kern_fork.c revision 1.232 1 1.232 kre /* $NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $ */
2 1.85 thorpej
3 1.85 thorpej /*-
4 1.216 ad * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019
5 1.216 ad * The NetBSD Foundation, Inc.
6 1.85 thorpej * All rights reserved.
7 1.85 thorpej *
8 1.85 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.85 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.151 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
11 1.120 perry *
12 1.120 perry * Redistribution and use in source and binary forms, with or without
13 1.85 thorpej * modification, are permitted provided that the following conditions
14 1.85 thorpej * are met:
15 1.85 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.85 thorpej * notice, this list of conditions and the following disclaimer.
17 1.85 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.85 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.85 thorpej * documentation and/or other materials provided with the distribution.
20 1.120 perry *
21 1.85 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.85 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.85 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.85 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.85 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.85 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.85 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.85 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.85 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.85 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.85 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.120 perry */
33 1.19 cgd
34 1.16 cgd /*
35 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 1.17 cgd * The Regents of the University of California. All rights reserved.
37 1.16 cgd * (c) UNIX System Laboratories, Inc.
38 1.16 cgd * All or some portions of this file are derived from material licensed
39 1.16 cgd * to the University of California by American Telephone and Telegraph
40 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.16 cgd * the permission of UNIX System Laboratories, Inc.
42 1.16 cgd *
43 1.16 cgd * Redistribution and use in source and binary forms, with or without
44 1.16 cgd * modification, are permitted provided that the following conditions
45 1.16 cgd * are met:
46 1.16 cgd * 1. Redistributions of source code must retain the above copyright
47 1.16 cgd * notice, this list of conditions and the following disclaimer.
48 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.16 cgd * notice, this list of conditions and the following disclaimer in the
50 1.16 cgd * documentation and/or other materials provided with the distribution.
51 1.110 agc * 3. Neither the name of the University nor the names of its contributors
52 1.16 cgd * may be used to endorse or promote products derived from this software
53 1.16 cgd * without specific prior written permission.
54 1.16 cgd *
55 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.16 cgd * SUCH DAMAGE.
66 1.16 cgd *
67 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
68 1.16 cgd */
69 1.87 lukem
70 1.87 lukem #include <sys/cdefs.h>
71 1.232 kre __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $");
72 1.38 mrg
73 1.43 thorpej #include "opt_ktrace.h"
74 1.194 christos #include "opt_dtrace.h"
75 1.16 cgd
76 1.16 cgd #include <sys/param.h>
77 1.16 cgd #include <sys/systm.h>
78 1.16 cgd #include <sys/filedesc.h>
79 1.16 cgd #include <sys/kernel.h>
80 1.44 thorpej #include <sys/pool.h>
81 1.29 christos #include <sys/mount.h>
82 1.16 cgd #include <sys/proc.h>
83 1.92 gmcgarry #include <sys/ras.h>
84 1.16 cgd #include <sys/resourcevar.h>
85 1.16 cgd #include <sys/vnode.h>
86 1.16 cgd #include <sys/file.h>
87 1.16 cgd #include <sys/acct.h>
88 1.16 cgd #include <sys/ktrace.h>
89 1.53 ross #include <sys/sched.h>
90 1.56 thorpej #include <sys/signalvar.h>
91 1.208 kamil #include <sys/syscall.h>
92 1.124 elad #include <sys/kauth.h>
93 1.151 ad #include <sys/atomic.h>
94 1.29 christos #include <sys/syscallargs.h>
95 1.171 pooka #include <sys/uidinfo.h>
96 1.176 darran #include <sys/sdt.h>
97 1.186 christos #include <sys/ptrace.h>
98 1.16 cgd
99 1.176 darran /*
100 1.176 darran * DTrace SDT provider definitions
101 1.176 darran */
102 1.194 christos SDT_PROVIDER_DECLARE(proc);
103 1.194 christos SDT_PROBE_DEFINE3(proc, kernel, , create,
104 1.194 christos "struct proc *", /* new process */
105 1.194 christos "struct proc *", /* parent process */
106 1.194 christos "int" /* flags */);
107 1.176 darran
108 1.188 rmind u_int nprocs __cacheline_aligned = 1; /* process 0 */
109 1.26 mycroft
110 1.103 jdolecek /*
111 1.103 jdolecek * Number of ticks to sleep if fork() would fail due to process hitting
112 1.231 andvar * limits. Exported in milliseconds to userland via sysctl.
