kern_fork.c revision 1.84 1 1.84 lukem /* $NetBSD: kern_fork.c,v 1.84 2001/02/26 21:14:20 lukem Exp $ */
2 1.19 cgd
3 1.16 cgd /*
4 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 1.17 cgd * The Regents of the University of California. All rights reserved.
6 1.16 cgd * (c) UNIX System Laboratories, Inc.
7 1.16 cgd * All or some portions of this file are derived from material licensed
8 1.16 cgd * to the University of California by American Telephone and Telegraph
9 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.16 cgd * the permission of UNIX System Laboratories, Inc.
11 1.16 cgd *
12 1.16 cgd * Redistribution and use in source and binary forms, with or without
13 1.16 cgd * modification, are permitted provided that the following conditions
14 1.16 cgd * are met:
15 1.16 cgd * 1. Redistributions of source code must retain the above copyright
16 1.16 cgd * notice, this list of conditions and the following disclaimer.
17 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.16 cgd * notice, this list of conditions and the following disclaimer in the
19 1.16 cgd * documentation and/or other materials provided with the distribution.
20 1.16 cgd * 3. All advertising materials mentioning features or use of this software
21 1.16 cgd * must display the following acknowledgement:
22 1.16 cgd * This product includes software developed by the University of
23 1.16 cgd * California, Berkeley and its contributors.
24 1.16 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.16 cgd * may be used to endorse or promote products derived from this software
26 1.16 cgd * without specific prior written permission.
27 1.16 cgd *
28 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.16 cgd * SUCH DAMAGE.
39 1.16 cgd *
40 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 1.16 cgd */
42 1.38 mrg
43 1.43 thorpej #include "opt_ktrace.h"
44 1.66 thorpej #include "opt_multiprocessor.h"
45 1.16 cgd
46 1.16 cgd #include <sys/param.h>
47 1.16 cgd #include <sys/systm.h>
48 1.17 cgd #include <sys/map.h>
49 1.16 cgd #include <sys/filedesc.h>
50 1.16 cgd #include <sys/kernel.h>
51 1.16 cgd #include <sys/malloc.h>
52 1.44 thorpej #include <sys/pool.h>
53 1.29 christos #include <sys/mount.h>
54 1.16 cgd #include <sys/proc.h>
55 1.16 cgd #include <sys/resourcevar.h>
56 1.16 cgd #include <sys/vnode.h>
57 1.16 cgd #include <sys/file.h>
58 1.16 cgd #include <sys/acct.h>
59 1.16 cgd #include <sys/ktrace.h>
60 1.34 thorpej #include <sys/vmmeter.h>
61 1.53 ross #include <sys/sched.h>
62 1.56 thorpej #include <sys/signalvar.h>
63 1.29 christos
64 1.29 christos #include <sys/syscallargs.h>
65 1.16 cgd
66 1.37 mrg #include <uvm/uvm_extern.h>
67 1.37 mrg
68 1.26 mycroft int nprocs = 1; /* process 0 */
69 1.26 mycroft
70 1.28 christos /*ARGSUSED*/
71 1.26 mycroft int
72 1.70 thorpej sys_fork(struct proc *p, void *v, register_t *retval)
73 1.16 cgd {
74 1.16 cgd
75 1.65 thorpej return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
76 1.16 cgd }
77 1.16 cgd
78 1.34 thorpej /*
79 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
80 1.34 thorpej * Address space is not shared, but parent is blocked until child exit.
81 1.34 thorpej */
82 1.28 christos /*ARGSUSED*/
83 1.26 mycroft int
84 1.70 thorpej sys_vfork(struct proc *p, void *v, register_t *retval)
85 1.16 cgd {
86 1.16 cgd
87 1.65 thorpej return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
88 1.65 thorpej retval, NULL));
89 1.16 cgd }
90 1.16 cgd
91 1.34 thorpej /*
92 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
93 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit.
