kern_fork.c revision 1.104 1 /* $NetBSD: kern_fork.c,v 1.104 2002/12/12 20:41:45 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.104 2002/12/12 20:41:45 jdolecek Exp $");
82
83 #include "opt_ktrace.h"
84 #include "opt_systrace.h"
85 #include "opt_multiprocessor.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/filedesc.h>
90 #include <sys/kernel.h>
91 #include <sys/malloc.h>
92 #include <sys/pool.h>
93 #include <sys/mount.h>
94 #include <sys/proc.h>
95 #include <sys/ras.h>
96 #include <sys/resourcevar.h>
97 #include <sys/vnode.h>
98 #include <sys/file.h>
99 #include <sys/acct.h>
100 #include <sys/ktrace.h>
101 #include <sys/vmmeter.h>
102 #include <sys/sched.h>
103 #include <sys/signalvar.h>
104 #include <sys/systrace.h>
105
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm_extern.h>
109
110
111 int nprocs = 1; /* process 0 */
112
113 /*
114 * Number of ticks to sleep if fork() would fail due to process hitting
115 * limits. Exported in miliseconds to userland via sysctl.
116 */
117 int forkfsleep = 0;
118
119 /*ARGSUSED*/
120 int
121 sys_fork(struct proc *p, void *v, register_t *retval)
122 {
123
124 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
125 }
126
127 /*
128 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
129 * Address space is not shared, but parent is blocked until child exit.
130 */
131 /*ARGSUSED*/
132 int
133 sys_vfork(struct proc *p, void *v, register_t *retval)
134 {
135
136 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
137 retval, NULL));
138 }
139
140 /*
141 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
142 * semantics. Address space is shared, and parent is blocked until child exit.
143 */
144 /*ARGSUSED*/
145 int
146 sys___vfork14(struct proc *p, void *v, register_t *retval)
147 {
148
149 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
150 NULL, NULL, retval, NULL));
151 }
152
153 /*
154 * Linux-compatible __clone(2) system call.
155 */
156 int
157 sys___clone(struct proc *p, void *v, register_t *retval)
158 {
159 struct sys___clone_args /* {
160 syscallarg(int) flags;
161 syscallarg(void *) stack;
162 } */ *uap = v;
163 int flags, sig;
164
165 /*
166 * We don't support the CLONE_PID or CLONE_PTRACE flags.
167 */
168 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
169 return (EINVAL);
170
171 flags = 0;
172
173 if (SCARG(uap, flags) & CLONE_VM)
174 flags |= FORK_SHAREVM;
175 if (SCARG(uap, flags) & CLONE_FS)
176 flags |= FORK_SHARECWD;
177 if (SCARG(uap, flags) & CLONE_FILES)
178 flags |= FORK_SHAREFILES;
179 if (SCARG(uap, flags) & CLONE_SIGHAND)
180 flags |= FORK_SHARESIGS;
181 if (SCARG(uap, flags) & CLONE_VFORK)
182 flags |= FORK_PPWAIT;
183
184 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
185 if (sig < 0 || sig >= _NSIG)
186 return (EINVAL);
187
188 /*
189 * Note that the Linux API does not provide a portable way of
190 * specifying the stack area; the caller must know if the stack
191 * grows up or down. So, we pass a stack size of 0, so that the
192 * code that makes this adjustment is a noop.
193 */
194 return (fork1(p, flags, sig, SCARG(uap, stack), 0,
195 NULL, NULL, retval, NULL));
196 }
197
198 /* print the 'table full' message once per 10 seconds */
199 struct timeval fork_tfmrate = { 10, 0 };
200
201 int
202 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
203 void (*func)(void *), void *arg, register_t *retval,
204 struct proc **rnewprocp)
205 {
206 struct proc *p2, *tp;
207 uid_t uid;
208 int count, s;
209 vaddr_t uaddr;
210 boolean_t inmem;
211 static int nextpid, pidchecked;
212
213 /*
214 * Although process entries are dynamically created, we still keep
215 * a global limit on the maximum number we will create. Don't allow
216 * a nonprivileged user to use the last few processes; don't let root
217 * exceed the limit. The variable nprocs is the current number of
218 * processes, maxproc is the limit.
