1.16 cgd * to the University of California by American Telephone and Telegraph
39 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 1.16 cgd * the permission of UNIX System Laboratories, Inc.
41 1.16 cgd *
42 1.16 cgd * Redistribution and use in source and binary forms, with or without
43 1.16 cgd * modification, are permitted provided that the following conditions
44 1.16 cgd * are met:
45 1.16 cgd * 1. Redistributions of source code must retain the above copyright
46 1.16 cgd * notice, this list of conditions and the following disclaimer.
47 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
48 1.16 cgd * notice, this list of conditions and the following disclaimer in the
49 1.16 cgd * documentation and/or other materials provided with the distribution.
50 1.110 agc * 3. Neither the name of the University nor the names of its contributors
51 1.16 cgd * may be used to endorse or promote products derived from this software
52 1.16 cgd * without specific prior written permission.
53 1.16 cgd *
54 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.16 cgd * SUCH DAMAGE.
65 1.16 cgd *
66 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
67 1.16 cgd */
68 1.87 lukem
69 1.87 lukem #include <sys/cdefs.h>
70 1.211 kamil __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.211 2019/05/01 18:01:54 kamil Exp $");
71 1.38 mrg
72 1.43 thorpej #include "opt_ktrace.h"
73 1.194 christos #include "opt_dtrace.h"
74 1.16 cgd
75 1.16 cgd #include <sys/param.h>
76 1.16 cgd #include <sys/systm.h>
77 1.16 cgd #include <sys/filedesc.h>
78 1.16 cgd #include <sys/kernel.h>
79 1.44 thorpej #include <sys/pool.h>
80 1.29 christos #include <sys/mount.h>
81 1.16 cgd #include <sys/proc.h>
82 1.92 gmcgarry #include <sys/ras.h>
83 1.16 cgd #include <sys/resourcevar.h>
84 1.16 cgd #include <sys/vnode.h>
85 1.16 cgd #include <sys/file.h>
86 1.16 cgd #include <sys/acct.h>
87 1.16 cgd #include <sys/ktrace.h>
88 1.53 ross #include <sys/sched.h>
89 1.56 thorpej #include <sys/signalvar.h>
90 1.208 kamil #include <sys/syscall.h>
91 1.124 elad #include <sys/kauth.h>
92 1.151 ad #include <sys/atomic.h>
93 1.29 christos #include <sys/syscallargs.h>
94 1.171 pooka #include <sys/uidinfo.h>
95 1.176 darran #include <sys/sdt.h>
96 1.186 christos #include <sys/ptrace.h>
97 1.16 cgd
98 1.37 mrg #include <uvm/uvm_extern.h>
99 1.37 mrg
100 1.176 darran /*
101 1.176 darran * DTrace SDT provider definitions
102 1.176 darran */
103 1.194 christos SDT_PROVIDER_DECLARE(proc);
104 1.194 christos SDT_PROBE_DEFINE3(proc, kernel, , create,
105 1.194 christos "struct proc *", /* new process */
106 1.194 christos "struct proc *", /* parent process */
107 1.194 christos "int" /* flags */);
108 1.176 darran
109 1.188 rmind u_int nprocs __cacheline_aligned = 1; /* process 0 */
110 1.26 mycroft
111 1.103 jdolecek /*
112 1.103 jdolecek * Number of ticks to sleep if fork() would fail due to process hitting
113 1.103 jdolecek * limits. Exported in miliseconds to userland via sysctl.
114 1.103 jdolecek */
115 1.103 jdolecek int forkfsleep = 0;
116 1.103 jdolecek
117 1.26 mycroft int
118 1.153 dsl sys_fork(struct lwp *l, const void *v, register_t *retval)
119 1.16 cgd {
120 1.16 cgd
121 1.204 kamil return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
122 1.16 cgd }
123 1.16 cgd
124 1.34 thorpej /*
125 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
126 1.34 thorpej * Address space is not shared, but parent is blocked until child exit.
127 1.34 thorpej */
128 1.26 mycroft int
129 1.153 dsl sys_vfork(struct lwp *l, const void *v, register_t *retval)
130 1.16 cgd {
131 1.16 cgd
132 1.188 rmind return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
133 1.204 kamil retval);
134 1.16 cgd }
135 1.16 cgd
136 1.34 thorpej /*
137 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
138 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit.
