Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.175
      1 /*	$NetBSD: kern_fork.c,v 1.175 2010/01/08 11:35:10 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.175 2010/01/08 11:35:10 pooka Exp $");
     71 
     72 #include "opt_ktrace.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/filedesc.h>
     77 #include <sys/kernel.h>
     78 #include <sys/pool.h>
     79 #include <sys/mount.h>
     80 #include <sys/proc.h>
     81 #include <sys/ras.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/vnode.h>
     84 #include <sys/file.h>
     85 #include <sys/acct.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/vmmeter.h>
     88 #include <sys/sched.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/kauth.h>
     91 #include <sys/atomic.h>
     92 #include <sys/syscallargs.h>
     93 #include <sys/uidinfo.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 u_int	nprocs = 1;		/* process 0 */
     98 
     99 /*
    100  * Number of ticks to sleep if fork() would fail due to process hitting
    101  * limits. Exported in miliseconds to userland via sysctl.
    102  */
    103 int	forkfsleep = 0;
    104 
    105 /*ARGSUSED*/
    106 int
    107 sys_fork(struct lwp *l, const void *v, register_t *retval)
    108 {
    109 
    110 	return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
    111 }
    112 
    113 /*
    114  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
    115  * Address space is not shared, but parent is blocked until child exit.
    116  */
    117 /*ARGSUSED*/
    118 int
    119 sys_vfork(struct lwp *l, const void *v, register_t *retval)
    120 {
    121 
    122 	return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
    123 	    retval, NULL));
    124 }
    125 
    126 /*
    127  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
    128  * semantics.  Address space is shared, and parent is blocked until child exit.
    129  */
    130 /*ARGSUSED*/
    131 int
    132 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
    133 {
    134 
    135 	return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    136 	    NULL, NULL, retval, NULL));
    137 }
    138 
    139 /*
    140  * Linux-compatible __clone(2) system call.
    141  */
    142 int
    143 sys___clone(struct lwp *l, const struct sys___clone_args *uap, register_t *retval)
    144 {
    145 	/* {
    146 		syscallarg(int) flags;
    147 		syscallarg(void *) stack;
    148 	} */
    149 	int flags, sig;
    150 
    151 	/*
    152 	 * We don't support the CLONE_PID or CLONE_PTRACE flags.
    153 	 */
    154 	if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
    155 		return (EINVAL);
    156 
    157 	/*
    158 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
    159 	 */
    160 	if (SCARG(uap, flags) & CLONE_SIGHAND
    161 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
    162 		return (EINVAL);
    163 
    164 	flags = 0;
    165 
    166 	if (SCARG(uap, flags) & CLONE_VM)
    167 		flags |= FORK_SHAREVM;
    168 	if (SCARG(uap, flags) & CLONE_FS)
    169 		flags |= FORK_SHARECWD;
    170 	if (SCARG(uap, flags) & CLONE_FILES)
    171 		flags |= FORK_SHAREFILES;
    172 	if (SCARG(uap, flags) & CLONE_SIGHAND)
    173 		flags |= FORK_SHARESIGS;
    174 	if (SCARG(uap, flags) & CLONE_VFORK)
    175 		flags |= FORK_PPWAIT;
    176 
    177 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
    178 	if (sig < 0 || sig >= _NSIG)
    179 		return (EINVAL);
    180 
    181 	/*
    182 	 * Note that the Linux API does not provide a portable way of
    183 	 * specifying the stack area; the caller must know if the stack
    184 	 * grows up or down.  So, we pass a stack size of 0, so that the
    185 	 * code that makes this adjustment is a noop.
    186 	 */
    187 	return (fork1(l, flags, sig, SCARG(uap, stack), 0,
    188 	    NULL, NULL, retval, NULL));
    189 }
    190 
    191 /* print the 'table full' message once per 10 seconds */
    192 struct timeval fork_tfmrate = { 10, 0 };
    193 
    194 /*
    195  * General fork call.  Note that another LWP in the process may call exec()
    196  * or exit() while we are forking.  It's safe to continue here, because
    197  * neither operation will complete until all LWPs have exited the process.
