kern_fork.c revision 1.206 1 /* $NetBSD: kern_fork.c,v 1.206 2019/04/03 08:08:00 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.206 2019/04/03 08:08:00 kamil Exp $");
71
72 #include "opt_ktrace.h"
73 #include "opt_dtrace.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80 #include <sys/mount.h>
81 #include <sys/proc.h>
82 #include <sys/ras.h>
83 #include <sys/resourcevar.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/acct.h>
87 #include <sys/ktrace.h>
88 #include <sys/sched.h>
89 #include <sys/signalvar.h>
90 #include <sys/kauth.h>
91 #include <sys/atomic.h>
92 #include <sys/syscallargs.h>
93 #include <sys/uidinfo.h>
94 #include <sys/sdt.h>
95 #include <sys/ptrace.h>
96
97 #include <uvm/uvm_extern.h>
98
99 /*
100 * DTrace SDT provider definitions
101 */
102 SDT_PROVIDER_DECLARE(proc);
103 SDT_PROBE_DEFINE3(proc, kernel, , create,
104 "struct proc *", /* new process */
105 "struct proc *", /* parent process */
106 "int" /* flags */);
107
108 u_int nprocs __cacheline_aligned = 1; /* process 0 */
109
110 /*
111 * Number of ticks to sleep if fork() would fail due to process hitting
112 * limits. Exported in miliseconds to userland via sysctl.
113 */
114 int forkfsleep = 0;
115
116 int
117 sys_fork(struct lwp *l, const void *v, register_t *retval)
118 {
119
120 return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
121 }
122
123 /*
124 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
125 * Address space is not shared, but parent is blocked until child exit.
126 */
127 int
128 sys_vfork(struct lwp *l, const void *v, register_t *retval)
129 {
130
131 return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
132 retval);
133 }
134
135 /*
136 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
137 * semantics. Address space is shared, and parent is blocked until child exit.
138 */
139 int
140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 {
142
143 return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 NULL, NULL, retval);
145 }
146
147 /*
148 * Linux-compatible __clone(2) system call.
149 */
150 int
151 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
152 register_t *retval)
153 {
154 /* {
155 syscallarg(int) flags;
156 syscallarg(void *) stack;
157 } */
158 int flags, sig;
159
160 /*
161 * We don't support the CLONE_PID or CLONE_PTRACE flags.
162 */
163 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
164 return EINVAL;
165
166 /*
167 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
168 */
169 if (SCARG(uap, flags) & CLONE_SIGHAND
170 && (SCARG(uap, flags) & CLONE_VM) == 0)
171 return EINVAL;
172
173 flags = 0;
174
175 if (SCARG(uap, flags) & CLONE_VM)
176 flags |= FORK_SHAREVM;
177 if (SCARG(uap, flags) & CLONE_FS)
178 flags |= FORK_SHARECWD;
179 if (SCARG(uap, flags) & CLONE_FILES)
180 flags |= FORK_SHAREFILES;
181 if (SCARG(uap, flags) & CLONE_SIGHAND)
182 flags |= FORK_SHARESIGS;
183 if (SCARG(uap, flags) & CLONE_VFORK)
184 flags |= FORK_PPWAIT;
185
186 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
187 if (sig < 0 || sig >= _NSIG)
188 return EINVAL;
189
190 /*
191 * Note that the Linux API does not provide a portable way of
192 * specifying the stack area; the caller must know if the stack
193 * grows up or down. So, we pass a stack size of 0, so that the
194 * code that makes this adjustment is a noop.
195 */
196 return fork1(l, flags, sig, SCARG(uap, stack), 0,
197 NULL, NULL, retval);
198 }
199
200 /*
201 * Print the 'table full' message once per 10 seconds.
202 */
203 static struct timeval fork_tfmrate = { 10, 0 };
204
205 /*
206 * General fork call. Note that another LWP in the process may call exec()
207 * or exit() while we are forking. It's safe to continue here, because
208 * neither operation will complete until all LWPs have exited the process.