139 1.34 thorpej */
140 1.26 mycroft int
141 1.153 dsl sys___vfork14(struct lwp *l, const void *v, register_t *retval)
142 1.34 thorpej {
143 1.34 thorpej
144 1.188 rmind return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
145 1.204 kamil NULL, NULL, retval);
146 1.85 thorpej }
147 1.85 thorpej
148 1.85 thorpej /*
149 1.85 thorpej * Linux-compatible __clone(2) system call.
150 1.85 thorpej */
151 1.85 thorpej int
152 1.188 rmind sys___clone(struct lwp *l, const struct sys___clone_args *uap,
153 1.188 rmind register_t *retval)
154 1.85 thorpej {
155 1.153 dsl /* {
156 1.85 thorpej syscallarg(int) flags;
157 1.85 thorpej syscallarg(void *) stack;
158 1.153 dsl } */
159 1.85 thorpej int flags, sig;
160 1.85 thorpej
161 1.85 thorpej /*
162 1.85 thorpej * We don't support the CLONE_PID or CLONE_PTRACE flags.
163 1.85 thorpej */
164 1.85 thorpej if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
165 1.188 rmind return EINVAL;
166 1.86 fvdl
167 1.118 jdolecek /*
168 1.118 jdolecek * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
169 1.118 jdolecek */
170 1.118 jdolecek if (SCARG(uap, flags) & CLONE_SIGHAND
171 1.118 jdolecek && (SCARG(uap, flags) & CLONE_VM) == 0)
172 1.188 rmind return EINVAL;
173 1.118 jdolecek
174 1.86 fvdl flags = 0;
175 1.85 thorpej
176 1.85 thorpej if (SCARG(uap, flags) & CLONE_VM)
177 1.85 thorpej flags |= FORK_SHAREVM;
178 1.85 thorpej if (SCARG(uap, flags) & CLONE_FS)
179 1.85 thorpej flags |= FORK_SHARECWD;
180 1.85 thorpej if (SCARG(uap, flags) & CLONE_FILES)
181 1.85 thorpej flags |= FORK_SHAREFILES;
182 1.85 thorpej if (SCARG(uap, flags) & CLONE_SIGHAND)
183 1.85 thorpej flags |= FORK_SHARESIGS;
184 1.85 thorpej if (SCARG(uap, flags) & CLONE_VFORK)
185 1.85 thorpej flags |= FORK_PPWAIT;
186 1.85 thorpej
187 1.85 thorpej sig = SCARG(uap, flags) & CLONE_CSIGNAL;
188 1.85 thorpej if (sig < 0 || sig >= _NSIG)
189 1.188 rmind return EINVAL;
190 1.85 thorpej
191 1.85 thorpej /*
192 1.85 thorpej * Note that the Linux API does not provide a portable way of
193 1.85 thorpej * specifying the stack area; the caller must know if the stack
194 1.85 thorpej * grows up or down. So, we pass a stack size of 0, so that the
195 1.85 thorpej * code that makes this adjustment is a noop.
196 1.85 thorpej */
197 1.188 rmind return fork1(l, flags, sig, SCARG(uap, stack), 0,
198 1.204 kamil NULL, NULL, retval);
199 1.49 thorpej }
200 1.49 thorpej
201 1.188 rmind /*
202 1.188 rmind * Print the 'table full' message once per 10 seconds.
203 1.188 rmind */
204 1.188 rmind static struct timeval fork_tfmrate = { 10, 0 };
205 1.101 jdolecek
206 1.211 kamil static inline bool
207 1.211 kamil tracefork(struct proc *p, int flags)
208 1.211 kamil {
209 1.211 kamil
210 1.211 kamil return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
211 1.211 kamil (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
212 1.211 kamil }
213 1.211 kamil
214 1.211 kamil static inline bool
215 1.211 kamil tracevfork(struct proc *p, int flags)
216 1.211 kamil {
217 1.211 kamil
218 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
219 1.211 kamil (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
220 1.211 kamil }
221 1.211 kamil
222 1.211 kamil static inline bool
223 1.211 kamil tracevforkdone(struct proc *p, int flags)
224 1.211 kamil {
225 1.211 kamil
226 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
227 1.211 kamil (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
228 1.211 kamil }
229 1.211 kamil
230 1.130 ad /*
231 1.130 ad * General fork call. Note that another LWP in the process may call exec()
232 1.130 ad * or exit() while we are forking. It's safe to continue here, because
233 1.130 ad * neither operation will complete until all LWPs have exited the process.