    198  */
    199 int
    200 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    201     void (*func)(void *), void *arg, register_t *retval,
    202     struct proc **rnewprocp)
    203 {
    204 	struct proc	*p1, *p2, *parent;
    205 	struct plimit   *p1_lim;
    206 	uid_t		uid;
    207 	struct lwp	*l2;
    208 	int		count;
    209 	vaddr_t		uaddr;
    210 	int		tmp;
    211 	int		tnprocs;
    212 	int		error = 0;
    213 
    214 	p1 = l1->l_proc;
    215 	uid = kauth_cred_getuid(l1->l_cred);
    216 	tnprocs = atomic_inc_uint_nv(&nprocs);
    217 
    218 	/*
    219 	 * Although process entries are dynamically created, we still keep
    220 	 * a global limit on the maximum number we will create.
    221 	 */
    222 	if (__predict_false(tnprocs >= maxproc))
    223 		error = -1;
    224 	else
    225 		error = kauth_authorize_process(l1->l_cred,
    226 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
    227 
    228 	if (error) {
    229 		static struct timeval lasttfm;
    230 		atomic_dec_uint(&nprocs);
    231 		if (ratecheck(&lasttfm, &fork_tfmrate))
    232 			tablefull("proc", "increase kern.maxproc or NPROC");
    233 		if (forkfsleep)
    234 			kpause("forkmx", false, forkfsleep, NULL);
    235 		return (EAGAIN);
    236 	}
    237 
    238 	/*
    239 	 * Enforce limits.
    240 	 */
    241 	count = chgproccnt(uid, 1);
    242 	if (kauth_authorize_generic(l1->l_cred, KAUTH_GENERIC_ISSUSER, NULL) !=
    243 	    0 && __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    244 		(void)chgproccnt(uid, -1);
    245 		atomic_dec_uint(&nprocs);
    246 		if (forkfsleep)
    247 			kpause("forkulim", false, forkfsleep, NULL);
    248 		return (EAGAIN);
    249 	}
    250 
    251 	/*
    252 	 * Allocate virtual address space for the U-area now, while it
    253 	 * is still easy to abort the fork operation if we're out of
    254 	 * kernel virtual address space.
    255 	 */
    256 	uaddr = uvm_uarea_alloc();
    257 	if (__predict_false(uaddr == 0)) {
    258 		(void)chgproccnt(uid, -1);
    259 		atomic_dec_uint(&nprocs);
    260 		return (ENOMEM);
    261 	}
    262 
    263 	/*
    264 	 * We are now committed to the fork.  From here on, we may
    265 	 * block on resources, but resource allocation may NOT fail.
    266 	 */
    267 
    268 	/* Allocate new proc. */
    269 	p2 = proc_alloc();
    270 
    271 	/*
    272 	 * Make a proc table entry for the new process.
    273 	 * Start by zeroing the section of proc that is zero-initialized,
    274 	 * then copy the section that is copied directly from the parent.
    275 	 */
    276 	memset(&p2->p_startzero, 0,
    277 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
    278 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    279 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
    280 
    281 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
    282 
    283 	LIST_INIT(&p2->p_lwps);
    284 	LIST_INIT(&p2->p_sigwaiters);
    285 
    286 	/*
    287 	 * Duplicate sub-structures as needed.
    288 	 * Increase reference counts on shared objects.
    289 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
    290 	 * handling are important in order to keep a consistent behaviour
    291 	 * for the child after the fork.
    292 	 */
    293 	p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN);
    294 	p2->p_emul = p1->p_emul;
    295 	p2->p_execsw = p1->p_execsw;
    296 
    297 	if (flags & FORK_SYSTEM) {
    298 		/*
    299 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
    300 		 * children are reparented to init(8) when they exit.
    301 		 * init(8) can easily wait them out for us.
