Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.206
      1 /*	$NetBSD: kern_fork.c,v 1.206 2019/04/03 08:08:00 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.206 2019/04/03 08:08:00 kamil Exp $");
     71 
     72 #include "opt_ktrace.h"
     73 #include "opt_dtrace.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/kernel.h>
     79 #include <sys/pool.h>
     80 #include <sys/mount.h>
     81 #include <sys/proc.h>
     82 #include <sys/ras.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/vnode.h>
     85 #include <sys/file.h>
     86 #include <sys/acct.h>
     87 #include <sys/ktrace.h>
     88 #include <sys/sched.h>
     89 #include <sys/signalvar.h>
     90 #include <sys/kauth.h>
     91 #include <sys/atomic.h>
     92 #include <sys/syscallargs.h>
     93 #include <sys/uidinfo.h>
     94 #include <sys/sdt.h>
     95 #include <sys/ptrace.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 /*
    100  * DTrace SDT provider definitions
    101  */
    102 SDT_PROVIDER_DECLARE(proc);
    103 SDT_PROBE_DEFINE3(proc, kernel, , create,
    104     "struct proc *", /* new process */
    105     "struct proc *", /* parent process */
    106     "int" /* flags */);
    107 
    108 u_int	nprocs __cacheline_aligned = 1;		/* process 0 */
    109 
    110 /*
    111  * Number of ticks to sleep if fork() would fail due to process hitting
    112  * limits. Exported in miliseconds to userland via sysctl.
    113  */
    114 int	forkfsleep = 0;
    115 
    116 int
    117 sys_fork(struct lwp *l, const void *v, register_t *retval)
    118 {
    119 
    120 	return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
    121 }
    122 
    123 /*
    124  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
    125  * Address space is not shared, but parent is blocked until child exit.
    126  */
    127 int
    128 sys_vfork(struct lwp *l, const void *v, register_t *retval)
    129 {
    130 
    131 	return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
    132 	    retval);
    133 }
    134 
    135 /*
    136  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
    137  * semantics.  Address space is shared, and parent is blocked until child exit.
    138  */
    139 int
    140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
    141 {
    142 
    143 	return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    144 	    NULL, NULL, retval);
    145 }
    146 
    147 /*
    148  * Linux-compatible __clone(2) system call.
    149  */
    150 int
    151 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
    152     register_t *retval)
    153 {
    154 	/* {
    155 		syscallarg(int) flags;
    156 		syscallarg(void *) stack;
    157 	} */
    158 	int flags, sig;
    159 
    160 	/*
    161 	 * We don't support the CLONE_PID or CLONE_PTRACE flags.
    162 	 */
    163 	if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
    164 		return EINVAL;
    165 
    166 	/*
    167 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
    168 	 */
    169 	if (SCARG(uap, flags) & CLONE_SIGHAND
    170 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
    171 		return EINVAL;
    172 
    173 	flags = 0;
    174 
    175 	if (SCARG(uap, flags) & CLONE_VM)
    176 		flags |= FORK_SHAREVM;
    177 	if (SCARG(uap, flags) & CLONE_FS)
    178 		flags |= FORK_SHARECWD;
    179 	if (SCARG(uap, flags) & CLONE_FILES)
    180 		flags |= FORK_SHAREFILES;
    181 	if (SCARG(uap, flags) & CLONE_SIGHAND)
    182 		flags |= FORK_SHARESIGS;
    183 	if (SCARG(uap, flags) & CLONE_VFORK)
    184 		flags |= FORK_PPWAIT;
    185 
    186 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
    187 	if (sig < 0 || sig >= _NSIG)
    188 		return EINVAL;
    189 
    190 	/*
    191 	 * Note that the Linux API does not provide a portable way of
    192 	 * specifying the stack area; the caller must know if the stack
    193 	 * grows up or down.  So, we pass a stack size of 0, so that the
    194 	 * code that makes this adjustment is a noop.
    195 	 */
    196 	return fork1(l, flags, sig, SCARG(uap, stack), 0,
    197 	    NULL, NULL, retval);
    198 }
    199 
    200 /*
    201  * Print the 'table full' message once per 10 seconds.
    202  */
    203 static struct timeval fork_tfmrate = { 10, 0 };
    204 
    205 /*
    206  * General fork call.  Note that another LWP in the process may call exec()
    207  * or exit() while we are forking.  It's safe to continue here, because
    208  * neither operation will complete until all LWPs have exited the process.
