kern_fork.c revision 1.213 1 /* $NetBSD: kern_fork.c,v 1.213 2019/06/13 20:20:18 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.213 2019/06/13 20:20:18 kamil Exp $");
71
72 #include "opt_ktrace.h"
73 #include "opt_dtrace.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80 #include <sys/mount.h>
81 #include <sys/proc.h>
82 #include <sys/ras.h>
83 #include <sys/resourcevar.h>
84 #include <sys/vnode.h>
85 #include <sys/file.h>
86 #include <sys/acct.h>
87 #include <sys/ktrace.h>
88 #include <sys/sched.h>
89 #include <sys/signalvar.h>
90 #include <sys/syscall.h>
91 #include <sys/kauth.h>
92 #include <sys/atomic.h>
93 #include <sys/syscallargs.h>
94 #include <sys/uidinfo.h>
95 #include <sys/sdt.h>
96 #include <sys/ptrace.h>
97
98 #include <uvm/uvm_extern.h>
99
100 /*
101 * DTrace SDT provider definitions
102 */
103 SDT_PROVIDER_DECLARE(proc);
104 SDT_PROBE_DEFINE3(proc, kernel, , create,
105 "struct proc *", /* new process */
106 "struct proc *", /* parent process */
107 "int" /* flags */);
108
109 u_int nprocs __cacheline_aligned = 1; /* process 0 */
110
111 /*
112 * Number of ticks to sleep if fork() would fail due to process hitting
113 * limits. Exported in miliseconds to userland via sysctl.
114 */
115 int forkfsleep = 0;
116
117 int
118 sys_fork(struct lwp *l, const void *v, register_t *retval)
119 {
120
121 return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
122 }
123
124 /*
125 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
126 * Address space is not shared, but parent is blocked until child exit.
127 */
128 int
129 sys_vfork(struct lwp *l, const void *v, register_t *retval)
130 {
131
132 return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
133 retval);
134 }
135
136 /*
137 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
138 * semantics. Address space is shared, and parent is blocked until child exit.
139 */
140 int
141 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
142 {
143
144 return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
145 NULL, NULL, retval);
146 }
147
148 /*
149 * Linux-compatible __clone(2) system call.
150 */
151 int
152 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
153 register_t *retval)
154 {
155 /* {
156 syscallarg(int) flags;
157 syscallarg(void *) stack;
158 } */
159 int flags, sig;
160
161 /*
162 * We don't support the CLONE_PID or CLONE_PTRACE flags.
163 */
164 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
165 return EINVAL;
166
167 /*
168 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
169 */
170 if (SCARG(uap, flags) & CLONE_SIGHAND
171 && (SCARG(uap, flags) & CLONE_VM) == 0)
172 return EINVAL;
173
174 flags = 0;
175
176 if (SCARG(uap, flags) & CLONE_VM)
177 flags |= FORK_SHAREVM;
178 if (SCARG(uap, flags) & CLONE_FS)
179 flags |= FORK_SHARECWD;
180 if (SCARG(uap, flags) & CLONE_FILES)
181 flags |= FORK_SHAREFILES;
182 if (SCARG(uap, flags) & CLONE_SIGHAND)
183 flags |= FORK_SHARESIGS;
184 if (SCARG(uap, flags) & CLONE_VFORK)
185 flags |= FORK_PPWAIT;
186
187 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
188 if (sig < 0 || sig >= _NSIG)
189 return EINVAL;
190
191 /*
192 * Note that the Linux API does not provide a portable way of
193 * specifying the stack area; the caller must know if the stack
194 * grows up or down. So, we pass a stack size of 0, so that the
195 * code that makes this adjustment is a noop.
196 */
197 return fork1(l, flags, sig, SCARG(uap, stack), 0,
198 NULL, NULL, retval);
199 }
200
201 /*
202 * Print the 'table full' message once per 10 seconds.
203 */
204 static struct timeval fork_tfmrate = { 10, 0 };
205
206 /*
207 * Check if a process is traced and shall inform about FORK events.
