kern_fork.c revision 1.162 1 /* $NetBSD: kern_fork.c,v 1.162 2008/04/24 18:39:24 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.162 2008/04/24 18:39:24 ad Exp $");
78
79 #include "opt_ktrace.h"
80 #include "opt_multiprocessor.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/mount.h>
89 #include <sys/proc.h>
90 #include <sys/ras.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode.h>
93 #include <sys/file.h>
94 #include <sys/acct.h>
95 #include <sys/ktrace.h>
96 #include <sys/vmmeter.h>
97 #include <sys/sched.h>
98 #include <sys/signalvar.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/syscallargs.h>
102
103 #include <uvm/uvm_extern.h>
104
105 u_int nprocs = 1; /* process 0 */
106
107 /*
108 * Number of ticks to sleep if fork() would fail due to process hitting
109 * limits. Exported in miliseconds to userland via sysctl.
110 */
111 int forkfsleep = 0;
112
113 /*ARGSUSED*/
114 int
115 sys_fork(struct lwp *l, const void *v, register_t *retval)
116 {
117
118 return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
119 }
120
121 /*
122 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
123 * Address space is not shared, but parent is blocked until child exit.
124 */
125 /*ARGSUSED*/
126 int
127 sys_vfork(struct lwp *l, const void *v, register_t *retval)
128 {
129
130 return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
131 retval, NULL));
132 }
133
134 /*
135 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
136 * semantics. Address space is shared, and parent is blocked until child exit.
137 */
138 /*ARGSUSED*/
139 int
140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 {
142
143 return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 NULL, NULL, retval, NULL));
145 }
146
147 /*
148 * Linux-compatible __clone(2) system call.
149 */
150 int
151 sys___clone(struct lwp *l, const struct sys___clone_args *uap, register_t *retval)
152 {
153 /* {
154 syscallarg(int) flags;
155 syscallarg(void *) stack;
156 } */
157 int flags, sig;
158
159 /*
160 * We don't support the CLONE_PID or CLONE_PTRACE flags.
161 */
162 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
163 return (EINVAL);
164
165 /*
166 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
167 */
168 if (SCARG(uap, flags) & CLONE_SIGHAND
169 && (SCARG(uap, flags) & CLONE_VM) == 0)
170 return (EINVAL);
171
172 flags = 0;
173
174 if (SCARG(uap, flags) & CLONE_VM)
175 flags |= FORK_SHAREVM;
176 if (SCARG(uap, flags) & CLONE_FS)
177 flags |= FORK_SHARECWD;
178 if (SCARG(uap, flags) & CLONE_FILES)
179 flags |= FORK_SHAREFILES;
180 if (SCARG(uap, flags) & CLONE_SIGHAND)
181 flags |= FORK_SHARESIGS;
182 if (SCARG(uap, flags) & CLONE_VFORK)
183 flags |= FORK_PPWAIT;
184
185 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
186 if (sig < 0 || sig >= _NSIG)
187 return (EINVAL);
188
189 /*
190 * Note that the Linux API does not provide a portable way of
191 * specifying the stack area; the caller must know if the stack
192 * grows up or down. So, we pass a stack size of 0, so that the
193 * code that makes this adjustment is a noop.
194 */
195 return (fork1(l, flags, sig, SCARG(uap, stack), 0,
196 NULL, NULL, retval, NULL));
197 }
198
199 /* print the 'table full' message once per 10 seconds */
200 struct timeval fork_tfmrate = { 10, 0 };
201
202 /*
203 * General fork call. Note that another LWP in the process may call exec()
204 * or exit() while we are forking. It's safe to continue here, because
205 * neither operation will complete until all LWPs have exited the process.
206 */
207 int
208 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
209 void (*func)(void *), void *arg, register_t *retval,
210 struct proc **rnewprocp)
211 {
212 struct proc *p1, *p2, *parent;
213 struct plimit *p1_lim;
214 uid_t uid;
215 struct lwp *l2;
216 int count;
217 vaddr_t uaddr;
218 bool inmem;
219 int tmp;
220 int tnprocs;
221 int error = 0;
222
223 p1 = l1->l_proc;
224 uid = kauth_cred_getuid(l1->l_cred);
225 tnprocs = atomic_inc_uint_nv(&nprocs);
226
227 /*
228 * Although process entries are dynamically created, we still keep
229 * a global limit on the maximum number we will create.
230 */
231 if (__predict_false(tnprocs >= maxproc))
232 error = -1;
233 else
234 error = kauth_authorize_process(l1->l_cred,
235 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
236
237 if (error) {
238 static struct timeval lasttfm;
239 atomic_dec_uint(&nprocs);
240 if (ratecheck(&lasttfm, &fork_tfmrate))
241 tablefull("proc", "increase kern.maxproc or NPROC");
242 if (forkfsleep)
243 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep);
244 return (EAGAIN);
245 }
246
247 /*
248 * Enforce limits.