209 */
210 int
211 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
212 void (*func)(void *), void *arg, register_t *retval)
213 {
214 struct proc *p1, *p2, *parent;
215 struct plimit *p1_lim;
216 uid_t uid;
217 struct lwp *l2;
218 int count;
219 vaddr_t uaddr;
220 int tnprocs;
221 int tracefork, tracevfork, tracevforkdone;
222 int error = 0;
223
224 p1 = l1->l_proc;
225 uid = kauth_cred_getuid(l1->l_cred);
226 tnprocs = atomic_inc_uint_nv(&nprocs);
227
228 /*
229 * Although process entries are dynamically created, we still keep
230 * a global limit on the maximum number we will create.
231 */
232 if (__predict_false(tnprocs >= maxproc))
233 error = -1;
234 else
235 error = kauth_authorize_process(l1->l_cred,
236 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
237
238 if (error) {
239 static struct timeval lasttfm;
240 atomic_dec_uint(&nprocs);
241 if (ratecheck(&lasttfm, &fork_tfmrate))
242 tablefull("proc", "increase kern.maxproc or NPROC");
243 if (forkfsleep)
244 kpause("forkmx", false, forkfsleep, NULL);
245 return EAGAIN;
246 }
247
248 /*
249 * Enforce limits.
250 */
251 count = chgproccnt(uid, 1);
252 if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
253 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
254 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
255 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
256 (void)chgproccnt(uid, -1);
257 atomic_dec_uint(&nprocs);
258 if (forkfsleep)
259 kpause("forkulim", false, forkfsleep, NULL);
260 return EAGAIN;
261 }
262 }
263
264 /*
265 * Allocate virtual address space for the U-area now, while it
266 * is still easy to abort the fork operation if we're out of
267 * kernel virtual address space.
268 */
269 uaddr = uvm_uarea_alloc();
270 if (__predict_false(uaddr == 0)) {
271 (void)chgproccnt(uid, -1);
272 atomic_dec_uint(&nprocs);
273 return ENOMEM;
274 }
275
276 /*
277 * We are now committed to the fork. From here on, we may
278 * block on resources, but resource allocation may NOT fail.
279 */
280
281 /* Allocate new proc. */
282 p2 = proc_alloc();
283
284 /*
285 * Make a proc table entry for the new process.
286 * Start by zeroing the section of proc that is zero-initialized,
287 * then copy the section that is copied directly from the parent.
288 */
289 memset(&p2->p_startzero, 0,
290 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
291 memcpy(&p2->p_startcopy, &p1->p_startcopy,
292 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
293
294 TAILQ_INIT(&p2->p_sigpend.sp_info);
295
296 LIST_INIT(&p2->p_lwps);
297 LIST_INIT(&p2->p_sigwaiters);
298
299 /*
300 * Duplicate sub-structures as needed.
301 * Increase reference counts on shared objects.
302 * Inherit flags we want to keep. The flags related to SIGCHLD
303 * handling are important in order to keep a consistent behaviour
304 * for the child after the fork. If we are a 32-bit process, the
305 * child will be too.
306 */
307 p2->p_flag =
308 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
309 p2->p_emul = p1->p_emul;
310 p2->p_execsw = p1->p_execsw;
311
312 if (flags & FORK_SYSTEM) {
313 /*
314 * Mark it as a system process. Set P_NOCLDWAIT so that
315 * children are reparented to init(8) when they exit.
316 * init(8) can easily wait them out for us.
317 */
318 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
319 }
320
321 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
322 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
323 rw_init(&p2->p_reflock);
324 cv_init(&p2->p_waitcv, "wait");
325 cv_init(&p2->p_lwpcv, "lwpwait");
326
327 /*
328 * Share a lock between the processes if they are to share signal
329 * state: we must synchronize access to it.
330 */
331 if (flags & FORK_SHARESIGS) {
332 p2->p_lock = p1->p_lock;
333 mutex_obj_hold(p1->p_lock);
334 } else
335 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
336
337 kauth_proc_fork(p1, p2);
338
339 p2->p_raslist = NULL;
340 #if defined(__HAVE_RAS)
341 ras_fork(p1, p2);
342 #endif
343
344 /* bump references to the text vnode (for procfs) */
345 p2->p_textvp = p1->p_textvp;
346 if (p2->p_textvp)
347 vref(p2->p_textvp);
348 if (p1->p_path)
349 p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
350 else
351 p2->p_path = NULL;
352
353 if (flags & FORK_SHAREFILES)
354 fd_share(p2);
355 else if (flags & FORK_CLEANFILES)
356 p2->p_fd = fd_init(NULL);
357 else
358 p2->p_fd = fd_copy();
359
360 /* XXX racy */
361 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
362
363 if (flags & FORK_SHARECWD)
364 cwdshare(p2);
365 else
366 p2->p_cwdi = cwdinit();
367
368 /*
369 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
370 * we just need increase pl_refcnt.