219 */
220 uid = p1->p_cred->p_ruid;
221 if (__predict_false((nprocs >= maxproc - 5 && uid != 0) ||
222 nprocs >= maxproc)) {
223 static struct timeval lasttfm;
224
225 if (ratecheck(&lasttfm, &fork_tfmrate))
226 tablefull("proc", "increase kern.maxproc or NPROC");
227 if (forkfsleep)
228 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep);
229 return (EAGAIN);
230 }
231 nprocs++;
232
233 /*
234 * Increment the count of procs running with this uid. Don't allow
235 * a nonprivileged user to exceed their current limit.
236 */
237 count = chgproccnt(uid, 1);
238 if (__predict_false(uid != 0 && count >
239 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
240 (void)chgproccnt(uid, -1);
241 nprocs--;
242 if (forkfsleep)
243 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep);
244 return (EAGAIN);
245 }
246
247 /*
248 * Allocate virtual address space for the U-area now, while it
249 * is still easy to abort the fork operation if we're out of
250 * kernel virtual address space. The actual U-area pages will
251 * be allocated and wired in uvm_fork() if needed.
252 */
253
254 inmem = uvm_uarea_alloc(&uaddr);
255 if (__predict_false(uaddr == 0)) {
256 (void)chgproccnt(uid, -1);
257 nprocs--;
258 return (ENOMEM);
259 }
260
261 /*
262 * We are now committed to the fork. From here on, we may
263 * block on resources, but resource allocation may NOT fail.
264 */
265
266 /* Allocate new proc. */
267 p2 = pool_get(&proc_pool, PR_WAITOK);
268
269 /*
270 * Make a proc table entry for the new process.
271 * Start by zeroing the section of proc that is zero-initialized,
272 * then copy the section that is copied directly from the parent.
273 */
274 memset(&p2->p_startzero, 0,
275 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
276 memcpy(&p2->p_startcopy, &p1->p_startcopy,
277 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
278
279 #if !defined(MULTIPROCESSOR)
280 /*
281 * In the single-processor case, all processes will always run
282 * on the same CPU. So, initialize the child's CPU to the parent's
283 * now. In the multiprocessor case, the child's CPU will be
284 * initialized in the low-level context switch code when the
285 * process runs.
286 */
287 p2->p_cpu = p1->p_cpu;
288 #else
289 /*
290 * zero child's cpu pointer so we don't get trash.
291 */
292 p2->p_cpu = NULL;
293 #endif /* ! MULTIPROCESSOR */
294
295 /*
296 * Duplicate sub-structures as needed.
297 * Increase reference counts on shared objects.
298 * The p_stats and p_sigacts substructs are set in uvm_fork().
299 */
300 p2->p_flag = (inmem ? P_INMEM : 0) | (p1->p_flag & P_SUGID);
301 p2->p_emul = p1->p_emul;
302 p2->p_execsw = p1->p_execsw;
303
304 if (p1->p_flag & P_PROFIL)
305 startprofclock(p2);
306 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
307 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
308 p2->p_cred->p_refcnt = 1;
309 crhold(p1->p_ucred);
310
311 LIST_INIT(&p2->p_raslist);
312 p2->p_nras = 0;
313 simple_lock_init(&p2->p_raslock);
314 #if defined(__HAVE_RAS)
315 ras_fork(p1, p2);
316 #endif
317
318 /* bump references to the text vnode (for procfs) */
319 p2->p_textvp = p1->p_textvp;
320 if (p2->p_textvp)
321 VREF(p2->p_textvp);
322
323 if (flags & FORK_SHAREFILES)
324 fdshare(p1, p2);
325 else if (flags & FORK_CLEANFILES)
326 p2->p_fd = fdinit(p1);
327 else
328 p2->p_fd = fdcopy(p1);
329
330 if (flags & FORK_SHARECWD)
331 cwdshare(p1, p2);
332 else
333 p2->p_cwdi = cwdinit(p1);
334
335 /*
336 * If p_limit is still copy-on-write, bump refcnt,
337 * otherwise get a copy that won't be modified.