234 1.188 rmind */
235 1.34 thorpej int
236 1.105 thorpej fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
237 1.204 kamil void (*func)(void *), void *arg, register_t *retval)
238 1.16 cgd {
239 1.113 dsl struct proc *p1, *p2, *parent;
240 1.144 dsl struct plimit *p1_lim;
241 1.84 lukem uid_t uid;
242 1.105 thorpej struct lwp *l2;
243 1.130 ad int count;
244 1.84 lukem vaddr_t uaddr;
245 1.151 ad int tnprocs;
246 1.211 kamil bool trace_fork, trace_vfork;
247 1.156 elad int error = 0;
248 1.16 cgd
249 1.105 thorpej p1 = l1->l_proc;
250 1.162 ad uid = kauth_cred_getuid(l1->l_cred);
251 1.151 ad tnprocs = atomic_inc_uint_nv(&nprocs);
252 1.156 elad
253 1.156 elad /*
254 1.156 elad * Although process entries are dynamically created, we still keep
255 1.156 elad * a global limit on the maximum number we will create.
256 1.156 elad */
257 1.156 elad if (__predict_false(tnprocs >= maxproc))
258 1.156 elad error = -1;
259 1.156 elad else
260 1.157 ad error = kauth_authorize_process(l1->l_cred,
261 1.156 elad KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
262 1.156 elad
263 1.156 elad if (error) {
264 1.101 jdolecek static struct timeval lasttfm;
265 1.151 ad atomic_dec_uint(&nprocs);
266 1.101 jdolecek if (ratecheck(&lasttfm, &fork_tfmrate))
267 1.101 jdolecek tablefull("proc", "increase kern.maxproc or NPROC");
268 1.103 jdolecek if (forkfsleep)
269 1.166 ad kpause("forkmx", false, forkfsleep, NULL);
270 1.188 rmind return EAGAIN;
271 1.16 cgd }
272 1.21 mycroft
273 1.17 cgd /*
274 1.150 elad * Enforce limits.
275 1.17 cgd */
276 1.17 cgd count = chgproccnt(uid, 1);
277 1.189 elad if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
278 1.189 elad if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
279 1.189 elad p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
280 1.189 elad &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
281 1.189 elad (void)chgproccnt(uid, -1);
282 1.189 elad atomic_dec_uint(&nprocs);
283 1.189 elad if (forkfsleep)
284 1.189 elad kpause("forkulim", false, forkfsleep, NULL);
285 1.189 elad return EAGAIN;
286 1.189 elad }
287 1.17 cgd }
288 1.17 cgd
289 1.41 thorpej /*
290 1.41 thorpej * Allocate virtual address space for the U-area now, while it
291 1.41 thorpej * is still easy to abort the fork operation if we're out of
292 1.174 rmind * kernel virtual address space.
293 1.41 thorpej */
294 1.174 rmind uaddr = uvm_uarea_alloc();
295 1.64 thorpej if (__predict_false(uaddr == 0)) {
296 1.41 thorpej (void)chgproccnt(uid, -1);
297 1.151 ad atomic_dec_uint(&nprocs);
298 1.188 rmind return ENOMEM;
299 1.41 thorpej }
300 1.41 thorpej
301 1.41 thorpej /*
302 1.41 thorpej * We are now committed to the fork. From here on, we may
303 1.41 thorpej * block on resources, but resource allocation may NOT fail.
304 1.41 thorpej */
305 1.41 thorpej
306 1.17 cgd /* Allocate new proc. */
307 1.107 dsl p2 = proc_alloc();
308 1.16 cgd
309 1.16 cgd /*
310 1.16 cgd * Make a proc table entry for the new process.
311 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
312 1.16 cgd * then copy the section that is copied directly from the parent.
