kern_fork.c revision 1.152 1 /* $NetBSD: kern_fork.c,v 1.152 2007/12/05 07:06:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.152 2007/12/05 07:06:52 ad Exp $");
78
79 #include "opt_ktrace.h"
80 #include "opt_systrace.h"
81 #include "opt_multiprocessor.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/filedesc.h>
86 #include <sys/kernel.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/mount.h>
90 #include <sys/proc.h>
91 #include <sys/ras.h>
92 #include <sys/resourcevar.h>
93 #include <sys/vnode.h>
94 #include <sys/file.h>
95 #include <sys/acct.h>
96 #include <sys/ktrace.h>
97 #include <sys/vmmeter.h>
98 #include <sys/sched.h>
99 #include <sys/signalvar.h>
100 #include <sys/systrace.h>
101 #include <sys/kauth.h>
102 #include <sys/atomic.h>
103 #include <sys/syscallargs.h>
104
105 #include <uvm/uvm_extern.h>
106
107 u_int nprocs = 1; /* process 0 */
108
109 /*
110 * Number of ticks to sleep if fork() would fail due to process hitting
111 * limits. Exported in miliseconds to userland via sysctl.
112 */
113 int forkfsleep = 0;
114
115 /*ARGSUSED*/
116 int
117 sys_fork(struct lwp *l, void *v, register_t *retval)
118 {
119
120 return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
121 }
122
123 /*
124 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
125 * Address space is not shared, but parent is blocked until child exit.
126 */
127 /*ARGSUSED*/
128 int
129 sys_vfork(struct lwp *l, void *v, register_t *retval)
130 {
131
132 return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
133 retval, NULL));
134 }
135
136 /*
137 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
138 * semantics. Address space is shared, and parent is blocked until child exit.
139 */
140 /*ARGSUSED*/
141 int
142 sys___vfork14(struct lwp *l, void *v, register_t *retval)
143 {
144
145 return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
146 NULL, NULL, retval, NULL));
147 }
148
149 /*
150 * Linux-compatible __clone(2) system call.
151 */
152 int
153 sys___clone(struct lwp *l, void *v, register_t *retval)
154 {
155 struct sys___clone_args /* {
156 syscallarg(int) flags;
157 syscallarg(void *) stack;
158 } */ *uap = v;
159 int flags, sig;
160
161 /*
162 * We don't support the CLONE_PID or CLONE_PTRACE flags.
163 */
164 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
165 return (EINVAL);
166
167 /*
168 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
169 */
170 if (SCARG(uap, flags) & CLONE_SIGHAND
171 && (SCARG(uap, flags) & CLONE_VM) == 0)
172 return (EINVAL);
173
174 flags = 0;
175
176 if (SCARG(uap, flags) & CLONE_VM)
177 flags |= FORK_SHAREVM;
178 if (SCARG(uap, flags) & CLONE_FS)
179 flags |= FORK_SHARECWD;
180 if (SCARG(uap, flags) & CLONE_FILES)
181 flags |= FORK_SHAREFILES;
182 if (SCARG(uap, flags) & CLONE_SIGHAND)
183 flags |= FORK_SHARESIGS;
184 if (SCARG(uap, flags) & CLONE_VFORK)
185 flags |= FORK_PPWAIT;
186
187 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
188 if (sig < 0 || sig >= _NSIG)
189 return (EINVAL);
190
191 /*
192 * Note that the Linux API does not provide a portable way of
193 * specifying the stack area; the caller must know if the stack
194 * grows up or down. So, we pass a stack size of 0, so that the
195 * code that makes this adjustment is a noop.
196 */
197 return (fork1(l, flags, sig, SCARG(uap, stack), 0,
198 NULL, NULL, retval, NULL));
199 }
200
201 /* print the 'table full' message once per 10 seconds */
202 struct timeval fork_tfmrate = { 10, 0 };
203
204 /*
205 * General fork call. Note that another LWP in the process may call exec()
206 * or exit() while we are forking. It's safe to continue here, because
207 * neither operation will complete until all LWPs have exited the process.
