kern_fork.c revision 1.149 1 /* $NetBSD: kern_fork.c,v 1.149 2007/12/03 20:26:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * Copyright (c) 1982, 1986, 1989, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.149 2007/12/03 20:26:24 ad Exp $");
80
81 #include "opt_ktrace.h"
82 #include "opt_systrace.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/filedesc.h>
88 #include <sys/kernel.h>
89 #include <sys/malloc.h>
90 #include <sys/pool.h>
91 #include <sys/mount.h>
92 #include <sys/proc.h>
93 #include <sys/ras.h>
94 #include <sys/resourcevar.h>
95 #include <sys/vnode.h>
96 #include <sys/file.h>
97 #include <sys/acct.h>
98 #include <sys/ktrace.h>
99 #include <sys/vmmeter.h>
100 #include <sys/sched.h>
101 #include <sys/signalvar.h>
102 #include <sys/systrace.h>
103 #include <sys/kauth.h>
104
105 #include <sys/syscallargs.h>
106
107 #include <uvm/uvm_extern.h>
108
109
110 int nprocs = 1; /* process 0 */
111
112 /*
113 * Number of ticks to sleep if fork() would fail due to process hitting
114 * limits. Exported in miliseconds to userland via sysctl.
115 */
116 int forkfsleep = 0;
117
118 /*ARGSUSED*/
119 int
120 sys_fork(struct lwp *l, void *v, register_t *retval)
121 {
122
123 return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
124 }
125
126 /*
127 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
128 * Address space is not shared, but parent is blocked until child exit.
129 */
130 /*ARGSUSED*/
131 int
132 sys_vfork(struct lwp *l, void *v, register_t *retval)
133 {
134
135 return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
136 retval, NULL));
137 }
138
139 /*
140 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
141 * semantics. Address space is shared, and parent is blocked until child exit.
142 */
143 /*ARGSUSED*/
144 int
145 sys___vfork14(struct lwp *l, void *v, register_t *retval)
146 {
147
148 return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
149 NULL, NULL, retval, NULL));
150 }
151
152 /*
153 * Linux-compatible __clone(2) system call.
154 */
155 int
156 sys___clone(struct lwp *l, void *v, register_t *retval)
157 {
158 struct sys___clone_args /* {
159 syscallarg(int) flags;
160 syscallarg(void *) stack;
161 } */ *uap = v;
162 int flags, sig;
163
164 /*
165 * We don't support the CLONE_PID or CLONE_PTRACE flags.
166 */
167 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
168 return (EINVAL);
169
170 /*
171 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
172 */
173 if (SCARG(uap, flags) & CLONE_SIGHAND
174 && (SCARG(uap, flags) & CLONE_VM) == 0)
175 return (EINVAL);
176
177 flags = 0;
178
179 if (SCARG(uap, flags) & CLONE_VM)
180 flags |= FORK_SHAREVM;
181 if (SCARG(uap, flags) & CLONE_FS)
182 flags |= FORK_SHARECWD;
183 if (SCARG(uap, flags) & CLONE_FILES)
184 flags |= FORK_SHAREFILES;
185 if (SCARG(uap, flags) & CLONE_SIGHAND)
186 flags |= FORK_SHARESIGS;
187 if (SCARG(uap, flags) & CLONE_VFORK)
188 flags |= FORK_PPWAIT;
189
190 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
191 if (sig < 0 || sig >= _NSIG)
192 return (EINVAL);
193
194 /*
195 * Note that the Linux API does not provide a portable way of
196 * specifying the stack area; the caller must know if the stack
197 * grows up or down. So, we pass a stack size of 0, so that the
198 * code that makes this adjustment is a noop.
199 */
200 return (fork1(l, flags, sig, SCARG(uap, stack), 0,
201 NULL, NULL, retval, NULL));
202 }
203
204 /* print the 'table full' message once per 10 seconds */
205 struct timeval fork_tfmrate = { 10, 0 };
206
207 /*
208 * General fork call. Note that another LWP in the process may call exec()
209 * or exit() while we are forking. It's safe to continue here, because
210 * neither operation will complete until all LWPs have exited the process.
