kern_fork.c revision 1.18 1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
39 * $Id: kern_fork.c,v 1.18 1994/06/15 19:59:21 mycroft Exp $
40 */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/map.h>
45 #include <sys/filedesc.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54
55 /* ARGSUSED */
56 fork(p, uap, retval)
57 struct proc *p;
58 void *uap;
59 int retval[];
60 {
61
62 return (fork1(p, 0, retval));
63 }
64
65 /* ARGSUSED */
66 vfork(p, uap, retval)
67 struct proc *p;
68 void *uap;
69 int retval[];
70 {
71
72 return (fork1(p, 1, retval));
73 }
74
75 int nprocs = 1; /* process 0 */
76
77 fork1(p1, isvfork, retval)
78 register struct proc *p1;
79 int isvfork, retval[];
80 {
81 register struct proc *p2;
82 register uid_t uid;
83 struct proc *newproc;
84 struct proc **hash;
85 int count;
86 static int nextpid, pidchecked = 0;
87
88 /*
89 * Although process entries are dynamically created, we still keep
90 * a global limit on the maximum number we will create. Don't allow
91 * a nonprivileged user to use the last process; don't let root
92 * exceed the limit. The variable nprocs is the current number of
93 * processes, maxproc is the limit.
94 */
95 uid = p1->p_cred->p_ruid;
96 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
97 tablefull("proc");
98 return (EAGAIN);
99 }
100 /*
101 * Increment the count of procs running with this uid. Don't allow
102 * a nonprivileged user to exceed their current limit.
103 */
104 count = chgproccnt(uid, 1);
105 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
106 (void)chgproccnt(uid, -1);
107 return (EAGAIN);
108 }
109
110 /* Allocate new proc. */
111 MALLOC(newproc, struct proc *, sizeof(struct proc), M_PROC, M_WAITOK);
112
113 /*
114 * Find an unused process ID. We remember a range of unused IDs
115 * ready to use (from nextpid+1 through pidchecked-1).
116 */
117 nextpid++;
118 retry:
119 /*
120 * If the process ID prototype has wrapped around,
121 * restart somewhat above 0, as the low-numbered procs
122 * tend to include daemons that don't exit.
123 */
124 if (nextpid >= PID_MAX) {
125 nextpid = 100;
126 pidchecked = 0;
127 }
128 if (nextpid >= pidchecked) {
129 int doingzomb = 0;
130
131 pidchecked = PID_MAX;
132 /*
133 * Scan the active and zombie procs to check whether this pid
134 * is in use. Remember the lowest pid that's greater
135 * than nextpid, so we can avoid checking for a while.
136 */
137 p2 = (struct proc *)allproc;
138 again:
139 for (; p2 != NULL; p2 = p2->p_next) {
140 while (p2->p_pid == nextpid ||
141 p2->p_pgrp->pg_id == nextpid) {
142 nextpid++;
143 if (nextpid >= pidchecked)
144 goto retry;
145 }
146 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
147 pidchecked = p2->p_pid;
148 if (p2->p_pgrp->pg_id > nextpid &&
149 pidchecked > p2->p_pgrp->pg_id)
150 pidchecked = p2->p_pgrp->pg_id;
151 }
152 if (!doingzomb) {
153 doingzomb = 1;
154 p2 = zombproc;
155 goto again;
156 }
157 }
158
159
160 /*
161 * Link onto allproc (this should probably be delayed).
162 * Heavy use of volatile here to prevent the compiler from
163 * rearranging code. Yes, it *is* terribly ugly, but at least
164 * it works.
165 */
166 nprocs++;
167 p2 = newproc;
168 #define Vp2 ((volatile struct proc *)p2)
169 Vp2->p_stat = SIDL; /* protect against others */
170 Vp2->p_pid = nextpid;
171 /*
172 * This is really:
173 * p2->p_next = allproc;
174 * allproc->p_prev = &p2->p_next;
175 * p2->p_prev = &allproc;
176 * allproc = p2;
177 * The assignment via allproc is legal since it is never NULL.
178 */
179 *(volatile struct proc **)&Vp2->p_next = allproc;
180 *(volatile struct proc ***)&allproc->p_prev =
181 (volatile struct proc **)&Vp2->p_next;
182 *(volatile struct proc ***)&Vp2->p_prev = &allproc;
183 allproc = Vp2;
184 #undef Vp2
185 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
186
187 /* Insert on the hash chain. */
188 hash = &pidhash[PIDHASH(p2->p_pid)];
189 p2->p_hash = *hash;
190 *hash = p2;
191
192 /*
193 * Make a proc table entry for the new process.