    209  */
    210 int
    211 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    212     void (*func)(void *), void *arg, register_t *retval)
    213 {
    214 	struct proc	*p1, *p2, *parent;
    215 	struct plimit   *p1_lim;
    216 	uid_t		uid;
    217 	struct lwp	*l2;
    218 	int		count;
    219 	vaddr_t		uaddr;
    220 	int		tnprocs;
    221 	int		tracefork, tracevfork, tracevforkdone;
    222 	int		error = 0;
    223 
    224 	p1 = l1->l_proc;
    225 	uid = kauth_cred_getuid(l1->l_cred);
    226 	tnprocs = atomic_inc_uint_nv(&nprocs);
    227 
    228 	/*
    229 	 * Although process entries are dynamically created, we still keep
    230 	 * a global limit on the maximum number we will create.
    231 	 */
    232 	if (__predict_false(tnprocs >= maxproc))
    233 		error = -1;
    234 	else
    235 		error = kauth_authorize_process(l1->l_cred,
    236 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
    237 
    238 	if (error) {
    239 		static struct timeval lasttfm;
    240 		atomic_dec_uint(&nprocs);
    241 		if (ratecheck(&lasttfm, &fork_tfmrate))
    242 			tablefull("proc", "increase kern.maxproc or NPROC");
    243 		if (forkfsleep)
    244 			kpause("forkmx", false, forkfsleep, NULL);
    245 		return EAGAIN;
    246 	}
    247 
    248 	/*
    249 	 * Enforce limits.
    250 	 */
    251 	count = chgproccnt(uid, 1);
    252 	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    253 		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
    254 		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    255 		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
    256 			(void)chgproccnt(uid, -1);
    257 			atomic_dec_uint(&nprocs);
    258 			if (forkfsleep)
    259 				kpause("forkulim", false, forkfsleep, NULL);
    260 			return EAGAIN;
    261 		}
    262 	}
    263 
    264 	/*
    265 	 * Allocate virtual address space for the U-area now, while it
    266 	 * is still easy to abort the fork operation if we're out of
    267 	 * kernel virtual address space.
    268 	 */
    269 	uaddr = uvm_uarea_alloc();
    270 	if (__predict_false(uaddr == 0)) {
    271 		(void)chgproccnt(uid, -1);
    272 		atomic_dec_uint(&nprocs);
    273 		return ENOMEM;
    274 	}
    275 
    276 	/*
    277 	 * We are now committed to the fork.  From here on, we may
    278 	 * block on resources, but resource allocation may NOT fail.
    279 	 */
    280 
    281 	/* Allocate new proc. */
    282 	p2 = proc_alloc();
    283 
    284 	/*
    285 	 * Make a proc table entry for the new process.
    286 	 * Start by zeroing the section of proc that is zero-initialized,
    287 	 * then copy the section that is copied directly from the parent.
    288 	 */
    289 	memset(&p2->p_startzero, 0,
    290 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
    291 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    292 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
    293 
    294 	TAILQ_INIT(&p2->p_sigpend.sp_info);
    295 
    296 	LIST_INIT(&p2->p_lwps);
    297 	LIST_INIT(&p2->p_sigwaiters);
    298 
    299 	/*
    300 	 * Duplicate sub-structures as needed.
    301 	 * Increase reference counts on shared objects.
    302 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
    303 	 * handling are important in order to keep a consistent behaviour
    304 	 * for the child after the fork.  If we are a 32-bit process, the
    305 	 * child will be too.
    306 	 */
    307 	p2->p_flag =
    308 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
    309 	p2->p_emul = p1->p_emul;
    310 	p2->p_execsw = p1->p_execsw;
    311 
    312 	if (flags & FORK_SYSTEM) {
    313 		/*
    314 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
    315 		 * children are reparented to init(8) when they exit.
    316 		 * init(8) can easily wait them out for us.
    317 		 */
    318 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
    319 	}
    320 
    321 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    322 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    323 	rw_init(&p2->p_reflock);
    324 	cv_init(&p2->p_waitcv, "wait");
    325 	cv_init(&p2->p_lwpcv, "lwpwait");
    326 
    327 	/*
    328 	 * Share a lock between the processes if they are to share signal
    329 	 * state: we must synchronize access to it.
    330 	 */
    331 	if (flags & FORK_SHARESIGS) {
    332 		p2->p_lock = p1->p_lock;
    333 		mutex_obj_hold(p1->p_lock);
    334 	} else
    335 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    336 
    337 	kauth_proc_fork(p1, p2);
    338 
    339 	p2->p_raslist = NULL;
    340 #if defined(__HAVE_RAS)
    341 	ras_fork(p1, p2);
    342 #endif
    343 
    344 	/* bump references to the text vnode (for procfs) */
    345 	p2->p_textvp = p1->p_textvp;
    346 	if (p2->p_textvp)
    347 		vref(p2->p_textvp);
    348 	if (p1->p_path)
    349 		p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
    350 	else
    351 		p2->p_path = NULL;
    352 
    353 	if (flags & FORK_SHAREFILES)
    354 		fd_share(p2);
    355 	else if (flags & FORK_CLEANFILES)
    356 		p2->p_fd = fd_init(NULL);
    357 	else
    358 		p2->p_fd = fd_copy();
    359 
    360 	/* XXX racy */
    361 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
    362 
    363 	if (flags & FORK_SHARECWD)
    364 		cwdshare(p2);
    365 	else
    366 		p2->p_cwdi = cwdinit();
    367 
    368 	/*
    369 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
    370 	 * we just need increase pl_refcnt.