113 1.103 jdolecek */
114 1.103 jdolecek int forkfsleep = 0;
115 1.103 jdolecek
116 1.26 mycroft int
117 1.153 dsl sys_fork(struct lwp *l, const void *v, register_t *retval)
118 1.16 cgd {
119 1.16 cgd
120 1.204 kamil return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
121 1.16 cgd }
122 1.16 cgd
123 1.34 thorpej /*
124 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
125 1.34 thorpej * Address space is not shared, but parent is blocked until child exit.
126 1.34 thorpej */
127 1.26 mycroft int
128 1.153 dsl sys_vfork(struct lwp *l, const void *v, register_t *retval)
129 1.16 cgd {
130 1.16 cgd
131 1.188 rmind return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
132 1.204 kamil retval);
133 1.16 cgd }
134 1.16 cgd
135 1.34 thorpej /*
136 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
137 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit.
138 1.34 thorpej */
139 1.26 mycroft int
140 1.153 dsl sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 1.34 thorpej {
142 1.34 thorpej
143 1.188 rmind return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 1.204 kamil NULL, NULL, retval);
145 1.85 thorpej }
146 1.85 thorpej
147 1.85 thorpej /*
148 1.85 thorpej * Linux-compatible __clone(2) system call.
149 1.85 thorpej */
150 1.85 thorpej int
151 1.188 rmind sys___clone(struct lwp *l, const struct sys___clone_args *uap,
152 1.188 rmind register_t *retval)
153 1.85 thorpej {
154 1.153 dsl /* {
155 1.85 thorpej syscallarg(int) flags;
156 1.85 thorpej syscallarg(void *) stack;
157 1.153 dsl } */
158 1.85 thorpej int flags, sig;
159 1.85 thorpej
160 1.85 thorpej /*
161 1.225 kamil * We don't support the CLONE_PTRACE flag.
162 1.85 thorpej */
163 1.225 kamil if (SCARG(uap, flags) & (CLONE_PTRACE))
164 1.188 rmind return EINVAL;
165 1.86 fvdl
166 1.118 jdolecek /*
167 1.118 jdolecek * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
168 1.118 jdolecek */
169 1.118 jdolecek if (SCARG(uap, flags) & CLONE_SIGHAND
170 1.118 jdolecek && (SCARG(uap, flags) & CLONE_VM) == 0)
171 1.188 rmind return EINVAL;
172 1.118 jdolecek
173 1.86 fvdl flags = 0;
174 1.85 thorpej
175 1.85 thorpej if (SCARG(uap, flags) & CLONE_VM)
176 1.85 thorpej flags |= FORK_SHAREVM;
177 1.85 thorpej if (SCARG(uap, flags) & CLONE_FS)
178 1.85 thorpej flags |= FORK_SHARECWD;
179 1.85 thorpej if (SCARG(uap, flags) & CLONE_FILES)
180 1.85 thorpej flags |= FORK_SHAREFILES;
181 1.85 thorpej if (SCARG(uap, flags) & CLONE_SIGHAND)
182 1.85 thorpej flags |= FORK_SHARESIGS;
183 1.85 thorpej if (SCARG(uap, flags) & CLONE_VFORK)
184 1.85 thorpej flags |= FORK_PPWAIT;
185 1.85 thorpej
186 1.85 thorpej sig = SCARG(uap, flags) & CLONE_CSIGNAL;
187 1.85 thorpej if (sig < 0 || sig >= _NSIG)
188 1.188 rmind return EINVAL;
189 1.85 thorpej
190 1.85 thorpej /*
191 1.232 kre * Linux doesn't have close-on-fork yet, so we don't
192 1.232 kre * know what they will do combining CLONE_FILES with
193 1.232 kre * close-on-fork (which are not really compatible).