194 * Start by zeroing the section of proc that is zero-initialized,
195 * then copy the section that is copied directly from the parent.
196 */
197 bzero(&p2->p_startzero,
198 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
199 bcopy(&p1->p_startcopy, &p2->p_startcopy,
200 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
201
202 /*
203 * Duplicate sub-structures as needed.
204 * Increase reference counts on shared objects.
205 * The p_stats and p_sigacts substructs are set in vm_fork.
206 */
207 p2->p_flag = P_INMEM;
208 if (p1->p_flag & P_PROFIL)
209 startprofclock(p2);
210 MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
211 M_SUBPROC, M_WAITOK);
212 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
213 p2->p_cred->p_refcnt = 1;
214 crhold(p1->p_ucred);
215
216 /* bump references to the text vnode (for procfs) */
217 p2->p_textvp = p1->p_textvp;
218 if (p2->p_textvp)
219 VREF(p2->p_textvp);
220
221 p2->p_fd = fdcopy(p1);
222 /*
223 * If p_limit is still copy-on-write, bump refcnt,
224 * otherwise get a copy that won't be modified.
225 * (If PL_SHAREMOD is clear, the structure is shared
226 * copy-on-write.)
227 */
228 if (p1->p_limit->p_lflags & PL_SHAREMOD)
229 p2->p_limit = limcopy(p1->p_limit);
230 else {
231 p2->p_limit = p1->p_limit;
232 p2->p_limit->p_refcnt++;
233 }
234
235 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
236 p2->p_flag |= P_CONTROLT;
237 if (isvfork)
238 p2->p_flag |= P_PPWAIT;
239 p2->p_pgrpnxt = p1->p_pgrpnxt;
240 p1->p_pgrpnxt = p2;
241 p2->p_pptr = p1;
242 p2->p_osptr = p1->p_cptr;
243 if (p1->p_cptr)
244 p1->p_cptr->p_ysptr = p2;
245 p1->p_cptr = p2;
246 #ifdef KTRACE
247 /*
248 * Copy traceflag and tracefile if enabled.
249 * If not inherited, these were zeroed above.
250 */
251 if (p1->p_traceflag&KTRFAC_INHERIT) {
252 p2->p_traceflag = p1->p_traceflag;
253 if ((p2->p_tracep = p1->p_tracep) != NULL)
254 VREF(p2->p_tracep);
255 }
256 #endif
257
258 /*
259 * This begins the section where we must prevent the parent
260 * from being swapped.
261 */
262 p1->p_holdcnt++;
263 /*
264 * Set return values for child before vm_fork,
265 * so they can be copied to child stack.
266 * We return parent pid, and mark as child in retval[1].
267 * NOTE: the kernel stack may be at a different location in the child
268 * process, and thus addresses of automatic variables (including retval)
269 * may be invalid after vm_fork returns in the child process.
270 */
271 retval[0] = p1->p_pid;
272 retval[1] = 1;
273 if (vm_fork(p1, p2, isvfork)) {
274 /*
275 * Child process. Set start time and get to work.
276 */
277 (void) splclock();
278 p2->p_stats->p_start = time;
279 (void) spl0();
280 p2->p_acflag = AFORK;
281 return (0);
282 }
283
284 /*
285 * Make child runnable and add to run queue.
286 */
287 (void) splhigh();
288 p2->p_stat = SRUN;
289 setrunqueue(p2);
290 (void) spl0();
291
292 /*
293 * Now can be swapped.
294 */
295 p1->p_holdcnt--;
296
297 /*
298 * Preserve synchronization semantics of vfork. If waiting for
299 * child to exec or exit, set P_PPWAIT on child, and sleep on our
300 * proc (in case of exit).
301 */
302 if (isvfork)
303 while (p2->p_flag & P_PPWAIT)
304 tsleep(p1, PWAIT, "ppwait", 0);
305
306 /*
307 * Return child pid to parent process,
308 * marking us as parent via retval[1].
309 */
310 retval[0] = p2->p_pid;
311 retval[1] = 0;
312 return (0);
313 }
314