338 * (If PL_SHAREMOD is clear, the structure is shared
339 * copy-on-write.)
340 */
341 if (p1->p_limit->p_lflags & PL_SHAREMOD)
342 p2->p_limit = limcopy(p1->p_limit);
343 else {
344 p2->p_limit = p1->p_limit;
345 p2->p_limit->p_refcnt++;
346 }
347
348 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
349 p2->p_flag |= P_CONTROLT;
350 if (flags & FORK_PPWAIT)
351 p2->p_flag |= P_PPWAIT;
352 LIST_INSERT_AFTER(p1, p2, p_pglist);
353 p2->p_pptr = (flags & FORK_NOWAIT) ? initproc : p1;
354 LIST_INSERT_HEAD(&p2->p_pptr->p_children, p2, p_sibling);
355 LIST_INIT(&p2->p_children);
356
357 callout_init(&p2->p_realit_ch);
358 callout_init(&p2->p_tsleep_ch);
359
360 #ifdef KTRACE
361 /*
362 * Copy traceflag and tracefile if enabled.
363 * If not inherited, these were zeroed above.
364 */
365 if (p1->p_traceflag & KTRFAC_INHERIT) {
366 p2->p_traceflag = p1->p_traceflag;
367 if ((p2->p_tracep = p1->p_tracep) != NULL)
368 ktradref(p2);
369 }
370 #endif
371
372 scheduler_fork_hook(p1, p2);
373
374 /*
375 * Create signal actions for the child process.
376 */
377 sigactsinit(p2, p1, flags & FORK_SHARESIGS);
378
379 /*
380 * If emulation has process fork hook, call it now.
381 */
382 if (p2->p_emul->e_proc_fork)
383 (*p2->p_emul->e_proc_fork)(p2, p1);
384
385 /*
386 * This begins the section where we must prevent the parent
387 * from being swapped.
388 */
389 PHOLD(p1);
390
391 /*
392 * Finish creating the child process. It will return through a
393 * different path later.
394 */
395 p2->p_addr = (struct user *)uaddr;
396 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
397 stack, stacksize,
398 (func != NULL) ? func : child_return,
399 (arg != NULL) ? arg : p2);
400
401 /*
402 * BEGIN PID ALLOCATION.
403 */
404 s = proclist_lock_write();
405
406 /*
407 * Find an unused process ID. We remember a range of unused IDs
408 * ready to use (from nextpid+1 through pidchecked-1).
409 */
410 nextpid++;
411 retry:
412 /*
413 * If the process ID prototype has wrapped around,
414 * restart somewhat above 0, as the low-numbered procs
415 * tend to include daemons that don't exit.
416 */
417 if (nextpid >= PID_MAX) {
418 nextpid = PID_SKIP;
419 pidchecked = 0;
420 }
421 if (nextpid >= pidchecked) {
422 const struct proclist_desc *pd;
423
424 pidchecked = PID_MAX;
425 /*
426 * Scan the process lists to check whether this pid
427 * is in use. Remember the lowest pid that's greater
428 * than nextpid, so we can avoid checking for a while.
429 */
430 pd = proclists;
431 again:
432 LIST_FOREACH(tp, pd->pd_list, p_list) {
433 while (tp->p_pid == nextpid ||
434 tp->p_pgrp->pg_id == nextpid ||
435 tp->p_session->s_sid == nextpid) {
436 nextpid++;
437 if (nextpid >= pidchecked)
438 goto retry;
439 }
440 if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
441 pidchecked = tp->p_pid;
442
443 if (tp->p_pgrp->pg_id > nextpid &&
444 pidchecked > tp->p_pgrp->pg_id)
445 pidchecked = tp->p_pgrp->pg_id;
446
447 if (tp->p_session->s_sid > nextpid &&
448 pidchecked > tp->p_session->s_sid)
449 pidchecked = tp->p_session->s_sid;
450 }
451
452 /*
453 * If there's another list, scan it. If we have checked
454 * them all, we've found one!