194 1.232 kre * This might need to be changed in the future (another
195 1.232 kre * option would be to just disable FORK_SHAREFILES)
196 1.232 kre */
197 1.232 kre if ((flags & FORK_SHAREFILES) != 0) {
198 1.232 kre if (l->l_fd != NULL && l->l_fd->fd_foclose)
199 1.232 kre return EINVAL;
200 1.232 kre }
201 1.232 kre
202 1.232 kre /*
203 1.85 thorpej * Note that the Linux API does not provide a portable way of
204 1.85 thorpej * specifying the stack area; the caller must know if the stack
205 1.85 thorpej * grows up or down. So, we pass a stack size of 0, so that the
206 1.85 thorpej * code that makes this adjustment is a noop.
207 1.85 thorpej */
208 1.188 rmind return fork1(l, flags, sig, SCARG(uap, stack), 0,
209 1.204 kamil NULL, NULL, retval);
210 1.49 thorpej }
211 1.49 thorpej
212 1.188 rmind /*
213 1.188 rmind * Print the 'table full' message once per 10 seconds.
214 1.188 rmind */
215 1.188 rmind static struct timeval fork_tfmrate = { 10, 0 };
216 1.101 jdolecek
217 1.212 kamil /*
218 1.212 kamil * Check if a process is traced and shall inform about FORK events.
219 1.212 kamil */
220 1.211 kamil static inline bool
221 1.211 kamil tracefork(struct proc *p, int flags)
222 1.211 kamil {
223 1.211 kamil
224 1.211 kamil return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
225 1.211 kamil (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
226 1.211 kamil }
227 1.211 kamil
228 1.212 kamil /*
229 1.212 kamil * Check if a process is traced and shall inform about VFORK events.
230 1.212 kamil */
231 1.211 kamil static inline bool
232 1.211 kamil tracevfork(struct proc *p, int flags)
233 1.211 kamil {
234 1.211 kamil
235 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
236 1.211 kamil (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
237 1.211 kamil }
238 1.211 kamil
239 1.212 kamil /*
240 1.212 kamil * Check if a process is traced and shall inform about VFORK_DONE events.
241 1.212 kamil */
242 1.211 kamil static inline bool
243 1.211 kamil tracevforkdone(struct proc *p, int flags)
244 1.211 kamil {
245 1.211 kamil
246 1.211 kamil return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
247 1.211 kamil (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
248 1.211 kamil }
249 1.211 kamil
250 1.130 ad /*
251 1.130 ad * General fork call. Note that another LWP in the process may call exec()
252 1.130 ad * or exit() while we are forking. It's safe to continue here, because
253 1.130 ad * neither operation will complete until all LWPs have exited the process.
254 1.188 rmind */
255 1.34 thorpej int
256 1.105 thorpej fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
257 1.204 kamil void (*func)(void *), void *arg, register_t *retval)
258 1.16 cgd {
259 1.113 dsl struct proc *p1, *p2, *parent;
260 1.144 dsl struct plimit *p1_lim;
261 1.84 lukem uid_t uid;
262 1.105 thorpej struct lwp *l2;
263 1.130 ad int count;
264 1.84 lukem vaddr_t uaddr;
265 1.151 ad int tnprocs;
266 1.156 elad int error = 0;
267 1.16 cgd
268 1.105 thorpej p1 = l1->l_proc;
269 1.162 ad uid = kauth_cred_getuid(l1->l_cred);
270 1.151 ad tnprocs = atomic_inc_uint_nv(&nprocs);
271 1.156 elad
272 1.156 elad /*
273 1.156 elad * Although process entries are dynamically created, we still keep
274 1.156 elad * a global limit on the maximum number we will create.