211 */
212 int
213 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
214 void (*func)(void *), void *arg, register_t *retval,
215 struct proc **rnewprocp)
216 {
217 struct proc *p1, *p2, *parent;
218 struct plimit *p1_lim;
219 uid_t uid;
220 struct lwp *l2;
221 int count;
222 vaddr_t uaddr;
223 bool inmem;
224 int tmp;
225
226 /*
227 * Although process entries are dynamically created, we still keep
228 * a global limit on the maximum number we will create. Don't allow
229 * a nonprivileged user to use the last few processes; don't let root
230 * exceed the limit. The variable nprocs is the current number of
231 * processes, maxproc is the limit.
232 */
233 p1 = l1->l_proc;
234 mutex_enter(&p1->p_mutex);
235 uid = kauth_cred_getuid(p1->p_cred);
236 mutex_exit(&p1->p_mutex);
237 if (__predict_false((nprocs >= maxproc - 5 && uid != 0) ||
238 nprocs >= maxproc)) {
239 static struct timeval lasttfm;
240
241 if (ratecheck(&lasttfm, &fork_tfmrate))
242 tablefull("proc", "increase kern.maxproc or NPROC");
243 if (forkfsleep)
244 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep);
245 return (EAGAIN);
246 }
247 nprocs++;
248
249 /*
250 * Increment the count of procs running with this uid. Don't allow
251 * a nonprivileged user to exceed their current limit.
252 */
253 count = chgproccnt(uid, 1);
254 if (__predict_false(uid != 0 && count >
255 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
256 (void)chgproccnt(uid, -1);
257 nprocs--;
258 if (forkfsleep)
259 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep);
260 return (EAGAIN);
261 }
262
263 /*
264 * Allocate virtual address space for the U-area now, while it
265 * is still easy to abort the fork operation if we're out of
266 * kernel virtual address space. The actual U-area pages will
267 * be allocated and wired in uvm_fork() if needed.
268 */
269
270 inmem = uvm_uarea_alloc(&uaddr);
271 if (__predict_false(uaddr == 0)) {
272 (void)chgproccnt(uid, -1);
273 nprocs--;
274 return (ENOMEM);
275 }
276
277 /*
278 * We are now committed to the fork. From here on, we may
279 * block on resources, but resource allocation may NOT fail.
280 */
281
282 /* Allocate new proc. */
283 p2 = proc_alloc();
284
285 /*
286 * Make a proc table entry for the new process.
287 * Start by zeroing the section of proc that is zero-initialized,
288 * then copy the section that is copied directly from the parent.
289 */
290 memset(&p2->p_startzero, 0,
291 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
292 memcpy(&p2->p_startcopy, &p1->p_startcopy,
293 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
294
295 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
296
297 LIST_INIT(&p2->p_lwps);
298 LIST_INIT(&p2->p_sigwaiters);
299
300 /*
301 * Duplicate sub-structures as needed.
302 * Increase reference counts on shared objects.
303 * The p_stats and p_sigacts substructs are set in uvm_fork().
304 * Inherit flags we want to keep. The flags related to SIGCHLD
305 * handling are important in order to keep a consistent behaviour
306 * for the child after the fork.
307 */
308 p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN);
309 p2->p_emul = p1->p_emul;
310 p2->p_execsw = p1->p_execsw;
311
312 if (flags & FORK_SYSTEM) {
313 /*
314 * Mark it as a system process. Set P_NOCLDWAIT so that
315 * children are reparented to init(8) when they exit.
316 * init(8) can easily wait them out for us.
