kern_fork.c revision 1.73 1 1.73 sommerfe /* $NetBSD: kern_fork.c,v 1.73 2000/09/06 14:06:42 sommerfeld Exp $ */
2 1.19 cgd
3 1.16 cgd /*
4 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 1.17 cgd * The Regents of the University of California. All rights reserved.
6 1.16 cgd * (c) UNIX System Laboratories, Inc.
7 1.16 cgd * All or some portions of this file are derived from material licensed
8 1.16 cgd * to the University of California by American Telephone and Telegraph
9 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.16 cgd * the permission of UNIX System Laboratories, Inc.
11 1.16 cgd *
12 1.16 cgd * Redistribution and use in source and binary forms, with or without
13 1.16 cgd * modification, are permitted provided that the following conditions
14 1.16 cgd * are met:
15 1.16 cgd * 1. Redistributions of source code must retain the above copyright
16 1.16 cgd * notice, this list of conditions and the following disclaimer.
17 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.16 cgd * notice, this list of conditions and the following disclaimer in the
19 1.16 cgd * documentation and/or other materials provided with the distribution.
20 1.16 cgd * 3. All advertising materials mentioning features or use of this software
21 1.16 cgd * must display the following acknowledgement:
22 1.16 cgd * This product includes software developed by the University of
23 1.16 cgd * California, Berkeley and its contributors.
24 1.16 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.16 cgd * may be used to endorse or promote products derived from this software
26 1.16 cgd * without specific prior written permission.
27 1.16 cgd *
28 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.16 cgd * SUCH DAMAGE.
39 1.16 cgd *
40 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 1.16 cgd */
42 1.38 mrg
43 1.43 thorpej #include "opt_ktrace.h"
44 1.66 thorpej #include "opt_multiprocessor.h"
45 1.16 cgd
46 1.16 cgd #include <sys/param.h>
47 1.16 cgd #include <sys/systm.h>
48 1.17 cgd #include <sys/map.h>
49 1.16 cgd #include <sys/filedesc.h>
50 1.16 cgd #include <sys/kernel.h>
51 1.16 cgd #include <sys/malloc.h>
52 1.44 thorpej #include <sys/pool.h>
53 1.29 christos #include <sys/mount.h>
54 1.16 cgd #include <sys/proc.h>
55 1.16 cgd #include <sys/resourcevar.h>
56 1.16 cgd #include <sys/vnode.h>
57 1.16 cgd #include <sys/file.h>
58 1.16 cgd #include <sys/acct.h>
59 1.16 cgd #include <sys/ktrace.h>
60 1.34 thorpej #include <sys/vmmeter.h>
61 1.53 ross #include <sys/sched.h>
62 1.56 thorpej #include <sys/signalvar.h>
63 1.29 christos
64 1.29 christos #include <sys/syscallargs.h>
65 1.16 cgd
66 1.37 mrg #include <uvm/uvm_extern.h>
67 1.37 mrg
68 1.26 mycroft int nprocs = 1; /* process 0 */
69 1.26 mycroft
70 1.28 christos /*ARGSUSED*/
71 1.26 mycroft int
72 1.70 thorpej sys_fork(struct proc *p, void *v, register_t *retval)
73 1.16 cgd {
74 1.16 cgd
75 1.65 thorpej return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
76 1.16 cgd }
77 1.16 cgd
78 1.34 thorpej /*
79 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
80 1.34 thorpej * Address space is not shared, but parent is blocked until child exit.
81 1.34 thorpej */
82 1.28 christos /*ARGSUSED*/
83 1.26 mycroft int
84 1.70 thorpej sys_vfork(struct proc *p, void *v, register_t *retval)
85 1.16 cgd {
86 1.16 cgd
87 1.65 thorpej return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
88 1.65 thorpej retval, NULL));
89 1.16 cgd }
90 1.16 cgd
91 1.34 thorpej /*
92 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
93 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit.
