kern_fork.c revision 1.160 1 /* $NetBSD: kern_fork.c,v 1.160 2008/03/23 17:40:25 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.160 2008/03/23 17:40:25 ad Exp $");
78
79 #include "opt_ktrace.h"
80 #include "opt_multiprocessor.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/mount.h>
89 #include <sys/proc.h>
90 #include <sys/ras.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode.h>
93 #include <sys/file.h>
94 #include <sys/acct.h>
95 #include <sys/ktrace.h>
96 #include <sys/vmmeter.h>
97 #include <sys/sched.h>
98 #include <sys/signalvar.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/syscallargs.h>
102
103 #include <uvm/uvm_extern.h>
104
105 u_int nprocs = 1; /* process 0 */
106
107 /*
108 * Number of ticks to sleep if fork() would fail due to process hitting
109 * limits. Exported in miliseconds to userland via sysctl.
110 */
111 int forkfsleep = 0;
112
113 /*ARGSUSED*/
114 int
115 sys_fork(struct lwp *l, const void *v, register_t *retval)
116 {
117
118 return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
119 }
120
121 /*
122 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
123 * Address space is not shared, but parent is blocked until child exit.
124 */
125 /*ARGSUSED*/
126 int
127 sys_vfork(struct lwp *l, const void *v, register_t *retval)
128 {
129
130 return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
131 retval, NULL));
132 }
133
134 /*
135 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
136 * semantics. Address space is shared, and parent is blocked until child exit.
137 */
138 /*ARGSUSED*/
139 int
140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 {
142
143 return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 NULL, NULL, retval, NULL));
145 }
146
147 /*
148 * Linux-compatible __clone(2) system call.
149 */
150 int
151 sys___clone(struct lwp *l, const struct sys___clone_args *uap, register_t *retval)
152 {
153 /* {
154 syscallarg(int) flags;
155 syscallarg(void *) stack;
156 } */
157 int flags, sig;
158
159 /*
160 * We don't support the CLONE_PID or CLONE_PTRACE flags.
161 */
162 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
163 return (EINVAL);
164
165 /*
166 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
167 */
168 if (SCARG(uap, flags) & CLONE_SIGHAND
169 && (SCARG(uap, flags) & CLONE_VM) == 0)
170 return (EINVAL);
171
172 flags = 0;
173
174 if (SCARG(uap, flags) & CLONE_VM)
175 flags |= FORK_SHAREVM;
176 if (SCARG(uap, flags) & CLONE_FS)
177 flags |= FORK_SHARECWD;
178 if (SCARG(uap, flags) & CLONE_FILES)
179 flags |= FORK_SHAREFILES;
180 if (SCARG(uap, flags) & CLONE_SIGHAND)
181 flags |= FORK_SHARESIGS;
182 if (SCARG(uap, flags) & CLONE_VFORK)
183 flags |= FORK_PPWAIT;
184
185 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
186 if (sig < 0 || sig >= _NSIG)
187 return (EINVAL);
188
189 /*
190 * Note that the Linux API does not provide a portable way of
191 * specifying the stack area; the caller must know if the stack
192 * grows up or down. So, we pass a stack size of 0, so that the
193 * code that makes this adjustment is a noop.
194 */
195 return (fork1(l, flags, sig, SCARG(uap, stack), 0,
196 NULL, NULL, retval, NULL));
197 }
198
199 /* print the 'table full' message once per 10 seconds */
200 struct timeval fork_tfmrate = { 10, 0 };
201
202 /*
203 * General fork call. Note that another LWP in the process may call exec()
204 * or exit() while we are forking. It's safe to continue here, because
205 * neither operation will complete until all LWPs have exited the process.
206 */
207 int
208 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
209 void (*func)(void *), void *arg, register_t *retval,
210 struct proc **rnewprocp)
211 {
212 struct proc *p1, *p2, *parent;
213 struct plimit *p1_lim;
214 uid_t uid;
215 struct lwp *l2;
216 int count;
217 vaddr_t uaddr;
218 bool inmem;
219 int tmp;
220 int tnprocs;
221 int error = 0;
222
223 p1 = l1->l_proc;
224 mutex_enter(&p1->p_mutex);
225 uid = kauth_cred_getuid(p1->p_cred);
226 mutex_exit(&p1->p_mutex);
227 tnprocs = atomic_inc_uint_nv(&nprocs);
228
229 /*
230 * Although process entries are dynamically created, we still keep
231 * a global limit on the maximum number we will create.
232 */
233 if (__predict_false(tnprocs >= maxproc))
234 error = -1;
235 else
236 error = kauth_authorize_process(l1->l_cred,
237 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
238
239 if (error) {
240 static struct timeval lasttfm;
241 atomic_dec_uint(&nprocs);
242 if (ratecheck(&lasttfm, &fork_tfmrate))
243 tablefull("proc", "increase kern.maxproc or NPROC");
244 if (forkfsleep)
245 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep);
246 return (EAGAIN);
247 }
248
249 /*
250 * Enforce limits.