249 */
250 count = chgproccnt(uid, 1);
251 if (uid != 0 &&
252 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
253 (void)chgproccnt(uid, -1);
254 atomic_dec_uint(&nprocs);
255 if (forkfsleep)
256 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep);
257 return (EAGAIN);
258 }
259
260 /*
261 * Allocate virtual address space for the U-area now, while it
262 * is still easy to abort the fork operation if we're out of
263 * kernel virtual address space. The actual U-area pages will
264 * be allocated and wired in uvm_fork() if needed.
265 */
266
267 inmem = uvm_uarea_alloc(&uaddr);
268 if (__predict_false(uaddr == 0)) {
269 (void)chgproccnt(uid, -1);
270 atomic_dec_uint(&nprocs);
271 return (ENOMEM);
272 }
273
274 /*
275 * We are now committed to the fork. From here on, we may
276 * block on resources, but resource allocation may NOT fail.
277 */
278
279 /* Allocate new proc. */
280 p2 = proc_alloc();
281
282 /*
283 * Make a proc table entry for the new process.
284 * Start by zeroing the section of proc that is zero-initialized,
285 * then copy the section that is copied directly from the parent.
286 */
287 memset(&p2->p_startzero, 0,
288 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
289 memcpy(&p2->p_startcopy, &p1->p_startcopy,
290 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
291
292 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
293
294 LIST_INIT(&p2->p_lwps);
295 LIST_INIT(&p2->p_sigwaiters);
296
297 /*
298 * Duplicate sub-structures as needed.
299 * Increase reference counts on shared objects.
300 * The p_stats and p_sigacts substructs are set in uvm_fork().
301 * Inherit flags we want to keep. The flags related to SIGCHLD
302 * handling are important in order to keep a consistent behaviour
303 * for the child after the fork.
304 */
305 p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN);
306 p2->p_emul = p1->p_emul;
307 p2->p_execsw = p1->p_execsw;
308
309 if (flags & FORK_SYSTEM) {
310 /*
311 * Mark it as a system process. Set P_NOCLDWAIT so that
312 * children are reparented to init(8) when they exit.
313 * init(8) can easily wait them out for us.
314 */
315 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
316 }
317
318 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
319 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
320 rw_init(&p2->p_reflock);
321 cv_init(&p2->p_waitcv, "wait");
322 cv_init(&p2->p_lwpcv, "lwpwait");
323
324 /*
325 * Share a lock between the processes if they are to share signal
326 * state: we must synchronize access to it.
327 */
328 if (flags & FORK_SHARESIGS) {
329 p2->p_lock = p1->p_lock;
330 mutex_obj_hold(p1->p_lock);
331 } else
332 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
333
334 kauth_proc_fork(p1, p2);
335
336 p2->p_raslist = NULL;
337 #if defined(__HAVE_RAS)
338 ras_fork(p1, p2);
339 #endif
340
341 /* bump references to the text vnode (for procfs) */
342 p2->p_textvp = p1->p_textvp;
343 if (p2->p_textvp)
344 VREF(p2->p_textvp);
345
346 if (flags & FORK_SHAREFILES)
347 fd_share(p2);
348 else if (flags & FORK_CLEANFILES)
349 p2->p_fd = fd_init(NULL);
350 else
351 p2->p_fd = fd_copy();
352
353 if (flags & FORK_SHARECWD)
354 cwdshare(p2);
355 else
356 p2->p_cwdi = cwdinit();
357
358 /*
359 * p_limit (rlimit stuff) is usually copy-on-write, so we just need
360 * to bump pl_refcnt.
361 * However in some cases (see compat irix, and plausibly from clone)
362 * the parent and child share limits - in which case nothing else
363 * must have a copy of the limits (PL_SHAREMOD is set).
364 */
365 if (__predict_false(flags & FORK_SHARELIMIT))
366 lim_privatise(p1, 1);
367 p1_lim = p1->p_limit;
368 if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT))
369 p2->p_limit = lim_copy(p1_lim);
370 else {
371 lim_addref(p1_lim);
372 p2->p_limit = p1_lim;
373 }
374
375 p2->p_sflag = ((flags & FORK_PPWAIT) ? PS_PPWAIT : 0);
376 p2->p_lflag = 0;
377 p2->p_slflag = 0;
378 parent = (flags & FORK_NOWAIT) ? initproc : p1;
379 p2->p_pptr = parent;
380 LIST_INIT(&p2->p_children);
381
382 p2->p_aio = NULL;
383
384 #ifdef KTRACE
385 /*
386 * Copy traceflag and tracefile if enabled.
387 * If not inherited, these were zeroed above.
388 */
389 if (p1->p_traceflag & KTRFAC_INHERIT) {
390 mutex_enter(&ktrace_lock);
391 p2->p_traceflag = p1->p_traceflag;
392 if ((p2->p_tracep = p1->p_tracep) != NULL)
393 ktradref(p2);
394 mutex_exit(&ktrace_lock);
395 }
396 #endif
397
398 /*
399 * Create signal actions for the child process.