208 */
209 int
210 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
211 void (*func)(void *), void *arg, register_t *retval,
212 struct proc **rnewprocp)
213 {
214 struct proc *p1, *p2, *parent;
215 struct plimit *p1_lim;
216 uid_t uid;
217 struct lwp *l2;
218 int count;
219 vaddr_t uaddr;
220 bool inmem;
221 int tmp;
222 int tnprocs;
223
224 /*
225 * Although process entries are dynamically created, we still keep
226 * a global limit on the maximum number we will create. Don't allow
227 * a nonprivileged user to use the last few processes; don't let root
228 * exceed the limit. The variable nprocs is the current number of
229 * processes, maxproc is the limit.
230 */
231 p1 = l1->l_proc;
232 mutex_enter(&p1->p_mutex);
233 uid = kauth_cred_getuid(p1->p_cred);
234 mutex_exit(&p1->p_mutex);
235 tnprocs = atomic_inc_uint_nv(&nprocs);
236 if (__predict_false((tnprocs >= maxproc - 5 && uid != 0) ||
237 tnprocs >= maxproc)) {
238 static struct timeval lasttfm;
239 atomic_dec_uint(&nprocs);
240 if (ratecheck(&lasttfm, &fork_tfmrate))
241 tablefull("proc", "increase kern.maxproc or NPROC");
242 if (forkfsleep)
243 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep);
244 return (EAGAIN);
245 }
246
247 /*
248 * Enforce limits.
249 */
250 count = chgproccnt(uid, 1);
251 if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
252 (void)chgproccnt(uid, -1);
253 atomic_dec_uint(&nprocs);
254 if (forkfsleep)
255 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep);
256 return (EAGAIN);
257 }
258
259 /*
260 * Allocate virtual address space for the U-area now, while it
261 * is still easy to abort the fork operation if we're out of
262 * kernel virtual address space. The actual U-area pages will
263 * be allocated and wired in uvm_fork() if needed.
264 */
265
266 inmem = uvm_uarea_alloc(&uaddr);
267 if (__predict_false(uaddr == 0)) {
268 (void)chgproccnt(uid, -1);
269 atomic_dec_uint(&nprocs);
270 return (ENOMEM);
271 }
272
273 /*
274 * We are now committed to the fork. From here on, we may
275 * block on resources, but resource allocation may NOT fail.
276 */
277
278 /* Allocate new proc. */
279 p2 = proc_alloc();
280
281 /*
282 * Make a proc table entry for the new process.
283 * Start by zeroing the section of proc that is zero-initialized,
284 * then copy the section that is copied directly from the parent.
285 */
286 memset(&p2->p_startzero, 0,
287 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
288 memcpy(&p2->p_startcopy, &p1->p_startcopy,
289 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
290
291 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
292
293 LIST_INIT(&p2->p_lwps);
294 LIST_INIT(&p2->p_sigwaiters);
295
296 /*
297 * Duplicate sub-structures as needed.
298 * Increase reference counts on shared objects.
299 * The p_stats and p_sigacts substructs are set in uvm_fork().
300 * Inherit flags we want to keep. The flags related to SIGCHLD
301 * handling are important in order to keep a consistent behaviour
302 * for the child after the fork.
303 */
304 p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN);
305 p2->p_emul = p1->p_emul;
306 p2->p_execsw = p1->p_execsw;
307
308 if (flags & FORK_SYSTEM) {
309 /*
310 * Mark it as a system process. Set P_NOCLDWAIT so that
311 * children are reparented to init(8) when they exit.
312 * init(8) can easily wait them out for us.