251 */
252 count = chgproccnt(uid, 1);
253 if (uid != 0 &&
254 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
255 (void)chgproccnt(uid, -1);
256 atomic_dec_uint(&nprocs);
257 if (forkfsleep)
258 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep);
259 return (EAGAIN);
260 }
261
262 /*
263 * Allocate virtual address space for the U-area now, while it
264 * is still easy to abort the fork operation if we're out of
265 * kernel virtual address space. The actual U-area pages will
266 * be allocated and wired in uvm_fork() if needed.
267 */
268
269 inmem = uvm_uarea_alloc(&uaddr);
270 if (__predict_false(uaddr == 0)) {
271 (void)chgproccnt(uid, -1);
272 atomic_dec_uint(&nprocs);
273 return (ENOMEM);
274 }
275
276 /*
277 * We are now committed to the fork. From here on, we may
278 * block on resources, but resource allocation may NOT fail.
279 */
280
281 /* Allocate new proc. */
282 p2 = proc_alloc();
283
284 /*
285 * Make a proc table entry for the new process.
286 * Start by zeroing the section of proc that is zero-initialized,
287 * then copy the section that is copied directly from the parent.
288 */
289 memset(&p2->p_startzero, 0,
290 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
291 memcpy(&p2->p_startcopy, &p1->p_startcopy,
292 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
293
294 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
295
296 LIST_INIT(&p2->p_lwps);
297 LIST_INIT(&p2->p_sigwaiters);
298
299 /*
300 * Duplicate sub-structures as needed.
301 * Increase reference counts on shared objects.
302 * The p_stats and p_sigacts substructs are set in uvm_fork().
303 * Inherit flags we want to keep. The flags related to SIGCHLD
304 * handling are important in order to keep a consistent behaviour
305 * for the child after the fork.
306 */
307 p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN);
308 p2->p_emul = p1->p_emul;
309 p2->p_execsw = p1->p_execsw;
310
311 if (flags & FORK_SYSTEM) {
312 /*
313 * Mark it as a system process. Set P_NOCLDWAIT so that
314 * children are reparented to init(8) when they exit.
315 * init(8) can easily wait them out for us.
316 */
317 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
318 }
319
320 /* XXX p_smutex can be IPL_VM except for audio drivers */
321 mutex_init(&p2->p_smutex, MUTEX_DEFAULT, IPL_SCHED);
322 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
323 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
324 mutex_init(&p2->p_mutex, MUTEX_DEFAULT, IPL_NONE);
325 rw_init(&p2->p_reflock);
326 cv_init(&p2->p_waitcv, "wait");
327 cv_init(&p2->p_lwpcv, "lwpwait");
328
329 kauth_proc_fork(p1, p2);
330
331 p2->p_raslist = NULL;
332 #if defined(__HAVE_RAS)
333 ras_fork(p1, p2);
334 #endif
335
336 /* bump references to the text vnode (for procfs) */
337 p2->p_textvp = p1->p_textvp;
338 if (p2->p_textvp)
339 VREF(p2->p_textvp);
340
341 if (flags & FORK_SHAREFILES)
342 fd_share(p2);
343 else if (flags & FORK_CLEANFILES)
344 p2->p_fd = fd_init(NULL);
345 else
346 p2->p_fd = fd_copy();
347
348 if (flags & FORK_SHARECWD)
349 cwdshare(p2);
350 else
351 p2->p_cwdi = cwdinit();
352
353 /*
354 * p_limit (rlimit stuff) is usually copy-on-write, so we just need
355 * to bump pl_refcnt.
356 * However in some cases (see compat irix, and plausibly from clone)
357 * the parent and child share limits - in which case nothing else
358 * must have a copy of the limits (PL_SHAREMOD is set).
359 */
360 if (__predict_false(flags & FORK_SHARELIMIT))
361 lim_privatise(p1, 1);
362 p1_lim = p1->p_limit;
363 if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT))
364 p2->p_limit = lim_copy(p1_lim);
365 else {
366 lim_addref(p1_lim);
367 p2->p_limit = p1_lim;
368 }
369
370 p2->p_sflag = ((flags & FORK_PPWAIT) ? PS_PPWAIT : 0);
371 p2->p_lflag = 0;
372 p2->p_slflag = 0;
373 parent = (flags & FORK_NOWAIT) ? initproc : p1;
374 p2->p_pptr = parent;
375 LIST_INIT(&p2->p_children);
376
377 p2->p_aio = NULL;
378
379 #ifdef KTRACE
380 /*
381 * Copy traceflag and tracefile if enabled.
382 * If not inherited, these were zeroed above.
383 */
384 if (p1->p_traceflag & KTRFAC_INHERIT) {
385 mutex_enter(&ktrace_lock);
386 p2->p_traceflag = p1->p_traceflag;
387 if ((p2->p_tracep = p1->p_tracep) != NULL)
388 ktradref(p2);
389 mutex_exit(&ktrace_lock);
390 }
391 #endif
392
393 /*
394 * Create signal actions for the child process.