400 */
401 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
402 mutex_enter(p1->p_lock);
403 p2->p_sflag |=
404 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
405 sched_proc_fork(p1, p2);
406 mutex_exit(p1->p_lock);
407
408 p2->p_stflag = p1->p_stflag;
409
410 /*
411 * p_stats.
412 * Copy parts of p_stats, and zero out the rest.
413 */
414 p2->p_stats = pstatscopy(p1->p_stats);
415
416 /*
417 * If emulation has process fork hook, call it now.
418 */
419 if (p2->p_emul->e_proc_fork)
420 (*p2->p_emul->e_proc_fork)(p2, p1, flags);
421
422 /*
423 * ...and finally, any other random fork hooks that subsystems
424 * might have registered.
425 */
426 doforkhooks(p2, p1);
427
428 /*
429 * This begins the section where we must prevent the parent
430 * from being swapped.
431 */
432 uvm_lwp_hold(l1);
433 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
434
435 /*
436 * Finish creating the child process.
437 * It will return through a different path later.
438 */
439 lwp_create(l1, p2, uaddr, inmem, 0, stack, stacksize,
440 (func != NULL) ? func : child_return, arg, &l2,
441 l1->l_class);
442
443 /*
444 * It's now safe for the scheduler and other processes to see the
445 * child process.
446 */
447 mutex_enter(proc_lock);
448
449 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
450 p2->p_lflag |= PL_CONTROLT;
451
452 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
453 p2->p_exitsig = exitsig; /* signal for parent on exit */
454
455 LIST_INSERT_AFTER(p1, p2, p_pglist);
456 LIST_INSERT_HEAD(&allproc, p2, p_list);
457
458 p2->p_trace_enabled = trace_is_enabled(p2);
459 #ifdef __HAVE_SYSCALL_INTERN
460 (*p2->p_emul->e_syscall_intern)(p2);
461 #endif
462
463 /*
464 * Update stats now that we know the fork was successful.
465 */
466 uvmexp.forks++;
467 if (flags & FORK_PPWAIT)
468 uvmexp.forks_ppwait++;
469 if (flags & FORK_SHAREVM)
470 uvmexp.forks_sharevm++;
471
472 /*
473 * Pass a pointer to the new process to the caller.
474 */
475 if (rnewprocp != NULL)
476 *rnewprocp = p2;
477
478 if (ktrpoint(KTR_EMUL))
479 p2->p_traceflag |= KTRFAC_TRC_EMUL;
480
481 /*
482 * Now can be swapped.
483 */
484 uvm_lwp_rele(l1);
485
486 /*
487 * Notify any interested parties about the new process.
488 */
489 if (!SLIST_EMPTY(&p1->p_klist)) {
490 mutex_exit(proc_lock);
491 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
492 mutex_enter(proc_lock);
493 }
494
495 /*
496 * Make child runnable, set start time, and add to run queue except
497 * if the parent requested the child to start in SSTOP state.
498 */
499 tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0);
500 mutex_enter(p2->p_lock);
501
502 getmicrotime(&p2->p_stats->p_start);
503 p2->p_acflag = AFORK;
504 if (p2->p_sflag & PS_STOPFORK) {
505 lwp_lock(l2);
506 p2->p_nrlwps = 0;
507 p2->p_stat = SSTOP;
508 p2->p_waited = 0;
509 p1->p_nstopchild++;
510 l2->l_stat = LSSTOP;
511 l2->l_flag |= tmp;
512 lwp_unlock(l2);
513 } else {
514 p2->p_nrlwps = 1;
515 p2->p_stat = SACTIVE;
516 lwp_lock(l2);
517 l2->l_stat = LSRUN;
518 l2->l_flag |= tmp;
519 sched_enqueue(l2, false);
520 lwp_unlock(l2);
521 }
522
523 mutex_exit(proc_lock);
524
525 /*
526 * Start profiling.
527 */
528 if ((p2->p_stflag & PST_PROFIL) != 0) {
529 mutex_spin_enter(&p2->p_stmutex);
530 startprofclock(p2);
531 mutex_spin_exit(&p2->p_stmutex);
532 }
533
534
535 /*
536 * Preserve synchronization semantics of vfork. If waiting for
537 * child to exec or exit, set PS_PPWAIT on child, and sleep on our
538 * proc (in case of exit).
539 */
540 if (flags & FORK_PPWAIT)
541 while (p2->p_sflag & PS_PPWAIT)
542 cv_wait(&p1->p_waitcv, p2->p_lock);
543
544 mutex_exit(p2->p_lock);
545
546 /*
547 * Return child pid to parent process,
548 * marking us as parent via retval[1].
549 */
550 if (retval != NULL) {
551 retval[0] = p2->p_pid;
552 retval[1] = 0;
553 }
554
555 return (0);
556 }
557