275 1.156 elad */
276 1.156 elad if (__predict_false(tnprocs >= maxproc))
277 1.156 elad error = -1;
278 1.156 elad else
279 1.157 ad error = kauth_authorize_process(l1->l_cred,
280 1.156 elad KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
281 1.156 elad
282 1.156 elad if (error) {
283 1.101 jdolecek static struct timeval lasttfm;
284 1.151 ad atomic_dec_uint(&nprocs);
285 1.101 jdolecek if (ratecheck(&lasttfm, &fork_tfmrate))
286 1.101 jdolecek tablefull("proc", "increase kern.maxproc or NPROC");
287 1.103 jdolecek if (forkfsleep)
288 1.166 ad kpause("forkmx", false, forkfsleep, NULL);
289 1.188 rmind return EAGAIN;
290 1.16 cgd }
291 1.21 mycroft
292 1.17 cgd /*
293 1.150 elad * Enforce limits.
294 1.17 cgd */
295 1.17 cgd count = chgproccnt(uid, 1);
296 1.189 elad if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
297 1.189 elad if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
298 1.189 elad p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
299 1.189 elad &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
300 1.189 elad (void)chgproccnt(uid, -1);
301 1.189 elad atomic_dec_uint(&nprocs);
302 1.189 elad if (forkfsleep)
303 1.189 elad kpause("forkulim", false, forkfsleep, NULL);
304 1.189 elad return EAGAIN;
305 1.189 elad }
306 1.17 cgd }
307 1.17 cgd
308 1.41 thorpej /*
309 1.41 thorpej * Allocate virtual address space for the U-area now, while it
310 1.41 thorpej * is still easy to abort the fork operation if we're out of
311 1.174 rmind * kernel virtual address space.
312 1.41 thorpej */
313 1.174 rmind uaddr = uvm_uarea_alloc();
314 1.64 thorpej if (__predict_false(uaddr == 0)) {
315 1.41 thorpej (void)chgproccnt(uid, -1);
316 1.151 ad atomic_dec_uint(&nprocs);
317 1.188 rmind return ENOMEM;
318 1.41 thorpej }
319 1.41 thorpej
320 1.223 thorpej /* Allocate new proc. */
321 1.223 thorpej p2 = proc_alloc();
322 1.223 thorpej if (p2 == NULL) {
323 1.223 thorpej /* We were unable to allocate a process ID. */
324 1.228 riastrad uvm_uarea_free(uaddr);
325 1.228 riastrad mutex_enter(p1->p_lock);
326 1.229 prlw1 uid = kauth_cred_getuid(p1->p_cred);
327 1.228 riastrad (void)chgproccnt(uid, -1);
328 1.228 riastrad mutex_exit(p1->p_lock);
329 1.228 riastrad atomic_dec_uint(&nprocs);
330 1.223 thorpej return EAGAIN;
331 1.223 thorpej }
332 1.223 thorpej
333 1.41 thorpej /*
334 1.41 thorpej * We are now committed to the fork. From here on, we may
335 1.41 thorpej * block on resources, but resource allocation may NOT fail.
336 1.41 thorpej */
337 1.41 thorpej
338 1.16 cgd /*
339 1.16 cgd * Make a proc table entry for the new process.
340 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
341 1.16 cgd * then copy the section that is copied directly from the parent.
342 1.16 cgd */
343 1.45 perry memset(&p2->p_startzero, 0,
344 1.135 christos (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
345 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy,
346 1.135 christos (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
347 1.66 thorpej
348 1.193 christos TAILQ_INIT(&p2->p_sigpend.sp_info);
349 1.130 ad
350 1.105 thorpej LIST_INIT(&p2->p_lwps);
351 1.130 ad LIST_INIT(&p2->p_sigwaiters);
352 1.16 cgd
353 1.16 cgd /*
354 1.16 cgd * Duplicate sub-structures as needed.
