Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.61.2.3
      1  1.61.2.2    bouyer /*	$NetBSD: kern_fork.c,v 1.61.2.3 2000/12/08 09:13:53 bouyer Exp $	*/
      2      1.19       cgd 
      3      1.16       cgd /*
      4      1.17       cgd  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5      1.17       cgd  *	The Regents of the University of California.  All rights reserved.
      6      1.16       cgd  * (c) UNIX System Laboratories, Inc.
      7      1.16       cgd  * All or some portions of this file are derived from material licensed
      8      1.16       cgd  * to the University of California by American Telephone and Telegraph
      9      1.16       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10      1.16       cgd  * the permission of UNIX System Laboratories, Inc.
     11      1.16       cgd  *
     12      1.16       cgd  * Redistribution and use in source and binary forms, with or without
     13      1.16       cgd  * modification, are permitted provided that the following conditions
     14      1.16       cgd  * are met:
     15      1.16       cgd  * 1. Redistributions of source code must retain the above copyright
     16      1.16       cgd  *    notice, this list of conditions and the following disclaimer.
     17      1.16       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18      1.16       cgd  *    notice, this list of conditions and the following disclaimer in the
     19      1.16       cgd  *    documentation and/or other materials provided with the distribution.
     20      1.16       cgd  * 3. All advertising materials mentioning features or use of this software
     21      1.16       cgd  *    must display the following acknowledgement:
     22      1.16       cgd  *	This product includes software developed by the University of
     23      1.16       cgd  *	California, Berkeley and its contributors.
     24      1.16       cgd  * 4. Neither the name of the University nor the names of its contributors
     25      1.16       cgd  *    may be used to endorse or promote products derived from this software
     26      1.16       cgd  *    without specific prior written permission.
     27      1.16       cgd  *
     28      1.16       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29      1.16       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30      1.16       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31      1.16       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32      1.16       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33      1.16       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34      1.16       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35      1.16       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36      1.16       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37      1.16       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38      1.16       cgd  * SUCH DAMAGE.
     39      1.16       cgd  *
     40      1.40      fvdl  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     41      1.16       cgd  */
     42      1.38       mrg 
     43      1.43   thorpej #include "opt_ktrace.h"
     44  1.61.2.1    bouyer #include "opt_multiprocessor.h"
     45      1.16       cgd 
     46      1.16       cgd #include <sys/param.h>
     47      1.16       cgd #include <sys/systm.h>
     48      1.17       cgd #include <sys/map.h>
     49      1.16       cgd #include <sys/filedesc.h>
     50      1.16       cgd #include <sys/kernel.h>
     51      1.16       cgd #include <sys/malloc.h>
     52      1.44   thorpej #include <sys/pool.h>
     53      1.29  christos #include <sys/mount.h>
     54      1.16       cgd #include <sys/proc.h>
     55      1.16       cgd #include <sys/resourcevar.h>
     56      1.16       cgd #include <sys/vnode.h>
     57      1.16       cgd #include <sys/file.h>
     58      1.16       cgd #include <sys/acct.h>
     59      1.16       cgd #include <sys/ktrace.h>
     60      1.34   thorpej #include <sys/vmmeter.h>
     61      1.53      ross #include <sys/sched.h>
     62      1.56   thorpej #include <sys/signalvar.h>
     63      1.29  christos 
     64      1.29  christos #include <sys/syscallargs.h>
     65      1.29  christos 
     66      1.37       mrg #include <uvm/uvm_extern.h>
     67      1.37       mrg 
     68      1.26   mycroft int	nprocs = 1;		/* process 0 */
     69      1.26   mycroft 
     70      1.28  christos /*ARGSUSED*/
     71      1.26   mycroft int
     72  1.61.2.1    bouyer sys_fork(struct proc *p, void *v, register_t *retval)
     73      1.16       cgd {
     74      1.16       cgd 
     75  1.61.2.1    bouyer 	return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
     76      1.16       cgd }
     77      1.16       cgd 
     78      1.34   thorpej /*
     79      1.34   thorpej  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
     80      1.34   thorpej  * Address space is not shared, but parent is blocked until child exit.