94 1.34 thorpej */
95 1.34 thorpej /*ARGSUSED*/
96 1.26 mycroft int
97 1.70 thorpej sys___vfork14(struct proc *p, void *v, register_t *retval)
98 1.34 thorpej {
99 1.34 thorpej
100 1.59 thorpej return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
101 1.65 thorpej NULL, NULL, retval, NULL));
102 1.49 thorpej }
103 1.49 thorpej
104 1.34 thorpej int
105 1.70 thorpej fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
106 1.70 thorpej void (*func)(void *), void *arg, register_t *retval,
107 1.70 thorpej struct proc **rnewprocp)
108 1.16 cgd {
109 1.84 lukem struct proc *p2, *tp;
110 1.84 lukem uid_t uid;
111 1.84 lukem int count, s;
112 1.84 lukem vaddr_t uaddr;
113 1.84 lukem static int nextpid, pidchecked;
114 1.16 cgd
115 1.16 cgd /*
116 1.17 cgd * Although process entries are dynamically created, we still keep
117 1.16 cgd * a global limit on the maximum number we will create. Don't allow
118 1.16 cgd * a nonprivileged user to use the last process; don't let root
119 1.17 cgd * exceed the limit. The variable nprocs is the current number of
120 1.16 cgd * processes, maxproc is the limit.
121 1.16 cgd */
122 1.17 cgd uid = p1->p_cred->p_ruid;
123 1.64 thorpej if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
124 1.64 thorpej nprocs >= maxproc)) {
125 1.69 jdolecek tablefull("proc", "increase kern.maxproc or NPROC");
126 1.16 cgd return (EAGAIN);
127 1.16 cgd }
128 1.76 chs nprocs++;
129 1.21 mycroft
130 1.17 cgd /*
131 1.17 cgd * Increment the count of procs running with this uid. Don't allow
132 1.17 cgd * a nonprivileged user to exceed their current limit.
133 1.17 cgd */
134 1.17 cgd count = chgproccnt(uid, 1);
135 1.64 thorpej if (__predict_false(uid != 0 && count >
136 1.64 thorpej p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
137 1.17 cgd (void)chgproccnt(uid, -1);
138 1.76 chs nprocs--;
139 1.16 cgd return (EAGAIN);
140 1.17 cgd }
141 1.17 cgd
142 1.41 thorpej /*
143 1.41 thorpej * Allocate virtual address space for the U-area now, while it
144 1.41 thorpej * is still easy to abort the fork operation if we're out of
145 1.41 thorpej * kernel virtual address space. The actual U-area pages will
146 1.41 thorpej * be allocated and wired in vm_fork().
147 1.41 thorpej */
148 1.80 tsutsui
149 1.80 tsutsui #ifndef USPACE_ALIGN
150 1.84 lukem #define USPACE_ALIGN 0
151 1.80 tsutsui #endif
152 1.80 tsutsui
153 1.80 tsutsui uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
154 1.64 thorpej if (__predict_false(uaddr == 0)) {
155 1.41 thorpej (void)chgproccnt(uid, -1);
156 1.76 chs nprocs--;
157 1.41 thorpej return (ENOMEM);
158 1.41 thorpej }
159 1.41 thorpej
160 1.41 thorpej /*
161 1.41 thorpej * We are now committed to the fork. From here on, we may
162 1.41 thorpej * block on resources, but resource allocation may NOT fail.
163 1.41 thorpej */
164 1.41 thorpej
165 1.17 cgd /* Allocate new proc. */
166 1.76 chs p2 = pool_get(&proc_pool, PR_WAITOK);
167 1.16 cgd
168 1.16 cgd /*
169 1.16 cgd * Make a proc table entry for the new process.
170 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
171 1.16 cgd * then copy the section that is copied directly from the parent.
172 1.16 cgd */
173 1.45 perry memset(&p2->p_startzero, 0,
174 1.16 cgd (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
175 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy,
176 1.16 cgd (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
177 1.66 thorpej
178 1.66 thorpej #if !defined(MULTIPROCESSOR)
179 1.66 thorpej /*
180 1.66 thorpej * In the single-processor case, all processes will always run
181 1.66 thorpej * on the same CPU. So, initialize the child's CPU to the parent's
182 1.66 thorpej * now. In the multiprocessor case, the child's CPU will be
183 1.66 thorpej * initialized in the low-level context switch code when the
184 1.66 thorpej * process runs.
185 1.66 thorpej */
186 1.66 thorpej p2->p_cpu = p1->p_cpu;
187 1.72 sommerfe #else
188 1.72 sommerfe /*
189 1.72 sommerfe * zero child's cpu pointer so we don't get trash.