313 1.16 cgd */
314 1.45 perry memset(&p2->p_startzero, 0,
315 1.135 christos (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
316 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy,
317 1.135 christos (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
318 1.66 thorpej
319 1.193 christos TAILQ_INIT(&p2->p_sigpend.sp_info);
320 1.130 ad
321 1.105 thorpej LIST_INIT(&p2->p_lwps);
322 1.130 ad LIST_INIT(&p2->p_sigwaiters);
323 1.16 cgd
324 1.16 cgd /*
325 1.16 cgd * Duplicate sub-structures as needed.
326 1.16 cgd * Increase reference counts on shared objects.
327 1.122 cube * Inherit flags we want to keep. The flags related to SIGCHLD
328 1.122 cube * handling are important in order to keep a consistent behaviour
329 1.179 matt * for the child after the fork. If we are a 32-bit process, the
330 1.179 matt * child will be too.
331 1.16 cgd */
332 1.179 matt p2->p_flag =
333 1.179 matt p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
334 1.21 mycroft p2->p_emul = p1->p_emul;
335 1.88 thorpej p2->p_execsw = p1->p_execsw;
336 1.83 fvdl
337 1.130 ad if (flags & FORK_SYSTEM) {
338 1.130 ad /*
339 1.130 ad * Mark it as a system process. Set P_NOCLDWAIT so that
340 1.188 rmind * children are reparented to init(8) when they exit.
341 1.130 ad * init(8) can easily wait them out for us.
342 1.130 ad */
343 1.132 pavel p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
344 1.130 ad }
345 1.130 ad
346 1.152 ad mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
347 1.155 ad mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
348 1.147 ad rw_init(&p2->p_reflock);
349 1.130 ad cv_init(&p2->p_waitcv, "wait");
350 1.130 ad cv_init(&p2->p_lwpcv, "lwpwait");
351 1.124 elad
352 1.162 ad /*
353 1.162 ad * Share a lock between the processes if they are to share signal
354 1.162 ad * state: we must synchronize access to it.
355 1.162 ad */
356 1.162 ad if (flags & FORK_SHARESIGS) {
357 1.162 ad p2->p_lock = p1->p_lock;
358 1.162 ad mutex_obj_hold(p1->p_lock);
359 1.162 ad } else
360 1.162 ad p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
361 1.162 ad
362 1.129 elad kauth_proc_fork(p1, p2);
363 1.92 gmcgarry
364 1.145 ad p2->p_raslist = NULL;
365 1.92 gmcgarry #if defined(__HAVE_RAS)
366 1.92 gmcgarry ras_fork(p1, p2);
367 1.92 gmcgarry #endif
368 1.51 sommerfe
369 1.17 cgd /* bump references to the text vnode (for procfs) */
370 1.17 cgd p2->p_textvp = p1->p_textvp;
371 1.17 cgd if (p2->p_textvp)
372 1.175 pooka vref(p2->p_textvp);
373 1.203 christos if (p1->p_path)
374 1.203 christos p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
375 1.203 christos else
376 1.203 christos p2->p_path = NULL;
377 1.16 cgd
378 1.57 thorpej if (flags & FORK_SHAREFILES)
379 1.159 ad fd_share(p2);
380 1.91 pooka else if (flags & FORK_CLEANFILES)
381 1.159 ad p2->p_fd = fd_init(NULL);
382 1.57 thorpej else
383 1.159 ad p2->p_fd = fd_copy();
384 1.57 thorpej
385 1.181 rmind /* XXX racy */
386 1.181 rmind p2->p_mqueue_cnt = p1->p_mqueue_cnt;
387 1.181 rmind
388 1.57 thorpej if (flags & FORK_SHARECWD)
389 1.159 ad cwdshare(p2);
390 1.57 thorpej else
391 1.159 ad p2->p_cwdi = cwdinit();
392 1.55 thorpej
393 1.16 cgd /*
394 1.183 rmind * Note: p_limit (rlimit stuff) is copy-on-write, so normally
395 1.183 rmind * we just need increase pl_refcnt.