355 1.16 cgd * Increase reference counts on shared objects.
356 1.122 cube * Inherit flags we want to keep. The flags related to SIGCHLD
357 1.122 cube * handling are important in order to keep a consistent behaviour
358 1.179 matt * for the child after the fork. If we are a 32-bit process, the
359 1.179 matt * child will be too.
360 1.16 cgd */
361 1.179 matt p2->p_flag =
362 1.179 matt p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
363 1.21 mycroft p2->p_emul = p1->p_emul;
364 1.88 thorpej p2->p_execsw = p1->p_execsw;
365 1.83 fvdl
366 1.130 ad if (flags & FORK_SYSTEM) {
367 1.130 ad /*
368 1.130 ad * Mark it as a system process. Set P_NOCLDWAIT so that
369 1.188 rmind * children are reparented to init(8) when they exit.
370 1.130 ad * init(8) can easily wait them out for us.
371 1.130 ad */
372 1.132 pavel p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
373 1.130 ad }
374 1.130 ad
375 1.152 ad mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
376 1.155 ad mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
377 1.147 ad rw_init(&p2->p_reflock);
378 1.130 ad cv_init(&p2->p_waitcv, "wait");
379 1.130 ad cv_init(&p2->p_lwpcv, "lwpwait");
380 1.124 elad
381 1.162 ad /*
382 1.162 ad * Share a lock between the processes if they are to share signal
383 1.162 ad * state: we must synchronize access to it.
384 1.162 ad */
385 1.162 ad if (flags & FORK_SHARESIGS) {
386 1.162 ad p2->p_lock = p1->p_lock;
387 1.162 ad mutex_obj_hold(p1->p_lock);
388 1.162 ad } else
389 1.162 ad p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
390 1.162 ad
391 1.129 elad kauth_proc_fork(p1, p2);
392 1.92 gmcgarry
393 1.145 ad p2->p_raslist = NULL;
394 1.92 gmcgarry #if defined(__HAVE_RAS)
395 1.92 gmcgarry ras_fork(p1, p2);
396 1.92 gmcgarry #endif
397 1.51 sommerfe
398 1.17 cgd /* bump references to the text vnode (for procfs) */
399 1.17 cgd p2->p_textvp = p1->p_textvp;
400 1.17 cgd if (p2->p_textvp)
401 1.175 pooka vref(p2->p_textvp);
402 1.203 christos if (p1->p_path)
403 1.203 christos p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
404 1.203 christos else
405 1.203 christos p2->p_path = NULL;
406 1.16 cgd
407 1.57 thorpej if (flags & FORK_SHAREFILES)
408 1.159 ad fd_share(p2);
409 1.91 pooka else if (flags & FORK_CLEANFILES)
410 1.159 ad p2->p_fd = fd_init(NULL);
411 1.57 thorpej else
412 1.159 ad p2->p_fd = fd_copy();
413 1.57 thorpej
414 1.181 rmind /* XXX racy */
415 1.181 rmind p2->p_mqueue_cnt = p1->p_mqueue_cnt;
416 1.181 rmind
417 1.57 thorpej if (flags & FORK_SHARECWD)
418 1.159 ad cwdshare(p2);
419 1.57 thorpej else
420 1.159 ad p2->p_cwdi = cwdinit();
421 1.55 thorpej
422 1.16 cgd /*
423 1.183 rmind * Note: p_limit (rlimit stuff) is copy-on-write, so normally
424 1.183 rmind * we just need increase pl_refcnt.