94 1.34 thorpej */
95 1.34 thorpej /*ARGSUSED*/
96 1.26 mycroft int
97 1.70 thorpej sys___vfork14(struct proc *p, void *v, register_t *retval)
98 1.34 thorpej {
99 1.34 thorpej
100 1.59 thorpej return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
101 1.65 thorpej NULL, NULL, retval, NULL));
102 1.49 thorpej }
103 1.49 thorpej
104 1.34 thorpej int
105 1.70 thorpej fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
106 1.70 thorpej void (*func)(void *), void *arg, register_t *retval,
107 1.70 thorpej struct proc **rnewprocp)
108 1.16 cgd {
109 1.63 augustss struct proc *p2;
110 1.63 augustss uid_t uid;
111 1.17 cgd struct proc *newproc;
112 1.49 thorpej int count, s;
113 1.46 eeh vaddr_t uaddr;
114 1.16 cgd static int nextpid, pidchecked = 0;
115 1.16 cgd
116 1.16 cgd /*
117 1.17 cgd * Although process entries are dynamically created, we still keep
118 1.16 cgd * a global limit on the maximum number we will create. Don't allow
119 1.16 cgd * a nonprivileged user to use the last process; don't let root
120 1.17 cgd * exceed the limit. The variable nprocs is the current number of
121 1.16 cgd * processes, maxproc is the limit.
122 1.16 cgd */
123 1.17 cgd uid = p1->p_cred->p_ruid;
124 1.64 thorpej if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
125 1.64 thorpej nprocs >= maxproc)) {
126 1.69 jdolecek tablefull("proc", "increase kern.maxproc or NPROC");
127 1.16 cgd return (EAGAIN);
128 1.16 cgd }
129 1.21 mycroft
130 1.17 cgd /*
131 1.17 cgd * Increment the count of procs running with this uid. Don't allow
132 1.17 cgd * a nonprivileged user to exceed their current limit.
133 1.17 cgd */
134 1.17 cgd count = chgproccnt(uid, 1);
135 1.64 thorpej if (__predict_false(uid != 0 && count >
136 1.64 thorpej p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
137 1.17 cgd (void)chgproccnt(uid, -1);
138 1.16 cgd return (EAGAIN);
139 1.17 cgd }
140 1.17 cgd
141 1.41 thorpej /*
142 1.41 thorpej * Allocate virtual address space for the U-area now, while it
143 1.41 thorpej * is still easy to abort the fork operation if we're out of
144 1.41 thorpej * kernel virtual address space. The actual U-area pages will
145 1.41 thorpej * be allocated and wired in vm_fork().
146 1.41 thorpej */
147 1.41 thorpej uaddr = uvm_km_valloc(kernel_map, USPACE);
148 1.64 thorpej if (__predict_false(uaddr == 0)) {
149 1.41 thorpej (void)chgproccnt(uid, -1);
150 1.41 thorpej return (ENOMEM);
151 1.41 thorpej }
152 1.41 thorpej
153 1.41 thorpej /*
154 1.41 thorpej * We are now committed to the fork. From here on, we may
155 1.41 thorpej * block on resources, but resource allocation may NOT fail.
156 1.41 thorpej */
157 1.41 thorpej
158 1.17 cgd /* Allocate new proc. */
159 1.44 thorpej newproc = pool_get(&proc_pool, PR_WAITOK);
160 1.16 cgd
161 1.16 cgd /*
162 1.61 thorpej * BEGIN PID ALLOCATION.
163 1.48 thorpej */
164 1.61 thorpej s = proclist_lock_write();
165 1.48 thorpej
166 1.48 thorpej /*
167 1.17 cgd * Find an unused process ID. We remember a range of unused IDs
168 1.17 cgd * ready to use (from nextpid+1 through pidchecked-1).
169 1.16 cgd */
170 1.16 cgd nextpid++;
171 1.16 cgd retry:
172 1.16 cgd /*
173 1.16 cgd * If the process ID prototype has wrapped around,
174 1.16 cgd * restart somewhat above 0, as the low-numbered procs
175 1.16 cgd * tend to include daemons that don't exit.