317 */
318 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
319 }
320
321 /* XXX p_smutex can be IPL_VM except for audio drivers */
322 mutex_init(&p2->p_smutex, MUTEX_SPIN, IPL_SCHED);
323 mutex_init(&p2->p_stmutex, MUTEX_SPIN, IPL_HIGH);
324 mutex_init(&p2->p_raslock, MUTEX_DEFAULT, IPL_NONE);
325 mutex_init(&p2->p_mutex, MUTEX_DEFAULT, IPL_NONE);
326 rw_init(&p2->p_reflock);
327 cv_init(&p2->p_waitcv, "wait");
328 cv_init(&p2->p_lwpcv, "lwpwait");
329
330 kauth_proc_fork(p1, p2);
331
332 p2->p_raslist = NULL;
333 #if defined(__HAVE_RAS)
334 ras_fork(p1, p2);
335 #endif
336
337 /* bump references to the text vnode (for procfs) */
338 p2->p_textvp = p1->p_textvp;
339 if (p2->p_textvp)
340 VREF(p2->p_textvp);
341
342 if (flags & FORK_SHAREFILES)
343 fdshare(p1, p2);
344 else if (flags & FORK_CLEANFILES)
345 p2->p_fd = fdinit(p1);
346 else
347 p2->p_fd = fdcopy(p1);
348
349 if (flags & FORK_SHARECWD)
350 cwdshare(p1, p2);
351 else
352 p2->p_cwdi = cwdinit(p1);
353
354 /*
355 * p_limit (rlimit stuff) is usually copy-on-write, so we just need
356 * to bump pl_refcnt.
357 * However in some cases (see compat irix, and plausibly from clone)
358 * the parent and child share limits - in which case nothing else
359 * must have a copy of the limits (PL_SHAREMOD is set).
360 */
361 if (__predict_false(flags & FORK_SHARELIMIT))
362 lim_privatise(p1, 1);
363 p1_lim = p1->p_limit;
364 if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT))
365 p2->p_limit = lim_copy(p1_lim);
366 else {
367 lim_addref(p1_lim);
368 p2->p_limit = p1_lim;
369 }
370
371 p2->p_sflag = ((flags & FORK_PPWAIT) ? PS_PPWAIT : 0);
372 p2->p_lflag = 0;
373 p2->p_slflag = 0;
374 parent = (flags & FORK_NOWAIT) ? initproc : p1;
375 p2->p_pptr = parent;
376 LIST_INIT(&p2->p_children);
377
378 p2->p_aio = NULL;
379
380 #ifdef KTRACE
381 /*
382 * Copy traceflag and tracefile if enabled.
383 * If not inherited, these were zeroed above.
384 */
385 if (p1->p_traceflag & KTRFAC_INHERIT) {
386 mutex_enter(&ktrace_lock);
387 p2->p_traceflag = p1->p_traceflag;
388 if ((p2->p_tracep = p1->p_tracep) != NULL)
389 ktradref(p2);
390 mutex_exit(&ktrace_lock);
391 }
392 #endif
393
394 /*
395 * Create signal actions for the child process.
396 */
397 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
398 mutex_enter(&p1->p_smutex);
399 p2->p_sflag |=
400 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
401 sched_proc_fork(p1, p2);
402 mutex_exit(&p1->p_smutex);
403
404 p2->p_stflag = p1->p_stflag;
405
406 /*
407 * p_stats.
408 * Copy parts of p_stats, and zero out the rest.
409 */
410 p2->p_stats = pstatscopy(p1->p_stats);
411
412 /*
413 * If emulation has process fork hook, call it now.
414 */
415 if (p2->p_emul->e_proc_fork)
416 (*p2->p_emul->e_proc_fork)(p2, p1, flags);
417
418 /*
419 * ...and finally, any other random fork hooks that subsystems
420 * might have registered.
421 */
422 doforkhooks(p2, p1);
423
424 /*
425 * This begins the section where we must prevent the parent
426 * from being swapped.
427 */
428 uvm_lwp_hold(l1);
429 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
430
431 /*
432 * Finish creating the child process.
433 * It will return through a different path later.