371 */
372 p1_lim = p1->p_limit;
373 if (!p1_lim->pl_writeable) {
374 lim_addref(p1_lim);
375 p2->p_limit = p1_lim;
376 } else {
377 p2->p_limit = lim_copy(p1_lim);
378 }
379
380 if (flags & FORK_PPWAIT) {
381 /* Mark ourselves as waiting for a child. */
382 l1->l_pflag |= LP_VFORKWAIT;
383 p2->p_lflag = PL_PPWAIT;
384 p2->p_vforklwp = l1;
385 } else {
386 p2->p_lflag = 0;
387 }
388 p2->p_sflag = 0;
389 p2->p_slflag = 0;
390 parent = (flags & FORK_NOWAIT) ? initproc : p1;
391 p2->p_pptr = parent;
392 p2->p_ppid = parent->p_pid;
393 LIST_INIT(&p2->p_children);
394
395 p2->p_aio = NULL;
396
397 #ifdef KTRACE
398 /*
399 * Copy traceflag and tracefile if enabled.
400 * If not inherited, these were zeroed above.
401 */
402 if (p1->p_traceflag & KTRFAC_INHERIT) {
403 mutex_enter(&ktrace_lock);
404 p2->p_traceflag = p1->p_traceflag;
405 if ((p2->p_tracep = p1->p_tracep) != NULL)
406 ktradref(p2);
407 mutex_exit(&ktrace_lock);
408 }
409 #endif
410
411 /*
412 * Create signal actions for the child process.
413 */
414 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
415 mutex_enter(p1->p_lock);
416 p2->p_sflag |=
417 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
418 sched_proc_fork(p1, p2);
419 mutex_exit(p1->p_lock);
420
421 p2->p_stflag = p1->p_stflag;
422
423 /*
424 * p_stats.
425 * Copy parts of p_stats, and zero out the rest.
426 */
427 p2->p_stats = pstatscopy(p1->p_stats);
428
429 /*
430 * Set up the new process address space.
431 */
432 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
433
434 /*
435 * Finish creating the child process.
436 * It will return through a different path later.
437 */
438 lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
439 stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
440 l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
441
442 /*
443 * Inherit l_private from the parent.
444 * Note that we cannot use lwp_setprivate() here since that
445 * also sets the CPU TLS register, which is incorrect if the
446 * process has changed that without letting the kernel know.
447 */
448 l2->l_private = l1->l_private;
449
450 /*
451 * If emulation has a process fork hook, call it now.
452 */
453 if (p2->p_emul->e_proc_fork)
454 (*p2->p_emul->e_proc_fork)(p2, l1, flags);
455
456 /*
457 * ...and finally, any other random fork hooks that subsystems
458 * might have registered.
459 */
460 doforkhooks(p2, p1);
461
462 SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
463
464 /*
465 * It's now safe for the scheduler and other processes to see the
466 * child process.
467 */
468 mutex_enter(proc_lock);
469
470 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
471 p2->p_lflag |= PL_CONTROLT;
472
473 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
474 p2->p_exitsig = exitsig; /* signal for parent on exit */
475
476 /*
477 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
478 */
479 tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
480 (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
481 tracevfork = (p1->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
482 (PSL_TRACEVFORK|PSL_TRACED) && (flags && FORK_PPWAIT) != 0;
483 tracevforkdone = (p1->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
484 (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags && FORK_PPWAIT);
485 if (tracefork || tracevfork)
486 proc_changeparent(p2, p1->p_pptr);
487 if (tracefork) {
488 p1->p_fpid = p2->p_pid;
489 p2->p_fpid = p1->p_pid;
490 }
491 if (tracevfork) {
492 p1->p_vfpid = p2->p_pid;
493 p2->p_vfpid = p1->p_pid;
494 }
495
496 LIST_INSERT_AFTER(p1, p2, p_pglist);
497 LIST_INSERT_HEAD(&allproc, p2, p_list);
498
499 p2->p_trace_enabled = trace_is_enabled(p2);
500 #ifdef __HAVE_SYSCALL_INTERN
501 (*p2->p_emul->e_syscall_intern)(p2);
502 #endif
503
504 /*
505 * Update stats now that we know the fork was successful.
