kern_fork.c revision 1.84.2.1 1 1.84.2.1 nathanw /* $NetBSD: kern_fork.c,v 1.84.2.1 2001/03/05 22:49:39 nathanw Exp $ */
2 1.19 cgd
3 1.16 cgd /*
4 1.17 cgd * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 1.17 cgd * The Regents of the University of California. All rights reserved.
6 1.16 cgd * (c) UNIX System Laboratories, Inc.
7 1.16 cgd * All or some portions of this file are derived from material licensed
8 1.16 cgd * to the University of California by American Telephone and Telegraph
9 1.16 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.16 cgd * the permission of UNIX System Laboratories, Inc.
11 1.16 cgd *
12 1.16 cgd * Redistribution and use in source and binary forms, with or without
13 1.16 cgd * modification, are permitted provided that the following conditions
14 1.16 cgd * are met:
15 1.16 cgd * 1. Redistributions of source code must retain the above copyright
16 1.16 cgd * notice, this list of conditions and the following disclaimer.
17 1.16 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.16 cgd * notice, this list of conditions and the following disclaimer in the
19 1.16 cgd * documentation and/or other materials provided with the distribution.
20 1.16 cgd * 3. All advertising materials mentioning features or use of this software
21 1.16 cgd * must display the following acknowledgement:
22 1.16 cgd * This product includes software developed by the University of
23 1.16 cgd * California, Berkeley and its contributors.
24 1.16 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.16 cgd * may be used to endorse or promote products derived from this software
26 1.16 cgd * without specific prior written permission.
27 1.16 cgd *
28 1.16 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.16 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.16 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.16 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.16 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.16 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.16 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.16 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.16 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.16 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.16 cgd * SUCH DAMAGE.
39 1.16 cgd *
40 1.40 fvdl * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 1.16 cgd */
42 1.38 mrg
43 1.43 thorpej #include "opt_ktrace.h"
44 1.66 thorpej #include "opt_multiprocessor.h"
45 1.16 cgd
46 1.16 cgd #include <sys/param.h>
47 1.16 cgd #include <sys/systm.h>
48 1.17 cgd #include <sys/map.h>
49 1.16 cgd #include <sys/filedesc.h>
50 1.16 cgd #include <sys/kernel.h>
51 1.16 cgd #include <sys/malloc.h>
52 1.44 thorpej #include <sys/pool.h>
53 1.29 christos #include <sys/mount.h>
54 1.84.2.1 nathanw #include <sys/lwp.h>
55 1.16 cgd #include <sys/proc.h>
56 1.16 cgd #include <sys/resourcevar.h>
57 1.16 cgd #include <sys/vnode.h>
58 1.16 cgd #include <sys/file.h>
59 1.16 cgd #include <sys/acct.h>
60 1.16 cgd #include <sys/ktrace.h>
61 1.34 thorpej #include <sys/vmmeter.h>
62 1.53 ross #include <sys/sched.h>
63 1.56 thorpej #include <sys/signalvar.h>
64 1.29 christos
65 1.29 christos #include <sys/syscallargs.h>
66 1.16 cgd
67 1.37 mrg #include <uvm/uvm_extern.h>
68 1.37 mrg
69 1.26 mycroft int nprocs = 1; /* process 0 */
70 1.26 mycroft
71 1.28 christos /*ARGSUSED*/
72 1.26 mycroft int
73 1.84.2.1 nathanw sys_fork(struct lwp *l, void *v, register_t *retval)
74 1.16 cgd {
75 1.16 cgd
76 1.84.2.1 nathanw return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
77 1.16 cgd }
78 1.16 cgd
79 1.34 thorpej /*
80 1.34 thorpej * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
81 1.34 thorpej * Address space is not shared, but parent is blocked until child exit.
82 1.34 thorpej */
83 1.28 christos /*ARGSUSED*/
84 1.26 mycroft int
85 1.84.2.1 nathanw sys_vfork(struct lwp *l, void *v, register_t *retval)
86 1.16 cgd {
87 1.16 cgd
88 1.84.2.1 nathanw return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
89 1.65 thorpej retval, NULL));
90 1.16 cgd }
91 1.16 cgd
92 1.34 thorpej /*
93 1.34 thorpej * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
94 1.34 thorpej * semantics. Address space is shared, and parent is blocked until child exit.