395 */
396 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
397 mutex_enter(&p1->p_smutex);
398 p2->p_sflag |=
399 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
400 sched_proc_fork(p1, p2);
401 mutex_exit(&p1->p_smutex);
402
403 p2->p_stflag = p1->p_stflag;
404
405 /*
406 * p_stats.
407 * Copy parts of p_stats, and zero out the rest.
408 */
409 p2->p_stats = pstatscopy(p1->p_stats);
410
411 /*
412 * If emulation has process fork hook, call it now.
413 */
414 if (p2->p_emul->e_proc_fork)
415 (*p2->p_emul->e_proc_fork)(p2, p1, flags);
416
417 /*
418 * ...and finally, any other random fork hooks that subsystems
419 * might have registered.
420 */
421 doforkhooks(p2, p1);
422
423 /*
424 * This begins the section where we must prevent the parent
425 * from being swapped.
426 */
427 uvm_lwp_hold(l1);
428 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
429
430 /*
431 * Finish creating the child process.
432 * It will return through a different path later.
433 */
434 lwp_create(l1, p2, uaddr, inmem, 0, stack, stacksize,
435 (func != NULL) ? func : child_return, arg, &l2,
436 l1->l_class);
437
438 /*
439 * It's now safe for the scheduler and other processes to see the
440 * child process.
441 */
442 mutex_enter(&proclist_lock);
443
444 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
445 p2->p_lflag |= PL_CONTROLT;
446
447 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
448 p2->p_exitsig = exitsig; /* signal for parent on exit */
449
450 mutex_enter(&proclist_mutex);
451 LIST_INSERT_AFTER(p1, p2, p_pglist);
452 mutex_exit(&proclist_mutex);
453 LIST_INSERT_HEAD(&allproc, p2, p_list);
454
455 mutex_exit(&proclist_lock);
456
457 p2->p_trace_enabled = trace_is_enabled(p2);
458 #ifdef __HAVE_SYSCALL_INTERN
459 (*p2->p_emul->e_syscall_intern)(p2);
460 #endif
461
462 /*
463 * Now can be swapped.
464 */
465 uvm_lwp_rele(l1);
466
467 /*
468 * Notify any interested parties about the new process.
469 */
470 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
471
472 /*
473 * Update stats now that we know the fork was successful.
474 */
475 uvmexp.forks++;
476 if (flags & FORK_PPWAIT)
477 uvmexp.forks_ppwait++;
478 if (flags & FORK_SHAREVM)
479 uvmexp.forks_sharevm++;
480
481 /*
482 * Pass a pointer to the new process to the caller.
483 */
484 if (rnewprocp != NULL)
485 *rnewprocp = p2;
486
487 if (ktrpoint(KTR_EMUL))
488 p2->p_traceflag |= KTRFAC_TRC_EMUL;
489
490 /*
491 * Make child runnable, set start time, and add to run queue except
492 * if the parent requested the child to start in SSTOP state.
493 */
494 tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0);
495 mutex_enter(&proclist_mutex);
496 mutex_enter(&p2->p_smutex);
497
498 getmicrotime(&p2->p_stats->p_start);
499 p2->p_acflag = AFORK;
500 if (p2->p_sflag & PS_STOPFORK) {
501 lwp_lock(l2);
502 p2->p_nrlwps = 0;
503 p2->p_stat = SSTOP;
504 p2->p_waited = 0;
505 p1->p_nstopchild++;
506 l2->l_stat = LSSTOP;
507 l2->l_flag |= tmp;
508 lwp_unlock(l2);
509 } else {
510 p2->p_nrlwps = 1;
511 p2->p_stat = SACTIVE;
512 lwp_lock(l2);
513 l2->l_stat = LSRUN;
514 l2->l_flag |= tmp;
515 sched_enqueue(l2, false);
516 lwp_unlock(l2);
517 }
518
519 mutex_exit(&proclist_mutex);
520
521 /*
522 * Start profiling.
523 */
524 if ((p2->p_stflag & PST_PROFIL) != 0) {
525 mutex_spin_enter(&p2->p_stmutex);
526 startprofclock(p2);
527 mutex_spin_exit(&p2->p_stmutex);
528 }
529
530 /*
531 * Preserve synchronization semantics of vfork. If waiting for
532 * child to exec or exit, set PS_PPWAIT on child, and sleep on our
533 * proc (in case of exit).
534 */
535 if (flags & FORK_PPWAIT)
536 while (p2->p_sflag & PS_PPWAIT)
537 cv_wait(&p1->p_waitcv, &p2->p_smutex);
538
539 mutex_exit(&p2->p_smutex);
540
541 /*
542 * Return child pid to parent process,
543 * marking us as parent via retval[1].
544 */
545 if (retval != NULL) {
546 retval[0] = p2->p_pid;
547 retval[1] = 0;
548 }
549
550 return (0);
551 }
552