190 1.72 sommerfe */
191 1.72 sommerfe p2->p_cpu = NULL;
192 1.66 thorpej #endif /* ! MULTIPROCESSOR */
193 1.16 cgd
194 1.16 cgd /*
195 1.16 cgd * Duplicate sub-structures as needed.
196 1.16 cgd * Increase reference counts on shared objects.
197 1.76 chs * The p_stats and p_sigacts substructs are set in uvm_fork().
198 1.16 cgd */
199 1.31 mrg p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
200 1.21 mycroft p2->p_emul = p1->p_emul;
201 1.83 fvdl
202 1.17 cgd if (p1->p_flag & P_PROFIL)
203 1.17 cgd startprofclock(p2);
204 1.47 thorpej p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
205 1.45 perry memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
206 1.16 cgd p2->p_cred->p_refcnt = 1;
207 1.16 cgd crhold(p1->p_ucred);
208 1.51 sommerfe
209 1.17 cgd /* bump references to the text vnode (for procfs) */
210 1.17 cgd p2->p_textvp = p1->p_textvp;
211 1.17 cgd if (p2->p_textvp)
212 1.16 cgd VREF(p2->p_textvp);
213 1.16 cgd
214 1.57 thorpej if (flags & FORK_SHAREFILES)
215 1.57 thorpej fdshare(p1, p2);
216 1.57 thorpej else
217 1.57 thorpej p2->p_fd = fdcopy(p1);
218 1.57 thorpej
219 1.57 thorpej if (flags & FORK_SHARECWD)
220 1.57 thorpej cwdshare(p1, p2);
221 1.57 thorpej else
222 1.57 thorpej p2->p_cwdi = cwdinit(p1);
223 1.55 thorpej
224 1.16 cgd /*
225 1.16 cgd * If p_limit is still copy-on-write, bump refcnt,
226 1.16 cgd * otherwise get a copy that won't be modified.
227 1.16 cgd * (If PL_SHAREMOD is clear, the structure is shared
228 1.16 cgd * copy-on-write.)
229 1.16 cgd */
230 1.16 cgd if (p1->p_limit->p_lflags & PL_SHAREMOD)
231 1.16 cgd p2->p_limit = limcopy(p1->p_limit);
232 1.16 cgd else {
233 1.16 cgd p2->p_limit = p1->p_limit;
234 1.16 cgd p2->p_limit->p_refcnt++;
235 1.16 cgd }
236 1.16 cgd
237 1.16 cgd if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
238 1.16 cgd p2->p_flag |= P_CONTROLT;
239 1.34 thorpej if (flags & FORK_PPWAIT)
240 1.16 cgd p2->p_flag |= P_PPWAIT;
241 1.20 mycroft LIST_INSERT_AFTER(p1, p2, p_pglist);
242 1.16 cgd p2->p_pptr = p1;
243 1.20 mycroft LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
244 1.20 mycroft LIST_INIT(&p2->p_children);
245 1.62 thorpej
246 1.62 thorpej callout_init(&p2->p_realit_ch);
247 1.62 thorpej callout_init(&p2->p_tsleep_ch);
248 1.20 mycroft
249 1.16 cgd #ifdef KTRACE
250 1.16 cgd /*
251 1.16 cgd * Copy traceflag and tracefile if enabled.
252 1.16 cgd * If not inherited, these were zeroed above.
253 1.16 cgd */
254 1.83 fvdl if (p1->p_traceflag & KTRFAC_INHERIT) {
255 1.16 cgd p2->p_traceflag = p1->p_traceflag;
256 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
257 1.42 christos ktradref(p2);
258 1.16 cgd }
259 1.16 cgd #endif
260 1.83 fvdl
261 1.83 fvdl #ifdef __HAVE_SYSCALL_INTERN
262 1.83 fvdl (*p2->p_emul->e_syscall_intern)(p2);
263 1.83 fvdl #endif
264 1.83 fvdl
265 1.53 ross scheduler_fork_hook(p1, p2);
266 1.56 thorpej
267 1.56 thorpej /*
268 1.56 thorpej * Create signal actions for the child process.