    371 	 */
    372 	p1_lim = p1->p_limit;
    373 	if (!p1_lim->pl_writeable) {
    374 		lim_addref(p1_lim);
    375 		p2->p_limit = p1_lim;
    376 	} else {
    377 		p2->p_limit = lim_copy(p1_lim);
    378 	}
    379 
    380 	if (flags & FORK_PPWAIT) {
    381 		/* Mark ourselves as waiting for a child. */
    382 		l1->l_pflag |= LP_VFORKWAIT;
    383 		p2->p_lflag = PL_PPWAIT;
    384 		p2->p_vforklwp = l1;
    385 	} else {
    386 		p2->p_lflag = 0;
    387 	}
    388 	p2->p_sflag = 0;
    389 	p2->p_slflag = 0;
    390 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
    391 	p2->p_pptr = parent;
    392 	p2->p_ppid = parent->p_pid;
    393 	LIST_INIT(&p2->p_children);
    394 
    395 	p2->p_aio = NULL;
    396 
    397 #ifdef KTRACE
    398 	/*
    399 	 * Copy traceflag and tracefile if enabled.
    400 	 * If not inherited, these were zeroed above.
    401 	 */
    402 	if (p1->p_traceflag & KTRFAC_INHERIT) {
    403 		mutex_enter(&ktrace_lock);
    404 		p2->p_traceflag = p1->p_traceflag;
    405 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    406 			ktradref(p2);
    407 		mutex_exit(&ktrace_lock);
    408 	}
    409 #endif
    410 
    411 	/*
    412 	 * Create signal actions for the child process.
    413 	 */
    414 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
    415 	mutex_enter(p1->p_lock);
    416 	p2->p_sflag |=
    417 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
    418 	sched_proc_fork(p1, p2);
    419 	mutex_exit(p1->p_lock);
    420 
    421 	p2->p_stflag = p1->p_stflag;
    422 
    423 	/*
    424 	 * p_stats.
    425 	 * Copy parts of p_stats, and zero out the rest.
    426 	 */
    427 	p2->p_stats = pstatscopy(p1->p_stats);
    428 
    429 	/*
    430 	 * Set up the new process address space.
    431 	 */
    432 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
    433 
    434 	/*
    435 	 * Finish creating the child process.
    436 	 * It will return through a different path later.
    437 	 */
    438 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
    439 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
    440 	    l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
    441 
    442 	/*
    443 	 * Inherit l_private from the parent.
    444 	 * Note that we cannot use lwp_setprivate() here since that
    445 	 * also sets the CPU TLS register, which is incorrect if the
    446 	 * process has changed that without letting the kernel know.
    447 	 */
    448 	l2->l_private = l1->l_private;
    449 
    450 	/*
    451 	 * If emulation has a process fork hook, call it now.
    452 	 */
    453 	if (p2->p_emul->e_proc_fork)
    454 		(*p2->p_emul->e_proc_fork)(p2, l1, flags);
    455 
    456 	/*
    457 	 * ...and finally, any other random fork hooks that subsystems
    458 	 * might have registered.
    459 	 */
    460 	doforkhooks(p2, p1);
    461 
    462 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
    463 
    464 	/*
    465 	 * It's now safe for the scheduler and other processes to see the
    466 	 * child process.
    467 	 */
    468 	mutex_enter(proc_lock);
    469 
    470 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
    471 		p2->p_lflag |= PL_CONTROLT;
    472 
    473 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
    474 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
    475 
    476 	/*
    477 	 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
    478 	 */
    479 	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
    480 	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
    481 	tracevfork = (p1->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
    482 	    (PSL_TRACEVFORK|PSL_TRACED) && (flags && FORK_PPWAIT) != 0;
    483 	tracevforkdone = (p1->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
    484 	    (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags && FORK_PPWAIT);
    485 	if (tracefork || tracevfork)
    486 		proc_changeparent(p2, p1->p_pptr);
    487 	if (tracefork) {
    488 		p1->p_fpid = p2->p_pid;
    489 		p2->p_fpid = p1->p_pid;
    490 	}
    491 	if (tracevfork) {
    492 		p1->p_vfpid = p2->p_pid;
    493 		p2->p_vfpid = p1->p_pid;
    494 	}
    495 
    496 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    497 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    498 
    499 	p2->p_trace_enabled = trace_is_enabled(p2);
    500 #ifdef __HAVE_SYSCALL_INTERN
    501 	(*p2->p_emul->e_syscall_intern)(p2);
    502 #endif
    503 
    504 	/*
    505 	 * Update stats now that we know the fork was successful.