     81      1.34   thorpej  */
     82      1.28  christos /*ARGSUSED*/
     83      1.26   mycroft int
     84  1.61.2.1    bouyer sys_vfork(struct proc *p, void *v, register_t *retval)
     85      1.16       cgd {
     86      1.16       cgd 
     87  1.61.2.1    bouyer 	return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
     88  1.61.2.1    bouyer 	    retval, NULL));
     89      1.16       cgd }
     90      1.16       cgd 
     91      1.34   thorpej /*
     92      1.34   thorpej  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
     93      1.34   thorpej  * semantics.  Address space is shared, and parent is blocked until child exit.
     94      1.34   thorpej  */
     95      1.34   thorpej /*ARGSUSED*/
     96      1.26   mycroft int
     97  1.61.2.1    bouyer sys___vfork14(struct proc *p, void *v, register_t *retval)
     98      1.34   thorpej {
     99      1.34   thorpej 
    100      1.59   thorpej 	return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    101  1.61.2.1    bouyer 	    NULL, NULL, retval, NULL));
    102      1.49   thorpej }
    103      1.49   thorpej 
    104      1.34   thorpej int
    105  1.61.2.1    bouyer fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
    106  1.61.2.1    bouyer     void (*func)(void *), void *arg, register_t *retval,
    107  1.61.2.1    bouyer     struct proc **rnewprocp)
    108      1.16       cgd {
    109  1.61.2.2    bouyer 	struct proc *p2, *tp;
    110  1.61.2.1    bouyer 	uid_t uid;
    111      1.49   thorpej 	int count, s;
    112      1.46       eeh 	vaddr_t uaddr;
    113      1.16       cgd 	static int nextpid, pidchecked = 0;
    114      1.16       cgd 
    115      1.16       cgd 	/*
    116      1.17       cgd 	 * Although process entries are dynamically created, we still keep
    117      1.16       cgd 	 * a global limit on the maximum number we will create.  Don't allow
    118      1.16       cgd 	 * a nonprivileged user to use the last process; don't let root
    119      1.17       cgd 	 * exceed the limit. The variable nprocs is the current number of
    120      1.16       cgd 	 * processes, maxproc is the limit.
    121      1.16       cgd 	 */
    122      1.17       cgd 	uid = p1->p_cred->p_ruid;
    123  1.61.2.1    bouyer 	if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
    124  1.61.2.1    bouyer 			    nprocs >= maxproc)) {
    125  1.61.2.1    bouyer 		tablefull("proc", "increase kern.maxproc or NPROC");
    126      1.16       cgd 		return (EAGAIN);
    127      1.16       cgd 	}
    128  1.61.2.2    bouyer 	nprocs++;
    129      1.21   mycroft 
    130      1.17       cgd 	/*
    131      1.17       cgd 	 * Increment the count of procs running with this uid. Don't allow
    132      1.17       cgd 	 * a nonprivileged user to exceed their current limit.
    133      1.17       cgd 	 */
    134      1.17       cgd 	count = chgproccnt(uid, 1);
    135  1.61.2.1    bouyer 	if (__predict_false(uid != 0 && count >
    136  1.61.2.1    bouyer 			    p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    137      1.17       cgd 		(void)chgproccnt(uid, -1);
    138  1.61.2.2    bouyer 		nprocs--;
    139      1.16       cgd 		return (EAGAIN);
    140      1.17       cgd 	}
    141      1.17       cgd 
    142      1.41   thorpej 	/*
    143      1.41   thorpej 	 * Allocate virtual address space for the U-area now, while it
    144      1.41   thorpej 	 * is still easy to abort the fork operation if we're out of
    145      1.41   thorpej 	 * kernel virtual address space.  The actual U-area pages will
    146      1.41   thorpej 	 * be allocated and wired in vm_fork().
    147      1.41   thorpej 	 */
    148  1.61.2.3    bouyer 	uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE);
    149  1.61.2.1    bouyer 	if (__predict_false(uaddr == 0)) {
    150      1.41   thorpej 		(void)chgproccnt(uid, -1);
    151  1.61.2.2    bouyer 		nprocs--;
    152      1.41   thorpej 		return (ENOMEM);
    153      1.41   thorpej 	}
    154      1.41   thorpej 
    155      1.41   thorpej 	/*
    156      1.41   thorpej 	 * We are now committed to the fork.  From here on, we may
    157      1.41   thorpej 	 * block on resources, but resource allocation may NOT fail.