269 1.56 thorpej */
270 1.81 jdolecek sigactsinit(p2, p1, flags & FORK_SHARESIGS);
271 1.75 jdolecek
272 1.75 jdolecek /*
273 1.75 jdolecek * If emulation has process fork hook, call it now.
274 1.75 jdolecek */
275 1.75 jdolecek if (p2->p_emul->e_proc_fork)
276 1.75 jdolecek (*p2->p_emul->e_proc_fork)(p2, p1);
277 1.16 cgd
278 1.16 cgd /*
279 1.16 cgd * This begins the section where we must prevent the parent
280 1.16 cgd * from being swapped.
281 1.16 cgd */
282 1.30 mycroft PHOLD(p1);
283 1.26 mycroft
284 1.26 mycroft /*
285 1.26 mycroft * Finish creating the child process. It will return through a
286 1.26 mycroft * different path later.
287 1.26 mycroft */
288 1.41 thorpej p2->p_addr = (struct user *)uaddr;
289 1.59 thorpej uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
290 1.65 thorpej stack, stacksize,
291 1.65 thorpej (func != NULL) ? func : child_return,
292 1.65 thorpej (arg != NULL) ? arg : p2);
293 1.76 chs
294 1.76 chs /*
295 1.76 chs * BEGIN PID ALLOCATION.
296 1.76 chs */
297 1.76 chs s = proclist_lock_write();
298 1.76 chs
299 1.76 chs /*
300 1.76 chs * Find an unused process ID. We remember a range of unused IDs
301 1.76 chs * ready to use (from nextpid+1 through pidchecked-1).
302 1.76 chs */
303 1.76 chs nextpid++;
304 1.84 lukem retry:
305 1.76 chs /*
306 1.76 chs * If the process ID prototype has wrapped around,
307 1.76 chs * restart somewhat above 0, as the low-numbered procs
308 1.76 chs * tend to include daemons that don't exit.
309 1.76 chs */
310 1.76 chs if (nextpid >= PID_MAX) {
311 1.82 ad nextpid = 500;
312 1.76 chs pidchecked = 0;
313 1.76 chs }
314 1.76 chs if (nextpid >= pidchecked) {
315 1.76 chs const struct proclist_desc *pd;
316 1.76 chs
317 1.76 chs pidchecked = PID_MAX;
318 1.76 chs /*
319 1.76 chs * Scan the process lists to check whether this pid
320 1.76 chs * is in use. Remember the lowest pid that's greater
321 1.76 chs * than nextpid, so we can avoid checking for a while.
322 1.76 chs */
323 1.76 chs pd = proclists;
324 1.84 lukem again:
325 1.76 chs LIST_FOREACH(tp, pd->pd_list, p_list) {
326 1.76 chs while (tp->p_pid == nextpid ||
327 1.76 chs tp->p_pgrp->pg_id == nextpid ||
328 1.76 chs tp->p_session->s_sid == nextpid) {
329 1.76 chs nextpid++;
330 1.76 chs if (nextpid >= pidchecked)
331 1.76 chs goto retry;
332 1.76 chs }
333 1.76 chs if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
334 1.76 chs pidchecked = tp->p_pid;
335 1.76 chs
336 1.76 chs if (tp->p_pgrp->pg_id > nextpid &&
337 1.76 chs pidchecked > tp->p_pgrp->pg_id)
338 1.76 chs pidchecked = tp->p_pgrp->pg_id;
339 1.76 chs
340 1.76 chs if (tp->p_session->s_sid > nextpid &&
341 1.76 chs pidchecked > tp->p_session->s_sid)
342 1.76 chs pidchecked = tp->p_session->s_sid;
343 1.76 chs }
344 1.76 chs
345 1.76 chs /*
346 1.76 chs * If there's another list, scan it. If we have checked
347 1.76 chs * them all, we've found one!
348 1.76 chs */
349 1.76 chs pd++;
350 1.76 chs if (pd->pd_list != NULL)
351 1.76 chs goto again;
352 1.76 chs }
353 1.76 chs
354 1.76 chs /* Record the pid we've allocated. */
355 1.76 chs p2->p_pid = nextpid;
356 1.76 chs
357 1.76 chs /* Record the signal to be delivered to the parent on exit. */
358 1.76 chs p2->p_exitsig = exitsig;
359 1.76 chs
360 1.76 chs /*
361 1.76 chs * Put the proc on allproc before unlocking PID allocation
362 1.76 chs * so that waiters won't grab it as soon as we unlock.