434 */
435 lwp_create(l1, p2, uaddr, inmem, 0, stack, stacksize,
436 (func != NULL) ? func : child_return, arg, &l2,
437 l1->l_class);
438
439 /*
440 * It's now safe for the scheduler and other processes to see the
441 * child process.
442 */
443 mutex_enter(&proclist_lock);
444
445 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
446 p2->p_lflag |= PL_CONTROLT;
447
448 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
449 p2->p_exitsig = exitsig; /* signal for parent on exit */
450
451 mutex_enter(&proclist_mutex);
452 LIST_INSERT_AFTER(p1, p2, p_pglist);
453 mutex_exit(&proclist_mutex);
454 LIST_INSERT_HEAD(&allproc, p2, p_list);
455
456 mutex_exit(&proclist_lock);
457
458 #ifdef SYSTRACE
459 /* Tell systrace what's happening. */
460 if (ISSET(p1->p_flag, PK_SYSTRACE))
461 systrace_sys_fork(p1, p2);
462 #endif
463
464 #ifdef __HAVE_SYSCALL_INTERN
465 (*p2->p_emul->e_syscall_intern)(p2);
466 #endif
467
468 /*
469 * Now can be swapped.
470 */
471 uvm_lwp_rele(l1);
472
473 /*
474 * Notify any interested parties about the new process.
475 */
476 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
477
478 /*
479 * Update stats now that we know the fork was successful.
480 */
481 uvmexp.forks++;
482 if (flags & FORK_PPWAIT)
483 uvmexp.forks_ppwait++;
484 if (flags & FORK_SHAREVM)
485 uvmexp.forks_sharevm++;
486
487 /*
488 * Pass a pointer to the new process to the caller.
489 */
490 if (rnewprocp != NULL)
491 *rnewprocp = p2;
492
493 if (ktrpoint(KTR_EMUL))
494 p2->p_traceflag |= KTRFAC_TRC_EMUL;
495
496 /*
497 * Make child runnable, set start time, and add to run queue except
498 * if the parent requested the child to start in SSTOP state.
499 */
500 tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0);
501 mutex_enter(&proclist_mutex);
502 mutex_enter(&p2->p_smutex);
503
504 getmicrotime(&p2->p_stats->p_start);
505 p2->p_acflag = AFORK;
506 if (p2->p_sflag & PS_STOPFORK) {
507 lwp_lock(l2);
508 p2->p_nrlwps = 0;
509 p2->p_stat = SSTOP;
510 p2->p_waited = 0;
511 p1->p_nstopchild++;
512 l2->l_stat = LSSTOP;
513 l2->l_flag |= tmp;
514 lwp_unlock(l2);
515 } else {
516 p2->p_nrlwps = 1;
517 p2->p_stat = SACTIVE;
518 lwp_lock(l2);
519 l2->l_stat = LSRUN;
520 l2->l_flag |= tmp;
521 sched_enqueue(l2, false);
522 lwp_unlock(l2);
523 }
524
525 mutex_exit(&proclist_mutex);
526
527 /*
528 * Start profiling.
529 */
530 if ((p2->p_stflag & PST_PROFIL) != 0) {
531 mutex_spin_enter(&p2->p_stmutex);
532 startprofclock(p2);
533 mutex_spin_exit(&p2->p_stmutex);
534 }
535
536 /*
537 * Preserve synchronization semantics of vfork. If waiting for
538 * child to exec or exit, set PS_PPWAIT on child, and sleep on our
539 * proc (in case of exit).
540 */
541 if (flags & FORK_PPWAIT)
542 while (p2->p_sflag & PS_PPWAIT)
543 cv_wait(&p1->p_waitcv, &p2->p_smutex);
544
545 mutex_exit(&p2->p_smutex);
546
547 /*
548 * Return child pid to parent process,
549 * marking us as parent via retval[1].
550 */
551 if (retval != NULL) {
552 retval[0] = p2->p_pid;
553 retval[1] = 0;
554 }
555
556 return (0);
557 }
558