    158      1.41   thorpej 	 */
    159      1.41   thorpej 
    160      1.17       cgd 	/* Allocate new proc. */
    161  1.61.2.2    bouyer 	p2 = pool_get(&proc_pool, PR_WAITOK);
    162      1.16       cgd 
    163      1.16       cgd 	/*
    164      1.16       cgd 	 * Make a proc table entry for the new process.
    165      1.16       cgd 	 * Start by zeroing the section of proc that is zero-initialized,
    166      1.16       cgd 	 * then copy the section that is copied directly from the parent.
    167      1.16       cgd 	 */
    168      1.45     perry 	memset(&p2->p_startzero, 0,
    169      1.16       cgd 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
    170      1.45     perry 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    171      1.16       cgd 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
    172      1.16       cgd 
    173  1.61.2.1    bouyer #if !defined(MULTIPROCESSOR)
    174  1.61.2.1    bouyer 	/*
    175  1.61.2.1    bouyer 	 * In the single-processor case, all processes will always run
    176  1.61.2.1    bouyer 	 * on the same CPU.  So, initialize the child's CPU to the parent's
    177  1.61.2.1    bouyer 	 * now.  In the multiprocessor case, the child's CPU will be
    178  1.61.2.1    bouyer 	 * initialized in the low-level context switch code when the
    179  1.61.2.1    bouyer 	 * process runs.
    180  1.61.2.1    bouyer 	 */
    181  1.61.2.1    bouyer 	p2->p_cpu = p1->p_cpu;
    182  1.61.2.1    bouyer #else
    183  1.61.2.1    bouyer 	/*
    184  1.61.2.1    bouyer 	 * zero child's cpu pointer so we don't get trash.
    185  1.61.2.1    bouyer 	 */
    186  1.61.2.1    bouyer 	p2->p_cpu = NULL;
    187  1.61.2.1    bouyer #endif /* ! MULTIPROCESSOR */
    188  1.61.2.1    bouyer 
    189      1.16       cgd 	/*
    190      1.16       cgd 	 * Duplicate sub-structures as needed.
    191      1.16       cgd 	 * Increase reference counts on shared objects.
    192  1.61.2.2    bouyer 	 * The p_stats and p_sigacts substructs are set in uvm_fork().
    193      1.16       cgd 	 */
    194      1.31       mrg 	p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
    195      1.21   mycroft 	p2->p_emul = p1->p_emul;
    196      1.17       cgd 	if (p1->p_flag & P_PROFIL)
    197      1.17       cgd 		startprofclock(p2);
    198      1.47   thorpej 	p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
    199      1.45     perry 	memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
    200      1.16       cgd 	p2->p_cred->p_refcnt = 1;
    201      1.16       cgd 	crhold(p1->p_ucred);
    202      1.51  sommerfe 
    203      1.17       cgd 	/* bump references to the text vnode (for procfs) */
    204      1.17       cgd 	p2->p_textvp = p1->p_textvp;
    205      1.17       cgd 	if (p2->p_textvp)
    206      1.16       cgd 		VREF(p2->p_textvp);
    207      1.16       cgd 
    208      1.57   thorpej 	if (flags & FORK_SHAREFILES)
    209      1.57   thorpej 		fdshare(p1, p2);
    210      1.57   thorpej 	else
    211      1.57   thorpej 		p2->p_fd = fdcopy(p1);
    212      1.57   thorpej 
    213      1.57   thorpej 	if (flags & FORK_SHARECWD)
    214      1.57   thorpej 		cwdshare(p1, p2);
    215      1.57   thorpej 	else
    216      1.57   thorpej 		p2->p_cwdi = cwdinit(p1);
    217      1.55   thorpej 
    218      1.16       cgd 	/*
    219      1.16       cgd 	 * If p_limit is still copy-on-write, bump refcnt,
    220      1.16       cgd 	 * otherwise get a copy that won't be modified.
    221      1.16       cgd 	 * (If PL_SHAREMOD is clear, the structure is shared
    222      1.16       cgd 	 * copy-on-write.)