506 */
507 uvmexp.forks++;
508 if (flags & FORK_PPWAIT)
509 uvmexp.forks_ppwait++;
510 if (flags & FORK_SHAREVM)
511 uvmexp.forks_sharevm++;
512
513 if (ktrpoint(KTR_EMUL))
514 p2->p_traceflag |= KTRFAC_TRC_EMUL;
515
516 /*
517 * Notify any interested parties about the new process.
518 */
519 if (!SLIST_EMPTY(&p1->p_klist)) {
520 mutex_exit(proc_lock);
521 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
522 mutex_enter(proc_lock);
523 }
524
525 /*
526 * Make child runnable, set start time, and add to run queue except
527 * if the parent requested the child to start in SSTOP state.
528 */
529 mutex_enter(p2->p_lock);
530
531 /*
532 * Start profiling.
533 */
534 if ((p2->p_stflag & PST_PROFIL) != 0) {
535 mutex_spin_enter(&p2->p_stmutex);
536 startprofclock(p2);
537 mutex_spin_exit(&p2->p_stmutex);
538 }
539
540 getmicrotime(&p2->p_stats->p_start);
541 p2->p_acflag = AFORK;
542 lwp_lock(l2);
543 KASSERT(p2->p_nrlwps == 1);
544 if (p2->p_sflag & PS_STOPFORK) {
545 struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
546 p2->p_nrlwps = 0;
547 p2->p_stat = SSTOP;
548 p2->p_waited = 0;
549 p1->p_nstopchild++;
550 l2->l_stat = LSSTOP;
551 KASSERT(l2->l_wchan == NULL);
552 lwp_unlock_to(l2, spc->spc_lwplock);
553 } else {
554 p2->p_nrlwps = 1;
555 p2->p_stat = SACTIVE;
556 l2->l_stat = LSRUN;
557 sched_enqueue(l2, false);
558 lwp_unlock(l2);
559 }
560
561 /*
562 * Return child pid to parent process,
563 * marking us as parent via retval[1].
564 */
565 if (retval != NULL) {
566 retval[0] = p2->p_pid;
567 retval[1] = 0;
568 }
569
570 mutex_exit(p2->p_lock);
571
572 /*
573 * Let the parent know that we are tracing its child.
574 */
575 if (tracefork || tracevfork) {
576 mutex_enter(p1->p_lock);
577 p1->p_xsig = SIGTRAP;
578 p1->p_sigctx.ps_faked = true; // XXX
579 p1->p_sigctx.ps_info._signo = p1->p_xsig;
580 p1->p_sigctx.ps_info._code = TRAP_CHLD;
581 sigswitch(0, SIGTRAP, false);
582 // XXX ktrpoint(KTR_PSIG)
583 mutex_exit(p1->p_lock);
584 mutex_enter(proc_lock);
585 }
586
587 /*
588 * Preserve synchronization semantics of vfork. If waiting for
589 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
590 */
591 while (p2->p_lflag & PL_PPWAIT) // XXX: p2 can go invalid
592 cv_wait(&p1->p_waitcv, proc_lock);
593
594 /*
595 * Let the parent know that we are tracing its child.
596 */
597 if (tracevforkdone) {
598 mutex_enter(p1->p_lock);
599 p1->p_xsig = SIGTRAP;
600 p1->p_sigctx.ps_faked = true; // XXX
601 p1->p_sigctx.ps_info._signo = p1->p_xsig;
602 p1->p_sigctx.ps_info._code = TRAP_CHLD;
603 p1->p_vfpid_done = retval[0];
604 sigswitch(0, SIGTRAP, false);
605 // XXX ktrpoint(KTR_PSIG)
606 mutex_exit(p1->p_lock);
607 // proc_lock unlocked
608 } else
609 mutex_exit(proc_lock);
610
611 return 0;
612 }
613