95 1.34 thorpej */
96 1.34 thorpej /*ARGSUSED*/
97 1.26 mycroft int
98 1.84.2.1 nathanw sys___vfork14(struct lwp *l, void *v, register_t *retval)
99 1.34 thorpej {
100 1.34 thorpej
101 1.84.2.1 nathanw return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
102 1.65 thorpej NULL, NULL, retval, NULL));
103 1.49 thorpej }
104 1.49 thorpej
105 1.34 thorpej int
106 1.84.2.1 nathanw fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
107 1.70 thorpej void (*func)(void *), void *arg, register_t *retval,
108 1.70 thorpej struct proc **rnewprocp)
109 1.16 cgd {
110 1.84.2.1 nathanw struct proc *p1, *p2, *tp;
111 1.84 lukem uid_t uid;
112 1.84.2.1 nathanw struct lwp *l2;
113 1.84 lukem int count, s;
114 1.84 lukem vaddr_t uaddr;
115 1.84 lukem static int nextpid, pidchecked;
116 1.16 cgd
117 1.16 cgd /*
118 1.17 cgd * Although process entries are dynamically created, we still keep
119 1.16 cgd * a global limit on the maximum number we will create. Don't allow
120 1.16 cgd * a nonprivileged user to use the last process; don't let root
121 1.17 cgd * exceed the limit. The variable nprocs is the current number of
122 1.16 cgd * processes, maxproc is the limit.
123 1.16 cgd */
124 1.84.2.1 nathanw p1 = l1->l_proc;
125 1.17 cgd uid = p1->p_cred->p_ruid;
126 1.64 thorpej if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
127 1.64 thorpej nprocs >= maxproc)) {
128 1.69 jdolecek tablefull("proc", "increase kern.maxproc or NPROC");
129 1.16 cgd return (EAGAIN);
130 1.16 cgd }
131 1.76 chs nprocs++;
132 1.21 mycroft
133 1.17 cgd /*
134 1.17 cgd * Increment the count of procs running with this uid. Don't allow
135 1.17 cgd * a nonprivileged user to exceed their current limit.
136 1.17 cgd */
137 1.17 cgd count = chgproccnt(uid, 1);
138 1.64 thorpej if (__predict_false(uid != 0 && count >
139 1.64 thorpej p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
140 1.17 cgd (void)chgproccnt(uid, -1);
141 1.76 chs nprocs--;
142 1.16 cgd return (EAGAIN);
143 1.17 cgd }
144 1.17 cgd
145 1.41 thorpej /*
146 1.41 thorpej * Allocate virtual address space for the U-area now, while it
147 1.41 thorpej * is still easy to abort the fork operation if we're out of
148 1.41 thorpej * kernel virtual address space. The actual U-area pages will
149 1.41 thorpej * be allocated and wired in vm_fork().
150 1.41 thorpej */
151 1.80 tsutsui
152 1.80 tsutsui #ifndef USPACE_ALIGN
153 1.84 lukem #define USPACE_ALIGN 0
154 1.80 tsutsui #endif
155 1.80 tsutsui
156 1.80 tsutsui uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
157 1.64 thorpej if (__predict_false(uaddr == 0)) {
158 1.41 thorpej (void)chgproccnt(uid, -1);
159 1.76 chs nprocs--;
160 1.41 thorpej return (ENOMEM);
161 1.41 thorpej }
162 1.41 thorpej
163 1.41 thorpej /*
164 1.41 thorpej * We are now committed to the fork. From here on, we may
165 1.41 thorpej * block on resources, but resource allocation may NOT fail.
166 1.41 thorpej */
167 1.41 thorpej
168 1.17 cgd /* Allocate new proc. */
169 1.76 chs p2 = pool_get(&proc_pool, PR_WAITOK);
170 1.16 cgd
171 1.16 cgd /*
172 1.16 cgd * Make a proc table entry for the new process.
173 1.16 cgd * Start by zeroing the section of proc that is zero-initialized,
174 1.16 cgd * then copy the section that is copied directly from the parent.
175 1.16 cgd */
176 1.45 perry memset(&p2->p_startzero, 0,
177 1.16 cgd (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
178 1.45 perry memcpy(&p2->p_startcopy, &p1->p_startcopy,
179 1.16 cgd (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
180 1.66 thorpej
181 1.84.2.1 nathanw simple_lock_init(&p2->p_lwplock);
182 1.84.2.1 nathanw LIST_INIT(&p2->p_lwps);
183 1.16 cgd
184 1.16 cgd /*
185 1.16 cgd * Duplicate sub-structures as needed.