    223      1.16       cgd 	 */
    224      1.16       cgd 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
    225      1.16       cgd 		p2->p_limit = limcopy(p1->p_limit);
    226      1.16       cgd 	else {
    227      1.16       cgd 		p2->p_limit = p1->p_limit;
    228      1.16       cgd 		p2->p_limit->p_refcnt++;
    229      1.16       cgd 	}
    230      1.16       cgd 
    231      1.16       cgd 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
    232      1.16       cgd 		p2->p_flag |= P_CONTROLT;
    233      1.34   thorpej 	if (flags & FORK_PPWAIT)
    234      1.16       cgd 		p2->p_flag |= P_PPWAIT;
    235      1.20   mycroft 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    236      1.16       cgd 	p2->p_pptr = p1;
    237      1.20   mycroft 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
    238      1.20   mycroft 	LIST_INIT(&p2->p_children);
    239      1.20   mycroft 
    240  1.61.2.1    bouyer 	callout_init(&p2->p_realit_ch);
    241  1.61.2.1    bouyer 	callout_init(&p2->p_tsleep_ch);
    242  1.61.2.1    bouyer 
    243      1.16       cgd #ifdef KTRACE
    244      1.16       cgd 	/*
    245      1.16       cgd 	 * Copy traceflag and tracefile if enabled.
    246      1.16       cgd 	 * If not inherited, these were zeroed above.
    247      1.16       cgd 	 */
    248      1.16       cgd 	if (p1->p_traceflag&KTRFAC_INHERIT) {
    249      1.16       cgd 		p2->p_traceflag = p1->p_traceflag;
    250      1.16       cgd 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    251      1.42  christos 			ktradref(p2);
    252      1.16       cgd 	}
    253      1.16       cgd #endif
    254      1.53      ross 	scheduler_fork_hook(p1, p2);
    255      1.56   thorpej 
    256      1.56   thorpej 	/*
    257      1.56   thorpej 	 * Create signal actions for the child process.
    258      1.56   thorpej 	 */
    259      1.57   thorpej 	if (flags & FORK_SHARESIGS)
    260      1.57   thorpej 		sigactsshare(p1, p2);
    261      1.57   thorpej 	else
    262      1.57   thorpej 		p2->p_sigacts = sigactsinit(p1);
    263      1.16       cgd 
    264      1.16       cgd 	/*
    265  1.61.2.2    bouyer 	 * If emulation has process fork hook, call it now.
    266  1.61.2.2    bouyer 	 */
    267  1.61.2.2    bouyer 	if (p2->p_emul->e_proc_fork)
    268  1.61.2.2    bouyer 		(*p2->p_emul->e_proc_fork)(p2, p1);
    269  1.61.2.2    bouyer 
    270  1.61.2.2    bouyer 	/*
    271      1.16       cgd 	 * This begins the section where we must prevent the parent
    272      1.16       cgd 	 * from being swapped.
    273      1.16       cgd 	 */
    274      1.30   mycroft 	PHOLD(p1);
    275      1.26   mycroft 
    276      1.26   mycroft 	/*
    277      1.26   mycroft 	 * Finish creating the child process.  It will return through a
    278      1.26   mycroft 	 * different path later.
    279      1.26   mycroft 	 */
    280      1.41   thorpej 	p2->p_addr = (struct user *)uaddr;
    281      1.59   thorpej 	uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
    282  1.61.2.1    bouyer 	    stack, stacksize,
    283  1.61.2.1    bouyer 	    (func != NULL) ? func : child_return,
    284  1.61.2.1    bouyer 	    (arg != NULL) ? arg : p2);
    285      1.16       cgd 
    286      1.16       cgd 	/*
    287  1.61.2.2    bouyer 	 * BEGIN PID ALLOCATION.
    288  1.61.2.2    bouyer 	 */
    289  1.61.2.2    bouyer 	s = proclist_lock_write();
    290  1.61.2.2    bouyer 
    291  1.61.2.2    bouyer 	/*
    292  1.61.2.2    bouyer 	 * Find an unused process ID.  We remember a range of unused IDs
    293  1.61.2.2    bouyer 	 * ready to use (from nextpid+1 through pidchecked-1).
    294  1.61.2.2    bouyer 	 */
    295  1.61.2.2    bouyer 	nextpid++;
    296  1.61.2.2    bouyer retry:
    297  1.61.2.2    bouyer 	/*
    298  1.61.2.2    bouyer 	 * If the process ID prototype has wrapped around,
    299  1.61.2.2    bouyer 	 * restart somewhat above 0, as the low-numbered procs
    300  1.61.2.2    bouyer 	 * tend to include daemons that don't exit.