396 1.144 dsl */
397 1.144 dsl p1_lim = p1->p_limit;
398 1.183 rmind if (!p1_lim->pl_writeable) {
399 1.144 dsl lim_addref(p1_lim);
400 1.144 dsl p2->p_limit = p1_lim;
401 1.183 rmind } else {
402 1.183 rmind p2->p_limit = lim_copy(p1_lim);
403 1.16 cgd }
404 1.16 cgd
405 1.190 rmind if (flags & FORK_PPWAIT) {
406 1.190 rmind /* Mark ourselves as waiting for a child. */
407 1.190 rmind l1->l_pflag |= LP_VFORKWAIT;
408 1.190 rmind p2->p_lflag = PL_PPWAIT;
409 1.190 rmind p2->p_vforklwp = l1;
410 1.190 rmind } else {
411 1.190 rmind p2->p_lflag = 0;
412 1.190 rmind }
413 1.170 ad p2->p_sflag = 0;
414 1.130 ad p2->p_slflag = 0;
415 1.113 dsl parent = (flags & FORK_NOWAIT) ? initproc : p1;
416 1.113 dsl p2->p_pptr = parent;
417 1.169 ad p2->p_ppid = parent->p_pid;
418 1.107 dsl LIST_INIT(&p2->p_children);
419 1.107 dsl
420 1.138 rmind p2->p_aio = NULL;
421 1.62 thorpej
422 1.16 cgd #ifdef KTRACE
423 1.16 cgd /*
424 1.16 cgd * Copy traceflag and tracefile if enabled.
425 1.16 cgd * If not inherited, these were zeroed above.
426 1.16 cgd */
427 1.83 fvdl if (p1->p_traceflag & KTRFAC_INHERIT) {
428 1.142 ad mutex_enter(&ktrace_lock);
429 1.16 cgd p2->p_traceflag = p1->p_traceflag;
430 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
431 1.42 christos ktradref(p2);
432 1.142 ad mutex_exit(&ktrace_lock);
433 1.16 cgd }
434 1.16 cgd #endif
435 1.83 fvdl
436 1.56 thorpej /*
437 1.56 thorpej * Create signal actions for the child process.
438 1.56 thorpej */
439 1.148 ad p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
440 1.162 ad mutex_enter(p1->p_lock);
441 1.130 ad p2->p_sflag |=
442 1.130 ad (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
443 1.139 yamt sched_proc_fork(p1, p2);
444 1.162 ad mutex_exit(p1->p_lock);
445 1.130 ad
446 1.130 ad p2->p_stflag = p1->p_stflag;
447 1.75 jdolecek
448 1.75 jdolecek /*
449 1.120 perry * p_stats.
450 1.105 thorpej * Copy parts of p_stats, and zero out the rest.
451 1.105 thorpej */
452 1.105 thorpej p2->p_stats = pstatscopy(p1->p_stats);
453 1.105 thorpej
454 1.105 thorpej /*
455 1.178 chs * Set up the new process address space.
456 1.178 chs */
457 1.178 chs uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
458 1.178 chs
459 1.178 chs /*
460 1.178 chs * Finish creating the child process.
461 1.178 chs * It will return through a different path later.
462 1.178 chs */
463 1.178 chs lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
464 1.178 chs stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
465 1.202 christos l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
466 1.185 christos
467 1.185 christos /*
468 1.185 christos * Inherit l_private from the parent.
469 1.185 christos * Note that we cannot use lwp_setprivate() here since that
470 1.185 christos * also sets the CPU TLS register, which is incorrect if the
471 1.185 christos * process has changed that without letting the kernel know.
472 1.185 christos */
473 1.185 christos l2->l_private = l1->l_private;
474 1.178 chs
475 1.178 chs /*
476 1.178 chs * If emulation has a process fork hook, call it now.
477 1.75 jdolecek */
478 1.75 jdolecek if (p2->p_emul->e_proc_fork)
479 1.178 chs (*p2->p_emul->e_proc_fork)(p2, l1, flags);
480 1.106 thorpej
481 1.106 thorpej /*
482 1.106 thorpej * ...and finally, any other random fork hooks that subsystems
483 1.106 thorpej * might have registered.
484 1.106 thorpej */
485 1.106 thorpej doforkhooks(p2, p1);
486 1.16 cgd
487 1.194 christos SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
488 1.176 darran
489 1.26 mycroft /*
490 1.130 ad * It's now safe for the scheduler and other processes to see the
491 1.130 ad * child process.