186 1.16 cgd * Increase reference counts on shared objects.
187 1.76 chs * The p_stats and p_sigacts substructs are set in uvm_fork().
188 1.16 cgd */
189 1.84.2.1 nathanw p2->p_flag = p1->p_flag & (P_SUGID);
190 1.21 mycroft p2->p_emul = p1->p_emul;
191 1.83 fvdl
192 1.17 cgd if (p1->p_flag & P_PROFIL)
193 1.17 cgd startprofclock(p2);
194 1.47 thorpej p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
195 1.45 perry memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
196 1.16 cgd p2->p_cred->p_refcnt = 1;
197 1.16 cgd crhold(p1->p_ucred);
198 1.51 sommerfe
199 1.84.2.1 nathanw
200 1.17 cgd /* bump references to the text vnode (for procfs) */
201 1.17 cgd p2->p_textvp = p1->p_textvp;
202 1.17 cgd if (p2->p_textvp)
203 1.16 cgd VREF(p2->p_textvp);
204 1.16 cgd
205 1.57 thorpej if (flags & FORK_SHAREFILES)
206 1.57 thorpej fdshare(p1, p2);
207 1.57 thorpej else
208 1.57 thorpej p2->p_fd = fdcopy(p1);
209 1.57 thorpej
210 1.57 thorpej if (flags & FORK_SHARECWD)
211 1.57 thorpej cwdshare(p1, p2);
212 1.57 thorpej else
213 1.57 thorpej p2->p_cwdi = cwdinit(p1);
214 1.55 thorpej
215 1.16 cgd /*
216 1.16 cgd * If p_limit is still copy-on-write, bump refcnt,
217 1.16 cgd * otherwise get a copy that won't be modified.
218 1.16 cgd * (If PL_SHAREMOD is clear, the structure is shared
219 1.16 cgd * copy-on-write.)
220 1.16 cgd */
221 1.16 cgd if (p1->p_limit->p_lflags & PL_SHAREMOD)
222 1.16 cgd p2->p_limit = limcopy(p1->p_limit);
223 1.16 cgd else {
224 1.16 cgd p2->p_limit = p1->p_limit;
225 1.16 cgd p2->p_limit->p_refcnt++;
226 1.16 cgd }
227 1.16 cgd
228 1.16 cgd if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
229 1.16 cgd p2->p_flag |= P_CONTROLT;
230 1.34 thorpej if (flags & FORK_PPWAIT)
231 1.16 cgd p2->p_flag |= P_PPWAIT;
232 1.20 mycroft LIST_INSERT_AFTER(p1, p2, p_pglist);
233 1.16 cgd p2->p_pptr = p1;
234 1.20 mycroft LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
235 1.20 mycroft LIST_INIT(&p2->p_children);
236 1.62 thorpej
237 1.62 thorpej callout_init(&p2->p_realit_ch);
238 1.20 mycroft
239 1.16 cgd #ifdef KTRACE
240 1.16 cgd /*
241 1.16 cgd * Copy traceflag and tracefile if enabled.
242 1.16 cgd * If not inherited, these were zeroed above.
243 1.16 cgd */
244 1.83 fvdl if (p1->p_traceflag & KTRFAC_INHERIT) {
245 1.16 cgd p2->p_traceflag = p1->p_traceflag;
246 1.16 cgd if ((p2->p_tracep = p1->p_tracep) != NULL)
247 1.42 christos ktradref(p2);
248 1.16 cgd }
249 1.16 cgd #endif
250 1.83 fvdl
251 1.83 fvdl #ifdef __HAVE_SYSCALL_INTERN
252 1.83 fvdl (*p2->p_emul->e_syscall_intern)(p2);
253 1.83 fvdl #endif
254 1.83 fvdl
255 1.53 ross scheduler_fork_hook(p1, p2);
256 1.56 thorpej
257 1.56 thorpej /*
258 1.56 thorpej * Create signal actions for the child process.
259 1.56 thorpej */
260 1.81 jdolecek sigactsinit(p2, p1, flags & FORK_SHARESIGS);
261 1.75 jdolecek
262 1.75 jdolecek /*
263 1.84.2.1 nathanw * p_stats.