    506 	 */
    507 	uvmexp.forks++;
    508 	if (flags & FORK_PPWAIT)
    509 		uvmexp.forks_ppwait++;
    510 	if (flags & FORK_SHAREVM)
    511 		uvmexp.forks_sharevm++;
    512 
    513 	if (ktrpoint(KTR_EMUL))
    514 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
    515 
    516 	/*
    517 	 * Notify any interested parties about the new process.
    518 	 */
    519 	if (!SLIST_EMPTY(&p1->p_klist)) {
    520 		mutex_exit(proc_lock);
    521 		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
    522 		mutex_enter(proc_lock);
    523 	}
    524 
    525 	/*
    526 	 * Make child runnable, set start time, and add to run queue except
    527 	 * if the parent requested the child to start in SSTOP state.
    528 	 */
    529 	mutex_enter(p2->p_lock);
    530 
    531 	/*
    532 	 * Start profiling.
    533 	 */
    534 	if ((p2->p_stflag & PST_PROFIL) != 0) {
    535 		mutex_spin_enter(&p2->p_stmutex);
    536 		startprofclock(p2);
    537 		mutex_spin_exit(&p2->p_stmutex);
    538 	}
    539 
    540 	getmicrotime(&p2->p_stats->p_start);
    541 	p2->p_acflag = AFORK;
    542 	lwp_lock(l2);
    543 	KASSERT(p2->p_nrlwps == 1);
    544 	if (p2->p_sflag & PS_STOPFORK) {
    545 		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
    546 		p2->p_nrlwps = 0;
    547 		p2->p_stat = SSTOP;
    548 		p2->p_waited = 0;
    549 		p1->p_nstopchild++;
    550 		l2->l_stat = LSSTOP;
    551 		KASSERT(l2->l_wchan == NULL);
    552 		lwp_unlock_to(l2, spc->spc_lwplock);
    553 	} else {
    554 		p2->p_nrlwps = 1;
    555 		p2->p_stat = SACTIVE;
    556 		l2->l_stat = LSRUN;
    557 		sched_enqueue(l2, false);
    558 		lwp_unlock(l2);
    559 	}
    560 
    561 	/*
    562 	 * Return child pid to parent process,
    563 	 * marking us as parent via retval[1].
    564 	 */
    565 	if (retval != NULL) {
    566 		retval[0] = p2->p_pid;
    567 		retval[1] = 0;
    568 	}
    569 
    570 	mutex_exit(p2->p_lock);
    571 
    572 	/*
    573 	 * Let the parent know that we are tracing its child.
    574 	 */
    575 	if (tracefork || tracevfork) {
    576 		mutex_enter(p1->p_lock);
    577 		p1->p_xsig = SIGTRAP;
    578 		p1->p_sigctx.ps_faked = true; // XXX
    579 		p1->p_sigctx.ps_info._signo = p1->p_xsig;
    580 		p1->p_sigctx.ps_info._code = TRAP_CHLD;
    581 		sigswitch(0, SIGTRAP, false);
    582 		// XXX ktrpoint(KTR_PSIG)
    583 		mutex_exit(p1->p_lock);
    584 		mutex_enter(proc_lock);
    585 	}
    586 
    587 	/*
    588 	 * Preserve synchronization semantics of vfork.  If waiting for
    589 	 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
    590 	 */
    591 	while (p2->p_lflag & PL_PPWAIT) // XXX: p2 can go invalid
    592 		cv_wait(&p1->p_waitcv, proc_lock);
    593 
    594 	/*
    595 	 * Let the parent know that we are tracing its child.
    596 	 */
    597 	if (tracevforkdone) {
    598 		mutex_enter(p1->p_lock);
    599 		p1->p_xsig = SIGTRAP;
    600 		p1->p_sigctx.ps_faked = true; // XXX
    601 		p1->p_sigctx.ps_info._signo = p1->p_xsig;
    602 		p1->p_sigctx.ps_info._code = TRAP_CHLD;
    603 		p1->p_vfpid_done = retval[0];
    604 		sigswitch(0, SIGTRAP, false);
    605 		// XXX ktrpoint(KTR_PSIG)
    606 		mutex_exit(p1->p_lock);
    607 		// proc_lock unlocked
    608 	} else
    609 		mutex_exit(proc_lock);
    610 
    611 	return 0;
    612 }
    613