425 1.144 dsl */
426 1.144 dsl p1_lim = p1->p_limit;
427 1.183 rmind if (!p1_lim->pl_writeable) {
428 1.144 dsl lim_addref(p1_lim);
429 1.144 dsl p2->p_limit = p1_lim;
430 1.183 rmind } else {
431 1.183 rmind p2->p_limit = lim_copy(p1_lim);
432 1.16 cgd }
433 1.16 cgd
434 1.190 rmind if (flags & FORK_PPWAIT) {
435 1.190 rmind /* Mark ourselves as waiting for a child. */
436 1.190 rmind p2->p_lflag = PL_PPWAIT;
437 1.213 kamil l1->l_vforkwaiting = true;
438 1.190 rmind p2->p_vforklwp = l1;
439 1.190 rmind } else {
440 1.190 rmind p2->p_lflag = 0;
441 1.213 kamil l1->l_vforkwaiting = false;
442 1.190 rmind }
443 1.170 ad p2->p_sflag = 0;
444 1.130 ad p2->p_slflag = 0;
445 1.113 dsl parent = (flags & FORK_NOWAIT) ? initproc : p1;
446 1.113 dsl p2->p_pptr = parent;
447 1.169 ad p2->p_ppid = parent->p_pid;
448 1.107 dsl LIST_INIT(&p2->p_children);
449 1.107 dsl
450 1.138 rmind p2->p_aio = NULL;
451 1.62 thorpej
452 1.16 cgd #ifdef KTRACE
453 1.16 cgd /*
454 1.16 cgd * Copy traceflag and tracefile if enabled.
455 1.16 cgd * If not inherited, these were zeroed above.
456 1.16 cgd */
457 1.83 fvdl if (p1->p_traceflag & KTRFAC_INHERIT) {
458 1.142 ad mutex_enter(&ktrace_lock);
459 1.16 cgd p2->p_traceflag = p1->p_traceflag;
460 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
461 1.42 christos ktradref(p2);
462 1.142 ad mutex_exit(&ktrace_lock);
463 1.16 cgd }
464 1.16 cgd #endif
465 1.83 fvdl
466 1.56 thorpej /*
467 1.56 thorpej * Create signal actions for the child process.
468 1.56 thorpej */
469 1.148 ad p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
470 1.162 ad mutex_enter(p1->p_lock);
471 1.130 ad p2->p_sflag |=
472 1.130 ad (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
473 1.139 yamt sched_proc_fork(p1, p2);
474 1.162 ad mutex_exit(p1->p_lock);
475 1.130 ad
476 1.130 ad p2->p_stflag = p1->p_stflag;
477 1.75 jdolecek
478 1.75 jdolecek /*
479 1.120 perry * p_stats.
480 1.105 thorpej * Copy parts of p_stats, and zero out the rest.
481 1.105 thorpej */
482 1.105 thorpej p2->p_stats = pstatscopy(p1->p_stats);
483 1.105 thorpej
484 1.105 thorpej /*
485 1.178 chs * Set up the new process address space.
486 1.178 chs */
487 1.178 chs uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
488 1.178 chs
489 1.178 chs /*
490 1.178 chs * Finish creating the child process.
491 1.178 chs * It will return through a different path later.
492 1.178 chs */
493 1.178 chs lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
494 1.178 chs stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
495 1.202 christos l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
496 1.185 christos
497 1.185 christos /*
498 1.185 christos * Inherit l_private from the parent.
499 1.185 christos * Note that we cannot use lwp_setprivate() here since that
500 1.185 christos * also sets the CPU TLS register, which is incorrect if the
501 1.185 christos * process has changed that without letting the kernel know.
502 1.185 christos */
503 1.185 christos l2->l_private = l1->l_private;
504 1.178 chs
505 1.178 chs /*
506 1.178 chs * If emulation has a process fork hook, call it now.
507 1.75 jdolecek */
508 1.75 jdolecek if (p2->p_emul->e_proc_fork)
509 1.178 chs (*p2->p_emul->e_proc_fork)(p2, l1, flags);
510 1.106 thorpej
511 1.106 thorpej /*
512 1.106 thorpej * ...and finally, any other random fork hooks that subsystems
513 1.106 thorpej * might have registered.