492 1.130 ad */
493 1.161 ad mutex_enter(proc_lock);
494 1.130 ad
495 1.130 ad if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
496 1.130 ad p2->p_lflag |= PL_CONTROLT;
497 1.130 ad
498 1.130 ad LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
499 1.95 christos p2->p_exitsig = exitsig; /* signal for parent on exit */
500 1.130 ad
501 1.187 christos /*
502 1.199 kamil * Trace fork(2) and vfork(2)-like events on demand in a debugger.
503 1.187 christos */
504 1.211 kamil trace_fork = tracefork(p1, flags);
505 1.211 kamil trace_vfork = tracevfork(p1, flags);
506 1.211 kamil if (trace_fork || trace_vfork)
507 1.205 kamil proc_changeparent(p2, p1->p_pptr);
508 1.211 kamil if (trace_fork) {
509 1.186 christos p1->p_fpid = p2->p_pid;
510 1.186 christos p2->p_fpid = p1->p_pid;
511 1.186 christos }
512 1.211 kamil if (trace_vfork) {
513 1.205 kamil p1->p_vfpid = p2->p_pid;
514 1.205 kamil p2->p_vfpid = p1->p_pid;
515 1.199 kamil }
516 1.186 christos
517 1.130 ad LIST_INSERT_AFTER(p1, p2, p_pglist);
518 1.95 christos LIST_INSERT_HEAD(&allproc, p2, p_list);
519 1.130 ad
520 1.158 dsl p2->p_trace_enabled = trace_is_enabled(p2);
521 1.98 provos #ifdef __HAVE_SYSCALL_INTERN
522 1.98 provos (*p2->p_emul->e_syscall_intern)(p2);
523 1.98 provos #endif
524 1.16 cgd
525 1.16 cgd /*
526 1.34 thorpej * Update stats now that we know the fork was successful.
527 1.34 thorpej */
528 1.37 mrg uvmexp.forks++;
529 1.37 mrg if (flags & FORK_PPWAIT)
530 1.37 mrg uvmexp.forks_ppwait++;
531 1.37 mrg if (flags & FORK_SHAREVM)
532 1.37 mrg uvmexp.forks_sharevm++;
533 1.35 thorpej
534 1.142 ad if (ktrpoint(KTR_EMUL))
535 1.114 enami p2->p_traceflag |= KTRFAC_TRC_EMUL;
536 1.78 jdolecek
537 1.34 thorpej /*
538 1.161 ad * Notify any interested parties about the new process.
539 1.161 ad */
540 1.161 ad if (!SLIST_EMPTY(&p1->p_klist)) {
541 1.161 ad mutex_exit(proc_lock);
542 1.161 ad KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
543 1.161 ad mutex_enter(proc_lock);
544 1.161 ad }
545 1.161 ad
546 1.161 ad /*
547 1.130 ad * Make child runnable, set start time, and add to run queue except
548 1.130 ad * if the parent requested the child to start in SSTOP state.
549 1.130 ad */
550 1.162 ad mutex_enter(p2->p_lock);
551 1.130 ad
552 1.165 ad /*
553 1.165 ad * Start profiling.
554 1.165 ad */
555 1.165 ad if ((p2->p_stflag & PST_PROFIL) != 0) {
556 1.165 ad mutex_spin_enter(&p2->p_stmutex);
557 1.165 ad startprofclock(p2);
558 1.165 ad mutex_spin_exit(&p2->p_stmutex);
559 1.165 ad }
560 1.165 ad
561 1.130 ad getmicrotime(&p2->p_stats->p_start);
562 1.130 ad p2->p_acflag = AFORK;
563 1.165 ad lwp_lock(l2);
564 1.177 yamt KASSERT(p2->p_nrlwps == 1);
565 1.130 ad if (p2->p_sflag & PS_STOPFORK) {
566 1.184 rmind struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
567 1.130 ad p2->p_nrlwps = 0;
568 1.130 ad p2->p_stat = SSTOP;
569 1.130 ad p2->p_waited = 0;
570 1.130 ad p1->p_nstopchild++;
571 1.130 ad l2->l_stat = LSSTOP;
572 1.184 rmind KASSERT(l2->l_wchan == NULL);
573 1.184 rmind lwp_unlock_to(l2, spc->spc_lwplock);
574 1.130 ad } else {
575 1.130 ad p2->p_nrlwps = 1;
576 1.130 ad p2->p_stat = SACTIVE;
577 1.130 ad l2->l_stat = LSRUN;
578 1.139 yamt sched_enqueue(l2, false);
579 1.130 ad lwp_unlock(l2);
580 1.130 ad }
581 1.190 rmind
582 1.190 rmind /*
583 1.190 rmind * Return child pid to parent process,
584 1.190 rmind * marking us as parent via retval[1].