455 */
456 pd++;
457 if (pd->pd_list != NULL)
458 goto again;
459 }
460
461 /*
462 * Put the proc on allproc before unlocking PID allocation
463 * so that waiters won't grab it as soon as we unlock.
464 */
465
466 p2->p_stat = SIDL; /* protect against others */
467 p2->p_pid = nextpid;
468 p2->p_exitsig = exitsig; /* signal for parent on exit */
469 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
470
471 LIST_INSERT_HEAD(&allproc, p2, p_list);
472
473 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
474
475 /*
476 * END PID ALLOCATION.
477 */
478 proclist_unlock_write(s);
479
480 #ifdef SYSTRACE
481 /* Tell systrace what's happening. */
482 if (ISSET(p1->p_flag, P_SYSTRACE))
483 systrace_sys_fork(p1, p2);
484 #endif
485
486 #ifdef __HAVE_SYSCALL_INTERN
487 (*p2->p_emul->e_syscall_intern)(p2);
488 #endif
489
490 /*
491 * Make child runnable, set start time, and add to run queue
492 * except if the parent requested the child to start in SSTOP state.
493 */
494 SCHED_LOCK(s);
495 p2->p_stats->p_start = time;
496 p2->p_acflag = AFORK;
497 if (p1->p_flag & P_STOPFORK) {
498 p2->p_stat = SSTOP;
499 } else {
500 p2->p_stat = SRUN;
501 setrunqueue(p2);
502 }
503 SCHED_UNLOCK(s);
504
505 /*
506 * Inherit STOPFORK and STOPEXEC flags
507 */
508 if (p1->p_flag & P_STOPFORK)
509 p2->p_flag |= P_STOPFORK;
510 if (p1->p_flag & P_STOPEXEC)
511 p2->p_flag |= P_STOPEXEC;
512
513 /*
514 * Now can be swapped.
515 */
516 PRELE(p1);
517
518 /*
519 * Notify any interested parties about the new process.
520 */
521 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
522
523 /*
524 * Update stats now that we know the fork was successful.
525 */
526 uvmexp.forks++;
527 if (flags & FORK_PPWAIT)
528 uvmexp.forks_ppwait++;
529 if (flags & FORK_SHAREVM)
530 uvmexp.forks_sharevm++;
531
532 /*
533 * Pass a pointer to the new process to the caller.
534 */
535 if (rnewprocp != NULL)
536 *rnewprocp = p2;
537
538 #ifdef KTRACE
539 if (KTRPOINT(p2, KTR_EMUL))
540 ktremul(p2);
541 #endif
542
543 /*
544 * Preserve synchronization semantics of vfork. If waiting for
545 * child to exec or exit, set P_PPWAIT on child, and sleep on our
546 * proc (in case of exit).
547 */
548 if (flags & FORK_PPWAIT)
549 while (p2->p_flag & P_PPWAIT)
550 tsleep(p1, PWAIT, "ppwait", 0);
551
552 /*
553 * Return child pid to parent process,
554 * marking us as parent via retval[1].
555 */
556 if (retval != NULL) {
557 retval[0] = p2->p_pid;
558 retval[1] = 0;
559 }
560
561 return (0);
562 }
563
564 #if defined(MULTIPROCESSOR)
565 /*
566 * XXX This is a slight hack to get newly-formed processes to
567 * XXX acquire the kernel lock as soon as they run.
568 */
569 void
570 proc_trampoline_mp(void)
571 {
572 struct proc *p;
573
574 p = curproc;
575
576 SCHED_ASSERT_UNLOCKED();
577 KERNEL_PROC_LOCK(p);
578 }
579 #endif
580