176 1.16 cgd */
177 1.16 cgd if (nextpid >= PID_MAX) {
178 1.16 cgd nextpid = 100;
179 1.16 cgd pidchecked = 0;
180 1.16 cgd }
181 1.16 cgd if (nextpid >= pidchecked) {
182 1.48 thorpej const struct proclist_desc *pd;
183 1.16 cgd
184 1.16 cgd pidchecked = PID_MAX;
185 1.16 cgd /*
186 1.48 thorpej * Scan the process lists to check whether this pid
187 1.16 cgd * is in use. Remember the lowest pid that's greater
188 1.16 cgd * than nextpid, so we can avoid checking for a while.
189 1.16 cgd */
190 1.48 thorpej pd = proclists;
191 1.16 cgd again:
192 1.48 thorpej for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
193 1.48 thorpej p2 = LIST_NEXT(p2, p_list)) {
194 1.16 cgd while (p2->p_pid == nextpid ||
195 1.39 thorpej p2->p_pgrp->pg_id == nextpid ||
196 1.39 thorpej p2->p_session->s_sid == nextpid) {
197 1.16 cgd nextpid++;
198 1.16 cgd if (nextpid >= pidchecked)
199 1.16 cgd goto retry;
200 1.16 cgd }
201 1.16 cgd if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
202 1.16 cgd pidchecked = p2->p_pid;
203 1.39 thorpej
204 1.16 cgd if (p2->p_pgrp->pg_id > nextpid &&
205 1.16 cgd pidchecked > p2->p_pgrp->pg_id)
206 1.16 cgd pidchecked = p2->p_pgrp->pg_id;
207 1.39 thorpej
208 1.39 thorpej if (p2->p_session->s_sid > nextpid &&
209 1.39 thorpej pidchecked > p2->p_session->s_sid)
210 1.39 thorpej pidchecked = p2->p_session->s_sid;
211 1.16 cgd }
212 1.48 thorpej
213 1.48 thorpej /*
214 1.48 thorpej * If there's another list, scan it. If we have checked
215 1.48 thorpej * them all, we've found one!
216 1.48 thorpej */
217 1.48 thorpej pd++;
218 1.48 thorpej if (pd->pd_list != NULL)
219 1.16 cgd goto again;
220 1.16 cgd }
221 1.16 cgd
222 1.16 cgd nprocs++;
223 1.17 cgd p2 = newproc;
224 1.48 thorpej
225 1.48 thorpej /* Record the pid we've allocated. */
226 1.20 mycroft p2->p_pid = nextpid;
227 1.58 thorpej
228 1.58 thorpej /* Record the signal to be delivered to the parent on exit. */
229 1.58 thorpej p2->p_exitsig = exitsig;
230 1.48 thorpej
231 1.48 thorpej /*
232 1.48 thorpej * Put the proc on allproc before unlocking PID allocation
233 1.48 thorpej * so that waiters won't grab it as soon as we unlock.
234 1.48 thorpej */
235 1.60 thorpej
236 1.60 thorpej p2->p_stat = SIDL; /* protect against others */
237 1.60 thorpej p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
238 1.60 thorpej
239 1.20 mycroft LIST_INSERT_HEAD(&allproc, p2, p_list);
240 1.48 thorpej
241 1.60 thorpej LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
242 1.60 thorpej
243 1.48 thorpej /*
244 1.61 thorpej * END PID ALLOCATION.
245 1.48 thorpej */
246 1.61 thorpej proclist_unlock_write(s);
247 1.16 cgd
248 1.16 cgd /*
249 1.16 cgd * Make a proc table entry for the new process.
250 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
251 1.16 cgd * then copy the section that is copied directly from the parent.
252 1.16 cgd */
253 1.45 perry memset(&p2->p_startzero, 0,
254 1.16 cgd (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
255 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy,
256 1.16 cgd (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
257 1.66 thorpej
258 1.66 thorpej #if !defined(MULTIPROCESSOR)
259 1.66 thorpej /*
260 1.66 thorpej * In the single-processor case, all processes will always run
261 1.66 thorpej * on the same CPU. So, initialize the child's CPU to the parent's
262 1.66 thorpej * now. In the multiprocessor case, the child's CPU will be
263 1.66 thorpej * initialized in the low-level context switch code when the
264 1.66 thorpej * process runs.