313 */
314 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
315 }
316
317 /* XXX p_smutex can be IPL_VM except for audio drivers */
318 mutex_init(&p2->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
319 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
320 mutex_init(&p2->p_raslock, MUTEX_DEFAULT, IPL_NONE);
321 mutex_init(&p2->p_mutex, MUTEX_DEFAULT, IPL_NONE);
322 rw_init(&p2->p_reflock);
323 cv_init(&p2->p_waitcv, "wait");
324 cv_init(&p2->p_lwpcv, "lwpwait");
325
326 kauth_proc_fork(p1, p2);
327
328 p2->p_raslist = NULL;
329 #if defined(__HAVE_RAS)
330 ras_fork(p1, p2);
331 #endif
332
333 /* bump references to the text vnode (for procfs) */
334 p2->p_textvp = p1->p_textvp;
335 if (p2->p_textvp)
336 VREF(p2->p_textvp);
337
338 if (flags & FORK_SHAREFILES)
339 fdshare(p1, p2);
340 else if (flags & FORK_CLEANFILES)
341 p2->p_fd = fdinit(p1);
342 else
343 p2->p_fd = fdcopy(p1);
344
345 if (flags & FORK_SHARECWD)
346 cwdshare(p1, p2);
347 else
348 p2->p_cwdi = cwdinit(p1);
349
350 /*
351 * p_limit (rlimit stuff) is usually copy-on-write, so we just need
352 * to bump pl_refcnt.
353 * However in some cases (see compat irix, and plausibly from clone)
354 * the parent and child share limits - in which case nothing else
355 * must have a copy of the limits (PL_SHAREMOD is set).
356 */
357 if (__predict_false(flags & FORK_SHARELIMIT))
358 lim_privatise(p1, 1);
359 p1_lim = p1->p_limit;
360 if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT))
361 p2->p_limit = lim_copy(p1_lim);
362 else {
363 lim_addref(p1_lim);
364 p2->p_limit = p1_lim;
365 }
366
367 p2->p_sflag = ((flags & FORK_PPWAIT) ? PS_PPWAIT : 0);
368 p2->p_lflag = 0;
369 p2->p_slflag = 0;
370 parent = (flags & FORK_NOWAIT) ? initproc : p1;
371 p2->p_pptr = parent;
372 LIST_INIT(&p2->p_children);
373
374 p2->p_aio = NULL;
375
376 #ifdef KTRACE
377 /*
378 * Copy traceflag and tracefile if enabled.
379 * If not inherited, these were zeroed above.
380 */
381 if (p1->p_traceflag & KTRFAC_INHERIT) {
382 mutex_enter(&ktrace_lock);
383 p2->p_traceflag = p1->p_traceflag;
384 if ((p2->p_tracep = p1->p_tracep) != NULL)
385 ktradref(p2);
386 mutex_exit(&ktrace_lock);
387 }
388 #endif
389
390 /*
391 * Create signal actions for the child process.
392 */
393 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
394 mutex_enter(&p1->p_smutex);
395 p2->p_sflag |=
396 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
397 sched_proc_fork(p1, p2);
398 mutex_exit(&p1->p_smutex);
399
400 p2->p_stflag = p1->p_stflag;
401
402 /*
403 * p_stats.
404 * Copy parts of p_stats, and zero out the rest.
405 */
406 p2->p_stats = pstatscopy(p1->p_stats);
407
408 /*
409 * If emulation has process fork hook, call it now.
410 */
411 if (p2->p_emul->e_proc_fork)
412 (*p2->p_emul->e_proc_fork)(p2, p1, flags);
413
414 /*
415 * ...and finally, any other random fork hooks that subsystems
416 * might have registered.
417 */
418 doforkhooks(p2, p1);
419
420 /*
421 * This begins the section where we must prevent the parent
422 * from being swapped.
423 */
424 uvm_lwp_hold(l1);
425 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
426
427 /*
428 * Finish creating the child process.
429 * It will return through a different path later.