    301  1.61.2.2    bouyer 	 */
    302  1.61.2.2    bouyer 	if (nextpid >= PID_MAX) {
    303  1.61.2.2    bouyer 		nextpid = 100;
    304  1.61.2.2    bouyer 		pidchecked = 0;
    305  1.61.2.2    bouyer 	}
    306  1.61.2.2    bouyer 	if (nextpid >= pidchecked) {
    307  1.61.2.2    bouyer 		const struct proclist_desc *pd;
    308  1.61.2.2    bouyer 
    309  1.61.2.2    bouyer 		pidchecked = PID_MAX;
    310  1.61.2.2    bouyer 		/*
    311  1.61.2.2    bouyer 		 * Scan the process lists to check whether this pid
    312  1.61.2.2    bouyer 		 * is in use.  Remember the lowest pid that's greater
    313  1.61.2.2    bouyer 		 * than nextpid, so we can avoid checking for a while.
    314  1.61.2.2    bouyer 		 */
    315  1.61.2.2    bouyer 		pd = proclists;
    316  1.61.2.2    bouyer again:
    317  1.61.2.2    bouyer 		LIST_FOREACH(tp, pd->pd_list, p_list) {
    318  1.61.2.2    bouyer 			while (tp->p_pid == nextpid ||
    319  1.61.2.2    bouyer 			    tp->p_pgrp->pg_id == nextpid ||
    320  1.61.2.2    bouyer 			    tp->p_session->s_sid == nextpid) {
    321  1.61.2.2    bouyer 				nextpid++;
    322  1.61.2.2    bouyer 				if (nextpid >= pidchecked)
    323  1.61.2.2    bouyer 					goto retry;
    324  1.61.2.2    bouyer 			}
    325  1.61.2.2    bouyer 			if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
    326  1.61.2.2    bouyer 				pidchecked = tp->p_pid;
    327  1.61.2.2    bouyer 
    328  1.61.2.2    bouyer 			if (tp->p_pgrp->pg_id > nextpid &&
    329  1.61.2.2    bouyer 			    pidchecked > tp->p_pgrp->pg_id)
    330  1.61.2.2    bouyer 				pidchecked = tp->p_pgrp->pg_id;
    331  1.61.2.2    bouyer 
    332  1.61.2.2    bouyer 			if (tp->p_session->s_sid > nextpid &&
    333  1.61.2.2    bouyer 			    pidchecked > tp->p_session->s_sid)
    334  1.61.2.2    bouyer 				pidchecked = tp->p_session->s_sid;
    335  1.61.2.2    bouyer 		}
    336  1.61.2.2    bouyer 
    337  1.61.2.2    bouyer 		/*
    338  1.61.2.2    bouyer 		 * If there's another list, scan it.  If we have checked
    339  1.61.2.2    bouyer 		 * them all, we've found one!
    340  1.61.2.2    bouyer 		 */
    341  1.61.2.2    bouyer 		pd++;
    342  1.61.2.2    bouyer 		if (pd->pd_list != NULL)
    343  1.61.2.2    bouyer 			goto again;
    344  1.61.2.2    bouyer 	}
    345  1.61.2.2    bouyer 
    346  1.61.2.2    bouyer 	/* Record the pid we've allocated. */
    347  1.61.2.2    bouyer 	p2->p_pid = nextpid;
    348  1.61.2.2    bouyer 
    349  1.61.2.2    bouyer 	/* Record the signal to be delivered to the parent on exit. */
    350  1.61.2.2    bouyer 	p2->p_exitsig = exitsig;
    351  1.61.2.2    bouyer 
    352  1.61.2.2    bouyer 	/*
    353  1.61.2.2    bouyer 	 * Put the proc on allproc before unlocking PID allocation
    354  1.61.2.2    bouyer 	 * so that waiters won't grab it as soon as we unlock.
    355  1.61.2.2    bouyer 	 */
    356  1.61.2.2    bouyer 
    357  1.61.2.2    bouyer 	p2->p_stat = SIDL;			/* protect against others */
    358  1.61.2.2    bouyer 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
    359  1.61.2.2    bouyer 
    360  1.61.2.2    bouyer 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    361  1.61.2.2    bouyer 
    362  1.61.2.2    bouyer 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
    363  1.61.2.2    bouyer 
    364  1.61.2.2    bouyer 	/*
    365  1.61.2.2    bouyer 	 * END PID ALLOCATION.