363 1.76 chs */
364 1.76 chs
365 1.76 chs p2->p_stat = SIDL; /* protect against others */
366 1.76 chs p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
367 1.76 chs
368 1.76 chs LIST_INSERT_HEAD(&allproc, p2, p_list);
369 1.76 chs
370 1.76 chs LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
371 1.76 chs
372 1.76 chs /*
373 1.76 chs * END PID ALLOCATION.
374 1.76 chs */
375 1.76 chs proclist_unlock_write(s);
376 1.16 cgd
377 1.16 cgd /*
378 1.24 mycroft * Make child runnable, set start time, and add to run queue.
379 1.16 cgd */
380 1.73 sommerfe SCHED_LOCK(s);
381 1.23 mycroft p2->p_stats->p_start = time;
382 1.23 mycroft p2->p_acflag = AFORK;
383 1.16 cgd p2->p_stat = SRUN;
384 1.16 cgd setrunqueue(p2);
385 1.73 sommerfe SCHED_UNLOCK(s);
386 1.16 cgd
387 1.16 cgd /*
388 1.16 cgd * Now can be swapped.
389 1.16 cgd */
390 1.30 mycroft PRELE(p1);
391 1.16 cgd
392 1.16 cgd /*
393 1.34 thorpej * Update stats now that we know the fork was successful.
394 1.34 thorpej */
395 1.37 mrg uvmexp.forks++;
396 1.37 mrg if (flags & FORK_PPWAIT)
397 1.37 mrg uvmexp.forks_ppwait++;
398 1.37 mrg if (flags & FORK_SHAREVM)
399 1.37 mrg uvmexp.forks_sharevm++;
400 1.35 thorpej
401 1.35 thorpej /*
402 1.35 thorpej * Pass a pointer to the new process to the caller.
403 1.35 thorpej */
404 1.35 thorpej if (rnewprocp != NULL)
405 1.35 thorpej *rnewprocp = p2;
406 1.34 thorpej
407 1.78 jdolecek #ifdef KTRACE
408 1.78 jdolecek if (KTRPOINT(p2, KTR_EMUL))
409 1.78 jdolecek ktremul(p2);
410 1.78 jdolecek #endif
411 1.78 jdolecek
412 1.34 thorpej /*
413 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
414 1.17 cgd * child to exec or exit, set P_PPWAIT on child, and sleep on our
415 1.17 cgd * proc (in case of exit).
416 1.16 cgd */
417 1.34 thorpej if (flags & FORK_PPWAIT)
418 1.16 cgd while (p2->p_flag & P_PPWAIT)
419 1.17 cgd tsleep(p1, PWAIT, "ppwait", 0);
420 1.16 cgd
421 1.16 cgd /*
422 1.16 cgd * Return child pid to parent process,
423 1.16 cgd * marking us as parent via retval[1].
424 1.16 cgd */
425 1.36 thorpej if (retval != NULL) {
426 1.36 thorpej retval[0] = p2->p_pid;
427 1.36 thorpej retval[1] = 0;
428 1.36 thorpej }
429 1.74 jdolecek
430 1.16 cgd return (0);
431 1.16 cgd }
432 1.71 thorpej
433 1.71 thorpej #if defined(MULTIPROCESSOR)
434 1.71 thorpej /*
435 1.71 thorpej * XXX This is a slight hack to get newly-formed processes to
436 1.71 thorpej * XXX acquire the kernel lock as soon as they run.
437 1.71 thorpej */
438 1.71 thorpej void
439 1.71 thorpej proc_trampoline_mp(void)
440 1.71 thorpej {
441 1.84 lukem struct proc *p;
442 1.84 lukem
443 1.84 lukem p = curproc;
444 1.71 thorpej
445 1.71 thorpej SCHED_ASSERT_UNLOCKED();
446 1.71 thorpej KERNEL_PROC_LOCK(p);
447 1.71 thorpej }
448 1.71 thorpej #endif
449