430 */
431 lwp_create(l1, p2, uaddr, inmem, 0, stack, stacksize,
432 (func != NULL) ? func : child_return, arg, &l2,
433 l1->l_class);
434
435 /*
436 * It's now safe for the scheduler and other processes to see the
437 * child process.
438 */
439 mutex_enter(&proclist_lock);
440
441 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
442 p2->p_lflag |= PL_CONTROLT;
443
444 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
445 p2->p_exitsig = exitsig; /* signal for parent on exit */
446
447 mutex_enter(&proclist_mutex);
448 LIST_INSERT_AFTER(p1, p2, p_pglist);
449 mutex_exit(&proclist_mutex);
450 LIST_INSERT_HEAD(&allproc, p2, p_list);
451
452 mutex_exit(&proclist_lock);
453
454 #ifdef SYSTRACE
455 /* Tell systrace what's happening. */
456 if (ISSET(p1->p_flag, PK_SYSTRACE))
457 systrace_sys_fork(p1, p2);
458 #endif
459
460 #ifdef __HAVE_SYSCALL_INTERN
461 (*p2->p_emul->e_syscall_intern)(p2);
462 #endif
463
464 /*
465 * Now can be swapped.
466 */
467 uvm_lwp_rele(l1);
468
469 /*
470 * Notify any interested parties about the new process.
471 */
472 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
473
474 /*
475 * Update stats now that we know the fork was successful.
476 */
477 uvmexp.forks++;
478 if (flags & FORK_PPWAIT)
479 uvmexp.forks_ppwait++;
480 if (flags & FORK_SHAREVM)
481 uvmexp.forks_sharevm++;
482
483 /*
484 * Pass a pointer to the new process to the caller.
485 */
486 if (rnewprocp != NULL)
487 *rnewprocp = p2;
488
489 if (ktrpoint(KTR_EMUL))
490 p2->p_traceflag |= KTRFAC_TRC_EMUL;
491
492 /*
493 * Make child runnable, set start time, and add to run queue except
494 * if the parent requested the child to start in SSTOP state.
495 */
496 tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0);
497 mutex_enter(&proclist_mutex);
498 mutex_enter(&p2->p_smutex);
499
500 getmicrotime(&p2->p_stats->p_start);
501 p2->p_acflag = AFORK;
502 if (p2->p_sflag & PS_STOPFORK) {
503 lwp_lock(l2);
504 p2->p_nrlwps = 0;
505 p2->p_stat = SSTOP;
506 p2->p_waited = 0;
507 p1->p_nstopchild++;
508 l2->l_stat = LSSTOP;
509 l2->l_flag |= tmp;
510 lwp_unlock(l2);
511 } else {
512 p2->p_nrlwps = 1;
513 p2->p_stat = SACTIVE;
514 lwp_lock(l2);
515 l2->l_stat = LSRUN;
516 l2->l_flag |= tmp;
517 sched_enqueue(l2, false);
518 lwp_unlock(l2);
519 }
520
521 mutex_exit(&proclist_mutex);
522
523 /*
524 * Start profiling.
525 */
526 if ((p2->p_stflag & PST_PROFIL) != 0) {
527 mutex_spin_enter(&p2->p_stmutex);
528 startprofclock(p2);
529 mutex_spin_exit(&p2->p_stmutex);
530 }
531
532 /*
533 * Preserve synchronization semantics of vfork. If waiting for
534 * child to exec or exit, set PS_PPWAIT on child, and sleep on our
535 * proc (in case of exit).
536 */
537 if (flags & FORK_PPWAIT)
538 while (p2->p_sflag & PS_PPWAIT)
539 cv_wait(&p1->p_waitcv, &p2->p_smutex);
540
541 mutex_exit(&p2->p_smutex);
542
543 /*
544 * Return child pid to parent process,
545 * marking us as parent via retval[1].
546 */
547 if (retval != NULL) {
548 retval[0] = p2->p_pid;
549 retval[1] = 0;
550 }
551
552 return (0);
553 }
554