264 1.84.2.1 nathanw * Copy parts of p_stats, and zero out the rest.
265 1.84.2.1 nathanw */
266 1.84.2.1 nathanw p2->p_stats = pstatscopy(p1->p_stats);
267 1.84.2.1 nathanw
268 1.84.2.1 nathanw /*
269 1.75 jdolecek * If emulation has process fork hook, call it now.
270 1.75 jdolecek */
271 1.75 jdolecek if (p2->p_emul->e_proc_fork)
272 1.75 jdolecek (*p2->p_emul->e_proc_fork)(p2, p1);
273 1.16 cgd
274 1.16 cgd /*
275 1.16 cgd * This begins the section where we must prevent the parent
276 1.16 cgd * from being swapped.
277 1.16 cgd */
278 1.84.2.1 nathanw PHOLD(l1);
279 1.26 mycroft
280 1.26 mycroft /*
281 1.26 mycroft * Finish creating the child process. It will return through a
282 1.26 mycroft * different path later.
283 1.26 mycroft */
284 1.84.2.1 nathanw newlwp(l1, p2, uaddr, 0, stack, stacksize,
285 1.84.2.1 nathanw (func != NULL) ? func : child_return,
286 1.84.2.1 nathanw arg, &l2);
287 1.84.2.1 nathanw
288 1.84.2.1 nathanw uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
289 1.76 chs
290 1.76 chs /*
291 1.76 chs * BEGIN PID ALLOCATION.
292 1.76 chs */
293 1.76 chs s = proclist_lock_write();
294 1.76 chs
295 1.76 chs /*
296 1.76 chs * Find an unused process ID. We remember a range of unused IDs
297 1.76 chs * ready to use (from nextpid+1 through pidchecked-1).
298 1.76 chs */
299 1.76 chs nextpid++;
300 1.84 lukem retry:
301 1.76 chs /*
302 1.76 chs * If the process ID prototype has wrapped around,
303 1.76 chs * restart somewhat above 0, as the low-numbered procs
304 1.76 chs * tend to include daemons that don't exit.
305 1.76 chs */
306 1.76 chs if (nextpid >= PID_MAX) {
307 1.82 ad nextpid = 500;
308 1.76 chs pidchecked = 0;
309 1.76 chs }
310 1.76 chs if (nextpid >= pidchecked) {
311 1.76 chs const struct proclist_desc *pd;
312 1.76 chs
313 1.76 chs pidchecked = PID_MAX;
314 1.76 chs /*
315 1.76 chs * Scan the process lists to check whether this pid
316 1.76 chs * is in use. Remember the lowest pid that's greater
317 1.76 chs * than nextpid, so we can avoid checking for a while.
318 1.76 chs */
319 1.76 chs pd = proclists;
320 1.84 lukem again:
321 1.76 chs LIST_FOREACH(tp, pd->pd_list, p_list) {
322 1.76 chs while (tp->p_pid == nextpid ||
323 1.76 chs tp->p_pgrp->pg_id == nextpid ||
324 1.76 chs tp->p_session->s_sid == nextpid) {
325 1.76 chs nextpid++;
326 1.76 chs if (nextpid >= pidchecked)
327 1.76 chs goto retry;
328 1.76 chs }
329 1.76 chs if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
330 1.76 chs pidchecked = tp->p_pid;
331 1.76 chs
332 1.76 chs if (tp->p_pgrp->pg_id > nextpid &&
333 1.76 chs pidchecked > tp->p_pgrp->pg_id)
334 1.76 chs pidchecked = tp->p_pgrp->pg_id;
335 1.76 chs
336 1.76 chs if (tp->p_session->s_sid > nextpid &&
337 1.76 chs pidchecked > tp->p_session->s_sid)
338 1.76 chs pidchecked = tp->p_session->s_sid;
339 1.76 chs }
340 1.76 chs
341 1.76 chs /*
342 1.76 chs * If there's another list, scan it. If we have checked
343 1.76 chs * them all, we've found one!
344 1.76 chs */
345 1.76 chs pd++;
346 1.76 chs if (pd->pd_list != NULL)
347 1.76 chs goto again;
348 1.76 chs }
349 1.76 chs
350 1.76 chs /* Record the pid we've allocated. */
351 1.76 chs p2->p_pid = nextpid;
352 1.76 chs
353 1.76 chs /* Record the signal to be delivered to the parent on exit. */
354 1.76 chs p2->p_exitsig = exitsig;
355 1.76 chs
356 1.76 chs /*
357 1.76 chs * Put the proc on allproc before unlocking PID allocation
358 1.76 chs * so that waiters won't grab it as soon as we unlock.