514 1.106 thorpej */
515 1.106 thorpej doforkhooks(p2, p1);
516 1.16 cgd
517 1.194 christos SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
518 1.176 darran
519 1.26 mycroft /*
520 1.130 ad * It's now safe for the scheduler and other processes to see the
521 1.130 ad * child process.
522 1.130 ad */
523 1.226 ad mutex_enter(&proc_lock);
524 1.130 ad
525 1.130 ad if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
526 1.130 ad p2->p_lflag |= PL_CONTROLT;
527 1.130 ad
528 1.130 ad LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
529 1.95 christos p2->p_exitsig = exitsig; /* signal for parent on exit */
530 1.130 ad
531 1.187 christos /*
532 1.199 kamil * Trace fork(2) and vfork(2)-like events on demand in a debugger.
533 1.187 christos */
534 1.224 kamil if (tracefork(p1, flags) || tracevfork(p1, flags)) {
535 1.205 kamil proc_changeparent(p2, p1->p_pptr);
536 1.224 kamil SET(p2->p_slflag, PSL_TRACEDCHILD);
537 1.224 kamil }
538 1.222 kamil
539 1.222 kamil p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
540 1.186 christos
541 1.130 ad LIST_INSERT_AFTER(p1, p2, p_pglist);
542 1.95 christos LIST_INSERT_HEAD(&allproc, p2, p_list);
543 1.130 ad
544 1.158 dsl p2->p_trace_enabled = trace_is_enabled(p2);
545 1.98 provos #ifdef __HAVE_SYSCALL_INTERN
546 1.98 provos (*p2->p_emul->e_syscall_intern)(p2);
547 1.98 provos #endif
548 1.16 cgd
549 1.16 cgd /*
550 1.34 thorpej * Update stats now that we know the fork was successful.
551 1.34 thorpej */
552 1.217 ad KPREEMPT_DISABLE(l1);
553 1.217 ad CPU_COUNT(CPU_COUNT_FORKS, 1);
554 1.37 mrg if (flags & FORK_PPWAIT)
555 1.217 ad CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1);
556 1.37 mrg if (flags & FORK_SHAREVM)
557 1.217 ad CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1);
558 1.217 ad KPREEMPT_ENABLE(l1);
559 1.35 thorpej
560 1.142 ad if (ktrpoint(KTR_EMUL))
561 1.114 enami p2->p_traceflag |= KTRFAC_TRC_EMUL;
562 1.78 jdolecek
563 1.34 thorpej /*
564 1.161 ad * Notify any interested parties about the new process.
565 1.161 ad */
566 1.161 ad if (!SLIST_EMPTY(&p1->p_klist)) {
567 1.226 ad mutex_exit(&proc_lock);
568 1.227 thorpej knote_proc_fork(p1, p2);
569 1.226 ad mutex_enter(&proc_lock);
570 1.161 ad }
571 1.161 ad
572 1.161 ad /*
573 1.130 ad * Make child runnable, set start time, and add to run queue except
574 1.130 ad * if the parent requested the child to start in SSTOP state.
575 1.130 ad */
576 1.162 ad mutex_enter(p2->p_lock);
577 1.130 ad
578 1.165 ad /*
579 1.165 ad * Start profiling.