585 1.190 rmind */
586 1.190 rmind if (retval != NULL) {
587 1.190 rmind retval[0] = p2->p_pid;
588 1.190 rmind retval[1] = 0;
589 1.190 rmind }
590 1.205 kamil
591 1.167 ad mutex_exit(p2->p_lock);
592 1.130 ad
593 1.130 ad /*
594 1.205 kamil * Let the parent know that we are tracing its child.
595 1.205 kamil */
596 1.211 kamil if (tracefork(p1, flags) || tracevfork(p1, flags)) {
597 1.205 kamil mutex_enter(p1->p_lock);
598 1.210 kamil eventswitch(SIGTRAP, TRAP_CHLD);
599 1.205 kamil // XXX ktrpoint(KTR_PSIG)
600 1.205 kamil mutex_exit(p1->p_lock);
601 1.205 kamil mutex_enter(proc_lock);
602 1.205 kamil }
603 1.205 kamil
604 1.205 kamil /*
605 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
606 1.190 rmind * child to exec or exit, sleep until it clears LP_VFORKWAIT.
607 1.16 cgd */
608 1.205 kamil while (p2->p_lflag & PL_PPWAIT) // XXX: p2 can go invalid
609 1.191 christos cv_wait(&p1->p_waitcv, proc_lock);
610 1.130 ad
611 1.188 rmind /*
612 1.188 rmind * Let the parent know that we are tracing its child.
613 1.188 rmind */
614 1.211 kamil if (tracevforkdone(p1, flags)) {
615 1.206 kamil mutex_enter(p1->p_lock);
616 1.205 kamil p1->p_vfpid_done = retval[0];
617 1.210 kamil eventswitch(SIGTRAP, TRAP_CHLD);
618 1.206 kamil // XXX ktrpoint(KTR_PSIG)
619 1.206 kamil mutex_exit(p1->p_lock);
620 1.206 kamil // proc_lock unlocked
621 1.206 kamil } else
622 1.206 kamil mutex_exit(proc_lock);
623 1.16 cgd
624 1.188 rmind return 0;
625 1.16 cgd }
626 1.208 kamil
627 1.208 kamil void
628 1.208 kamil child_return(void *arg)
629 1.208 kamil {
630 1.208 kamil struct lwp *l = arg;
631 1.208 kamil struct proc *p = l->l_proc;
632 1.208 kamil
633 1.208 kamil if (p->p_slflag & PSL_TRACED) {
634 1.209 kamil /* Paranoid check */
635 1.209 kamil mutex_enter(proc_lock);
636 1.209 kamil if (!(p->p_slflag & PSL_TRACED)) {
637 1.209 kamil mutex_exit(proc_lock);
638 1.209 kamil goto my_tracer_is_gone;
639 1.209 kamil }
640 1.209 kamil
641 1.208 kamil mutex_enter(p->p_lock);
642 1.210 kamil eventswitch(SIGTRAP, TRAP_CHLD);
643 1.208 kamil // XXX ktrpoint(KTR_PSIG)
644 1.208 kamil mutex_exit(p->p_lock);
645 1.208 kamil }
646 1.208 kamil
647 1.209 kamil my_tracer_is_gone:
648 1.208 kamil md_child_return(l);
649 1.208 kamil
650 1.208 kamil /*
651 1.208 kamil * Return SYS_fork for all fork types, including vfork(2) and clone(2).
652 1.208 kamil *
653 1.208 kamil * This approach simplifies the code and avoids extra locking.
654 1.208 kamil */
655 1.208 kamil ktrsysret(SYS_fork, 0, 0);
656 1.208 kamil }
657