359 1.76 chs */
360 1.76 chs
361 1.76 chs p2->p_stat = SIDL; /* protect against others */
362 1.76 chs
363 1.76 chs LIST_INSERT_HEAD(&allproc, p2, p_list);
364 1.76 chs
365 1.76 chs LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
366 1.76 chs
367 1.76 chs /*
368 1.76 chs * END PID ALLOCATION.
369 1.76 chs */
370 1.76 chs proclist_unlock_write(s);
371 1.16 cgd /*
372 1.24 mycroft * Make child runnable, set start time, and add to run queue.
373 1.16 cgd */
374 1.73 sommerfe SCHED_LOCK(s);
375 1.23 mycroft p2->p_stats->p_start = time;
376 1.23 mycroft p2->p_acflag = AFORK;
377 1.84.2.1 nathanw p2->p_stat = SACTIVE;
378 1.84.2.1 nathanw p2->p_nrlwps = 1;
379 1.84.2.1 nathanw l2->l_stat = LSRUN;
380 1.84.2.1 nathanw setrunqueue(l2);
381 1.73 sommerfe SCHED_UNLOCK(s);
382 1.16 cgd
383 1.16 cgd /*
384 1.16 cgd * Now can be swapped.
385 1.16 cgd */
386 1.84.2.1 nathanw PRELE(l1);
387 1.16 cgd
388 1.16 cgd /*
389 1.34 thorpej * Update stats now that we know the fork was successful.
390 1.34 thorpej */
391 1.37 mrg uvmexp.forks++;
392 1.37 mrg if (flags & FORK_PPWAIT)
393 1.37 mrg uvmexp.forks_ppwait++;
394 1.37 mrg if (flags & FORK_SHAREVM)
395 1.37 mrg uvmexp.forks_sharevm++;
396 1.35 thorpej
397 1.35 thorpej /*
398 1.35 thorpej * Pass a pointer to the new process to the caller.
399 1.35 thorpej */
400 1.35 thorpej if (rnewprocp != NULL)
401 1.35 thorpej *rnewprocp = p2;
402 1.34 thorpej
403 1.78 jdolecek #ifdef KTRACE
404 1.78 jdolecek if (KTRPOINT(p2, KTR_EMUL))
405 1.78 jdolecek ktremul(p2);
406 1.78 jdolecek #endif
407 1.78 jdolecek
408 1.34 thorpej /*
409 1.17 cgd * Preserve synchronization semantics of vfork. If waiting for
410 1.17 cgd * child to exec or exit, set P_PPWAIT on child, and sleep on our
411 1.17 cgd * proc (in case of exit).
412 1.16 cgd */
413 1.34 thorpej if (flags & FORK_PPWAIT)
414 1.16 cgd while (p2->p_flag & P_PPWAIT)
415 1.17 cgd tsleep(p1, PWAIT, "ppwait", 0);
416 1.16 cgd
417 1.16 cgd /*
418 1.16 cgd * Return child pid to parent process,
419 1.16 cgd * marking us as parent via retval[1].
420 1.16 cgd */
421 1.36 thorpej if (retval != NULL) {
422 1.36 thorpej retval[0] = p2->p_pid;
423 1.36 thorpej retval[1] = 0;
424 1.36 thorpej }
425 1.74 jdolecek
426 1.16 cgd return (0);
427 1.16 cgd }
428 1.71 thorpej
429 1.71 thorpej #if defined(MULTIPROCESSOR)
430 1.71 thorpej /*
431 1.71 thorpej * XXX This is a slight hack to get newly-formed processes to
432 1.71 thorpej * XXX acquire the kernel lock as soon as they run.
433 1.71 thorpej */
434 1.71 thorpej void
435 1.71 thorpej proc_trampoline_mp(void)
436 1.71 thorpej {
437 1.84 lukem struct proc *p;
438 1.84 lukem
439 1.84 lukem p = curproc;
440 1.71 thorpej
441 1.71 thorpej SCHED_ASSERT_UNLOCKED();
442 1.71 thorpej KERNEL_PROC_LOCK(p);
443 1.71 thorpej }
444 1.71 thorpej #endif
445