265 1.66 thorpej */
266 1.66 thorpej p2->p_cpu = p1->p_cpu;
267 1.72 sommerfe #else
268 1.72 sommerfe /*
269 1.72 sommerfe * zero child's cpu pointer so we don't get trash.
270 1.72 sommerfe */
271 1.72 sommerfe p2->p_cpu = NULL;
272 1.66 thorpej #endif /* ! MULTIPROCESSOR */
273 1.16 cgd
274 1.16 cgd /*
275 1.16 cgd * Duplicate sub-structures as needed.
276 1.16 cgd * Increase reference counts on shared objects.
277 1.16 cgd * The p_stats and p_sigacts substructs are set in vm_fork.
278 1.16 cgd */
279 1.31 mrg p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
280 1.21 mycroft p2->p_emul = p1->p_emul;
281 1.17 cgd if (p1->p_flag & P_PROFIL)
282 1.17 cgd startprofclock(p2);
283 1.47 thorpej p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
284 1.45 perry memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
285 1.16 cgd p2->p_cred->p_refcnt = 1;
286 1.16 cgd crhold(p1->p_ucred);
287 1.51 sommerfe
288 1.17 cgd /* bump references to the text vnode (for procfs) */
289 1.17 cgd p2->p_textvp = p1->p_textvp;
290 1.17 cgd if (p2->p_textvp)
291 1.16 cgd VREF(p2->p_textvp);
292 1.16 cgd
293 1.57 thorpej if (flags & FORK_SHAREFILES)
294 1.57 thorpej fdshare(p1, p2);
295 1.57 thorpej else
296 1.57 thorpej p2->p_fd = fdcopy(p1);
297 1.57 thorpej
298 1.57 thorpej if (flags & FORK_SHARECWD)
299 1.57 thorpej cwdshare(p1, p2);
300 1.57 thorpej else
301 1.57 thorpej p2->p_cwdi = cwdinit(p1);
302 1.55 thorpej
303 1.16 cgd /*
304 1.16 cgd * If p_limit is still copy-on-write, bump refcnt,
305 1.16 cgd * otherwise get a copy that won't be modified.
306 1.16 cgd * (If PL_SHAREMOD is clear, the structure is shared
307 1.16 cgd * copy-on-write.)
308 1.16 cgd */
309 1.16 cgd if (p1->p_limit->p_lflags & PL_SHAREMOD)
310 1.16 cgd p2->p_limit = limcopy(p1->p_limit);
311 1.16 cgd else {
312 1.16 cgd p2->p_limit = p1->p_limit;
313 1.16 cgd p2->p_limit->p_refcnt++;
314 1.16 cgd }
315 1.16 cgd
316 1.16 cgd if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
317 1.16 cgd p2->p_flag |= P_CONTROLT;
318 1.34 thorpej if (flags & FORK_PPWAIT)
319 1.16 cgd p2->p_flag |= P_PPWAIT;
320 1.20 mycroft LIST_INSERT_AFTER(p1, p2, p_pglist);
321 1.16 cgd p2->p_pptr = p1;
322 1.20 mycroft LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
323 1.20 mycroft LIST_INIT(&p2->p_children);
324 1.62 thorpej
325 1.62 thorpej callout_init(&p2->p_realit_ch);
326 1.62 thorpej callout_init(&p2->p_tsleep_ch);
327 1.20 mycroft
328 1.16 cgd #ifdef KTRACE
329 1.16 cgd /*
330 1.16 cgd * Copy traceflag and tracefile if enabled.
331 1.16 cgd * If not inherited, these were zeroed above.
332 1.16 cgd */
333 1.16 cgd if (p1->p_traceflag&KTRFAC_INHERIT) {
334 1.16 cgd p2->p_traceflag = p1->p_traceflag;
335 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
336 1.42 christos ktradref(p2);
337 1.16 cgd }
338 1.16 cgd #endif
339 1.53 ross scheduler_fork_hook(p1, p2);
340 1.56 thorpej
341 1.56 thorpej /*
342 1.56 thorpej * Create signal actions for the child process.