580 1.165 ad */
581 1.165 ad if ((p2->p_stflag & PST_PROFIL) != 0) {
582 1.165 ad mutex_spin_enter(&p2->p_stmutex);
583 1.165 ad startprofclock(p2);
584 1.165 ad mutex_spin_exit(&p2->p_stmutex);
585 1.165 ad }
586 1.165 ad
587 1.130 ad getmicrotime(&p2->p_stats->p_start);
588 1.130 ad p2->p_acflag = AFORK;
589 1.165 ad lwp_lock(l2);
590 1.177 yamt KASSERT(p2->p_nrlwps == 1);
591 1.216 ad KASSERT(l2->l_stat == LSIDL);
592 1.130 ad if (p2->p_sflag & PS_STOPFORK) {
593 1.130 ad p2->p_nrlwps = 0;
594 1.130 ad p2->p_stat = SSTOP;
595 1.130 ad p2->p_waited = 0;
596 1.130 ad p1->p_nstopchild++;
597 1.130 ad l2->l_stat = LSSTOP;
598 1.184 rmind KASSERT(l2->l_wchan == NULL);
599 1.216 ad lwp_unlock(l2);
600 1.130 ad } else {
601 1.130 ad p2->p_nrlwps = 1;
602 1.130 ad p2->p_stat = SACTIVE;
603 1.216 ad setrunnable(l2);
604 1.216 ad /* LWP now unlocked */
605 1.130 ad }
606 1.190 rmind
607 1.190 rmind /*
608 1.190 rmind * Return child pid to parent process,
609 1.190 rmind * marking us as parent via retval[1].
610 1.190 rmind */
611 1.190 rmind if (retval != NULL) {
612 1.190 rmind retval[0] = p2->p_pid;
613 1.190 rmind retval[1] = 0;
614 1.190 rmind }
615 1.205 kamil
616 1.167 ad mutex_exit(p2->p_lock);
617 1.130 ad
618 1.130 ad /*
619 1.205 kamil * Let the parent know that we are tracing its child.
620 1.205 kamil */
621 1.211 kamil if (tracefork(p1, flags) || tracevfork(p1, flags)) {
622 1.205 kamil mutex_enter(p1->p_lock);
623 1.214 kamil eventswitch(TRAP_CHLD,
624 1.214 kamil tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK,
625 1.214 kamil retval[0]);
626 1.226 ad mutex_enter(&proc_lock);
627 1.205 kamil }
628 1.205 kamil
629 1.205 kamil /*
630 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
631 1.213 kamil * child to exec or exit, sleep until it clears p_vforkwaiting.
632 1.16 cgd */
633 1.213 kamil while (l1->l_vforkwaiting)
634 1.226 ad cv_wait(&l1->l_waitcv, &proc_lock);
635 1.130 ad
636 1.188 rmind /*
637 1.188 rmind * Let the parent know that we are tracing its child.
638 1.188 rmind */
639 1.211 kamil if (tracevforkdone(p1, flags)) {
640 1.206 kamil mutex_enter(p1->p_lock);
641 1.214 kamil eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]);
642 1.206 kamil } else
643 1.226 ad mutex_exit(&proc_lock);
644 1.16 cgd
645 1.188 rmind return 0;
646 1.16 cgd }
647 1.208 kamil
648 1.212 kamil /*
649 1.212 kamil * MI code executed in each newly spawned process before returning to userland.
650 1.212 kamil */
651 1.208 kamil void
652 1.208 kamil child_return(void *arg)
653 1.208 kamil {
654 1.219 ad struct lwp *l = curlwp;
655 1.208 kamil struct proc *p = l->l_proc;
656 1.208 kamil
657 1.224 kamil if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
658 1.224 kamil (PSL_TRACED|PSL_TRACEDCHILD)) {
659 1.230 skrll eventswitchchild(p, TRAP_CHLD,
660 1.220 christos ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK);
661 1.208 kamil }
662 1.208 kamil
663 1.208 kamil md_child_return(l);
664 1.208 kamil
665 1.208 kamil /*
666 1.208 kamil * Return SYS_fork for all fork types, including vfork(2) and clone(2).
667 1.208 kamil *
668 1.208 kamil * This approach simplifies the code and avoids extra locking.
669 1.208 kamil */
670 1.208 kamil ktrsysret(SYS_fork, 0, 0);
671 1.208 kamil }
672