    302 		 */
    303 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
    304 	}
    305 
    306 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    307 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    308 	rw_init(&p2->p_reflock);
    309 	cv_init(&p2->p_waitcv, "wait");
    310 	cv_init(&p2->p_lwpcv, "lwpwait");
    311 
    312 	/*
    313 	 * Share a lock between the processes if they are to share signal
    314 	 * state: we must synchronize access to it.
    315 	 */
    316 	if (flags & FORK_SHARESIGS) {
    317 		p2->p_lock = p1->p_lock;
    318 		mutex_obj_hold(p1->p_lock);
    319 	} else
    320 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    321 
    322 	kauth_proc_fork(p1, p2);
    323 
    324 	p2->p_raslist = NULL;
    325 #if defined(__HAVE_RAS)
    326 	ras_fork(p1, p2);
    327 #endif
    328 
    329 	/* bump references to the text vnode (for procfs) */
    330 	p2->p_textvp = p1->p_textvp;
    331 	if (p2->p_textvp)
    332 		vref(p2->p_textvp);
    333 
    334 	if (flags & FORK_SHAREFILES)
    335 		fd_share(p2);
    336 	else if (flags & FORK_CLEANFILES)
    337 		p2->p_fd = fd_init(NULL);
    338 	else
    339 		p2->p_fd = fd_copy();
    340 
    341 	if (flags & FORK_SHARECWD)
    342 		cwdshare(p2);
    343 	else
    344 		p2->p_cwdi = cwdinit();
    345 
    346 	/*
    347 	 * p_limit (rlimit stuff) is usually copy-on-write, so we just need
    348 	 * to bump pl_refcnt.
    349 	 * However in some cases (see compat irix, and plausibly from clone)
    350 	 * the parent and child share limits - in which case nothing else
    351 	 * must have a copy of the limits (PL_SHAREMOD is set).
    352 	 */
    353 	if (__predict_false(flags & FORK_SHARELIMIT))
    354 		lim_privatise(p1, 1);
    355 	p1_lim = p1->p_limit;
    356 	if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT))
    357 		p2->p_limit = lim_copy(p1_lim);
    358 	else {
    359 		lim_addref(p1_lim);
    360 		p2->p_limit = p1_lim;
    361 	}
    362 
    363 	p2->p_lflag = ((flags & FORK_PPWAIT) ? PL_PPWAIT : 0);
    364 	p2->p_sflag = 0;
    365 	p2->p_slflag = 0;
    366 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
    367 	p2->p_pptr = parent;
    368 	p2->p_ppid = parent->p_pid;
    369 	LIST_INIT(&p2->p_children);
    370 
    371 	p2->p_aio = NULL;
    372 
    373 #ifdef KTRACE
    374 	/*
    375 	 * Copy traceflag and tracefile if enabled.
    376 	 * If not inherited, these were zeroed above.
    377 	 */
    378 	if (p1->p_traceflag & KTRFAC_INHERIT) {
    379 		mutex_enter(&ktrace_lock);
    380 		p2->p_traceflag = p1->p_traceflag;
    381 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    382 			ktradref(p2);
    383 		mutex_exit(&ktrace_lock);
    384 	}
    385 #endif
    386 
    387 	/*
    388 	 * Create signal actions for the child process.
    389 	 */
    390 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
    391 	mutex_enter(p1->p_lock);
    392 	p2->p_sflag |=
    393 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
    394 	sched_proc_fork(p1, p2);
    395 	mutex_exit(p1->p_lock);
    396 
    397 	p2->p_stflag = p1->p_stflag;
    398 
    399 	/*
    400 	 * p_stats.
    401 	 * Copy parts of p_stats, and zero out the rest.
    402 	 */
    403 	p2->p_stats = pstatscopy(p1->p_stats);
    404 
    405 	/*
    406 	 * If emulation has process fork hook, call it now.
    407 	 */
    408 	if (p2->p_emul->e_proc_fork)
    409 		(*p2->p_emul->e_proc_fork)(p2, p1, flags);
    410 
    411 	/*
    412 	 * ...and finally, any other random fork hooks that subsystems
    413 	 * might have registered.