343 1.56 thorpej */
344 1.57 thorpej if (flags & FORK_SHARESIGS)
345 1.57 thorpej sigactsshare(p1, p2);
346 1.57 thorpej else
347 1.57 thorpej p2->p_sigacts = sigactsinit(p1);
348 1.16 cgd
349 1.16 cgd /*
350 1.16 cgd * This begins the section where we must prevent the parent
351 1.16 cgd * from being swapped.
352 1.16 cgd */
353 1.30 mycroft PHOLD(p1);
354 1.26 mycroft
355 1.26 mycroft /*
356 1.26 mycroft * Finish creating the child process. It will return through a
357 1.26 mycroft * different path later.
358 1.26 mycroft */
359 1.41 thorpej p2->p_addr = (struct user *)uaddr;
360 1.59 thorpej uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
361 1.65 thorpej stack, stacksize,
362 1.65 thorpej (func != NULL) ? func : child_return,
363 1.65 thorpej (arg != NULL) ? arg : p2);
364 1.16 cgd
365 1.16 cgd /*
366 1.24 mycroft * Make child runnable, set start time, and add to run queue.
367 1.16 cgd */
368 1.73 sommerfe SCHED_LOCK(s);
369 1.23 mycroft p2->p_stats->p_start = time;
370 1.23 mycroft p2->p_acflag = AFORK;
371 1.16 cgd p2->p_stat = SRUN;
372 1.16 cgd setrunqueue(p2);
373 1.73 sommerfe SCHED_UNLOCK(s);
374 1.16 cgd
375 1.16 cgd /*
376 1.16 cgd * Now can be swapped.
377 1.16 cgd */
378 1.30 mycroft PRELE(p1);
379 1.16 cgd
380 1.16 cgd /*
381 1.34 thorpej * Update stats now that we know the fork was successful.
382 1.34 thorpej */
383 1.37 mrg uvmexp.forks++;
384 1.37 mrg if (flags & FORK_PPWAIT)
385 1.37 mrg uvmexp.forks_ppwait++;
386 1.37 mrg if (flags & FORK_SHAREVM)
387 1.37 mrg uvmexp.forks_sharevm++;
388 1.35 thorpej
389 1.35 thorpej /*
390 1.35 thorpej * Pass a pointer to the new process to the caller.
391 1.35 thorpej */
392 1.35 thorpej if (rnewprocp != NULL)
393 1.35 thorpej *rnewprocp = p2;
394 1.34 thorpej
395 1.34 thorpej /*
396 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
397 1.17 cgd * child to exec or exit, set P_PPWAIT on child, and sleep on our
398 1.17 cgd * proc (in case of exit).
399 1.16 cgd */
400 1.34 thorpej if (flags & FORK_PPWAIT)
401 1.16 cgd while (p2->p_flag & P_PPWAIT)
402 1.17 cgd tsleep(p1, PWAIT, "ppwait", 0);
403 1.16 cgd
404 1.16 cgd /*
405 1.16 cgd * Return child pid to parent process,
406 1.16 cgd * marking us as parent via retval[1].
407 1.16 cgd */
408 1.36 thorpej if (retval != NULL) {
409 1.36 thorpej retval[0] = p2->p_pid;
410 1.36 thorpej retval[1] = 0;
411 1.36 thorpej }
412 1.16 cgd return (0);
413 1.16 cgd }
414 1.71 thorpej
415 1.71 thorpej #if defined(MULTIPROCESSOR)
416 1.71 thorpej /*
417 1.71 thorpej * XXX This is a slight hack to get newly-formed processes to
418 1.71 thorpej * XXX acquire the kernel lock as soon as they run.
419 1.71 thorpej */
420 1.71 thorpej void
421 1.71 thorpej proc_trampoline_mp(void)
422 1.71 thorpej {
423 1.71 thorpej struct proc *p = curproc;
424 1.71 thorpej
425 1.71 thorpej SCHED_ASSERT_UNLOCKED();
426 1.71 thorpej KERNEL_PROC_LOCK(p);
427 1.71 thorpej }
428 1.71 thorpej #endif
429