    366  1.61.2.2    bouyer 	 */
    367  1.61.2.2    bouyer 	proclist_unlock_write(s);
    368  1.61.2.2    bouyer 
    369  1.61.2.2    bouyer 	/*
    370      1.24   mycroft 	 * Make child runnable, set start time, and add to run queue.
    371      1.16       cgd 	 */
    372  1.61.2.1    bouyer 	SCHED_LOCK(s);
    373      1.23   mycroft 	p2->p_stats->p_start = time;
    374      1.23   mycroft 	p2->p_acflag = AFORK;
    375      1.16       cgd 	p2->p_stat = SRUN;
    376      1.16       cgd 	setrunqueue(p2);
    377  1.61.2.1    bouyer 	SCHED_UNLOCK(s);
    378      1.16       cgd 
    379      1.16       cgd 	/*
    380      1.16       cgd 	 * Now can be swapped.
    381      1.16       cgd 	 */
    382      1.30   mycroft 	PRELE(p1);
    383      1.16       cgd 
    384      1.16       cgd 	/*
    385      1.34   thorpej 	 * Update stats now that we know the fork was successful.
    386      1.34   thorpej 	 */
    387      1.37       mrg 	uvmexp.forks++;
    388      1.37       mrg 	if (flags & FORK_PPWAIT)
    389      1.37       mrg 		uvmexp.forks_ppwait++;
    390      1.37       mrg 	if (flags & FORK_SHAREVM)
    391      1.37       mrg 		uvmexp.forks_sharevm++;
    392      1.35   thorpej 
    393      1.35   thorpej 	/*
    394      1.35   thorpej 	 * Pass a pointer to the new process to the caller.
    395      1.35   thorpej 	 */
    396      1.35   thorpej 	if (rnewprocp != NULL)
    397      1.35   thorpej 		*rnewprocp = p2;
    398      1.34   thorpej 
    399      1.34   thorpej 	/*
    400      1.17       cgd 	 * Preserve synchronization semantics of vfork.  If waiting for
    401      1.17       cgd 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
    402      1.17       cgd 	 * proc (in case of exit).
    403      1.16       cgd 	 */
    404      1.34   thorpej 	if (flags & FORK_PPWAIT)
    405      1.16       cgd 		while (p2->p_flag & P_PPWAIT)
    406      1.17       cgd 			tsleep(p1, PWAIT, "ppwait", 0);
    407      1.16       cgd 
    408      1.16       cgd 	/*
    409      1.16       cgd 	 * Return child pid to parent process,
    410      1.16       cgd 	 * marking us as parent via retval[1].
    411      1.16       cgd 	 */
    412      1.36   thorpej 	if (retval != NULL) {
    413      1.36   thorpej 		retval[0] = p2->p_pid;
    414      1.36   thorpej 		retval[1] = 0;
    415      1.36   thorpej 	}
    416  1.61.2.2    bouyer 
    417  1.61.2.2    bouyer #ifdef KTRACE
    418  1.61.2.2    bouyer 	if (KTRPOINT(p2, KTR_EMUL))
    419  1.61.2.2    bouyer 		ktremul(p2);
    420  1.61.2.2    bouyer #endif
    421  1.61.2.2    bouyer 
    422      1.16       cgd 	return (0);
    423      1.16       cgd }
    424  1.61.2.1    bouyer 
    425  1.61.2.1    bouyer #if defined(MULTIPROCESSOR)
    426  1.61.2.1    bouyer /*
    427  1.61.2.1    bouyer  * XXX This is a slight hack to get newly-formed processes to
    428  1.61.2.1    bouyer  * XXX acquire the kernel lock as soon as they run.
    429  1.61.2.1    bouyer  */
    430  1.61.2.1    bouyer void
    431  1.61.2.1    bouyer proc_trampoline_mp(void)
    432  1.61.2.1    bouyer {
    433  1.61.2.1    bouyer 	struct proc *p = curproc;
    434  1.61.2.1    bouyer 
    435  1.61.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    436  1.61.2.1    bouyer 	KERNEL_PROC_LOCK(p);
    437  1.61.2.1    bouyer }
    438  1.61.2.1    bouyer #endif
    439