    414 	 */
    415 	doforkhooks(p2, p1);
    416 
    417 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
    418 
    419 	/*
    420 	 * Finish creating the child process.
    421 	 * It will return through a different path later.
    422 	 */
    423 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
    424 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
    425 	    l1->l_class);
    426 
    427 	/*
    428 	 * It's now safe for the scheduler and other processes to see the
    429 	 * child process.
    430 	 */
    431 	mutex_enter(proc_lock);
    432 
    433 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
    434 		p2->p_lflag |= PL_CONTROLT;
    435 
    436 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
    437 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
    438 
    439 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    440 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    441 
    442 	p2->p_trace_enabled = trace_is_enabled(p2);
    443 #ifdef __HAVE_SYSCALL_INTERN
    444 	(*p2->p_emul->e_syscall_intern)(p2);
    445 #endif
    446 
    447 	/*
    448 	 * Update stats now that we know the fork was successful.
    449 	 */
    450 	uvmexp.forks++;
    451 	if (flags & FORK_PPWAIT)
    452 		uvmexp.forks_ppwait++;
    453 	if (flags & FORK_SHAREVM)
    454 		uvmexp.forks_sharevm++;
    455 
    456 	/*
    457 	 * Pass a pointer to the new process to the caller.
    458 	 */
    459 	if (rnewprocp != NULL)
    460 		*rnewprocp = p2;
    461 
    462 	if (ktrpoint(KTR_EMUL))
    463 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
    464 
    465 	/*
    466 	 * Notify any interested parties about the new process.
    467 	 */
    468 	if (!SLIST_EMPTY(&p1->p_klist)) {
    469 		mutex_exit(proc_lock);
    470 		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
    471 		mutex_enter(proc_lock);
    472 	}
    473 
    474 	/*
    475 	 * Make child runnable, set start time, and add to run queue except
    476 	 * if the parent requested the child to start in SSTOP state.
    477 	 */
    478 	tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0);
    479 	mutex_enter(p2->p_lock);
    480 
    481 	/*
    482 	 * Start profiling.
    483 	 */
    484 	if ((p2->p_stflag & PST_PROFIL) != 0) {
    485 		mutex_spin_enter(&p2->p_stmutex);
    486 		startprofclock(p2);
    487 		mutex_spin_exit(&p2->p_stmutex);
    488 	}
    489 
    490 	getmicrotime(&p2->p_stats->p_start);
    491 	p2->p_acflag = AFORK;
    492 	lwp_lock(l2);
    493 	if (p2->p_sflag & PS_STOPFORK) {
    494 		p2->p_nrlwps = 0;
    495 		p2->p_stat = SSTOP;
    496 		p2->p_waited = 0;
    497 		p1->p_nstopchild++;
    498 		l2->l_stat = LSSTOP;
    499 		l2->l_flag |= tmp;
    500 		lwp_unlock(l2);
    501 	} else {
    502 		p2->p_nrlwps = 1;
    503 		p2->p_stat = SACTIVE;
    504 		l2->l_stat = LSRUN;
    505 		l2->l_flag |= tmp;
    506 		sched_enqueue(l2, false);
    507 		lwp_unlock(l2);
    508 	}
    509 
    510 	mutex_exit(p2->p_lock);
    511 
    512 	/*
    513 	 * Preserve synchronization semantics of vfork.  If waiting for
    514 	 * child to exec or exit, set PL_PPWAIT on child, and sleep on our
    515 	 * proc (in case of exit).
    516 	 */
    517 	while (p2->p_lflag & PL_PPWAIT)
    518 		cv_wait(&p1->p_waitcv, proc_lock);
    519 
    520 	mutex_exit(proc_lock);
    521 
    522 	/*
    523 	 * Return child pid to parent process,
    524 	 * marking us as parent via retval[1].
    525 	 */
    526 	if (retval != NULL) {
    527 		retval[0] = p2->p_pid;
    528 		retval[1] = 0;
    529 	}
    530 
    531 	return (0);
    532 }
    533