208 */
209 static inline bool
210 tracefork(struct proc *p, int flags)
211 {
212
213 return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
214 (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
215 }
216
217 /*
218 * Check if a process is traced and shall inform about VFORK events.
219 */
220 static inline bool
221 tracevfork(struct proc *p, int flags)
222 {
223
224 return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
225 (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
226 }
227
228 /*
229 * Check if a process is traced and shall inform about VFORK_DONE events.
230 */
231 static inline bool
232 tracevforkdone(struct proc *p, int flags)
233 {
234
235 return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
236 (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
237 }
238
239 /*
240 * General fork call. Note that another LWP in the process may call exec()
241 * or exit() while we are forking. It's safe to continue here, because
242 * neither operation will complete until all LWPs have exited the process.
243 */
244 int
245 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
246 void (*func)(void *), void *arg, register_t *retval)
247 {
248 struct proc *p1, *p2, *parent;
249 struct plimit *p1_lim;
250 uid_t uid;
251 struct lwp *l2;
252 int count;
253 vaddr_t uaddr;
254 int tnprocs;
255 bool trace_fork, trace_vfork;
256 int error = 0;
257
258 p1 = l1->l_proc;
259 uid = kauth_cred_getuid(l1->l_cred);
260 tnprocs = atomic_inc_uint_nv(&nprocs);
261
262 /*
263 * Although process entries are dynamically created, we still keep
264 * a global limit on the maximum number we will create.
265 */
266 if (__predict_false(tnprocs >= maxproc))
267 error = -1;
268 else
269 error = kauth_authorize_process(l1->l_cred,
270 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
271
272 if (error) {
273 static struct timeval lasttfm;
274 atomic_dec_uint(&nprocs);
275 if (ratecheck(&lasttfm, &fork_tfmrate))
276 tablefull("proc", "increase kern.maxproc or NPROC");
277 if (forkfsleep)
278 kpause("forkmx", false, forkfsleep, NULL);
279 return EAGAIN;
280 }
281
282 /*
283 * Enforce limits.
284 */
285 count = chgproccnt(uid, 1);
286 if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
287 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
288 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
289 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
290 (void)chgproccnt(uid, -1);
291 atomic_dec_uint(&nprocs);
292 if (forkfsleep)
293 kpause("forkulim", false, forkfsleep, NULL);
294 return EAGAIN;
295 }
296 }
297
298 /*
299 * Allocate virtual address space for the U-area now, while it
300 * is still easy to abort the fork operation if we're out of
301 * kernel virtual address space.
302 */
303 uaddr = uvm_uarea_alloc();
304 if (__predict_false(uaddr == 0)) {
305 (void)chgproccnt(uid, -1);
306 atomic_dec_uint(&nprocs);
307 return ENOMEM;
308 }
309
310 /*
311 * We are now committed to the fork. From here on, we may
312 * block on resources, but resource allocation may NOT fail.
313 */
314
315 /* Allocate new proc. */
316 p2 = proc_alloc();
317
318 /*
319 * Make a proc table entry for the new process.
320 * Start by zeroing the section of proc that is zero-initialized,
321 * then copy the section that is copied directly from the parent.
322 */
323 memset(&p2->p_startzero, 0,
324 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
325 memcpy(&p2->p_startcopy, &p1->p_startcopy,
326 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
327
328 TAILQ_INIT(&p2->p_sigpend.sp_info);
329
330 LIST_INIT(&p2->p_lwps);
331 LIST_INIT(&p2->p_sigwaiters);
332
333 /*
334 * Duplicate sub-structures as needed.
335 * Increase reference counts on shared objects.
336 * Inherit flags we want to keep. The flags related to SIGCHLD
337 * handling are important in order to keep a consistent behaviour
338 * for the child after the fork. If we are a 32-bit process, the
339 * child will be too.
340 */
341 p2->p_flag =
342 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
343 p2->p_emul = p1->p_emul;
344 p2->p_execsw = p1->p_execsw;
345
346 if (flags & FORK_SYSTEM) {
347 /*
348 * Mark it as a system process. Set P_NOCLDWAIT so that
349 * children are reparented to init(8) when they exit.
350 * init(8) can easily wait them out for us.
351 */
352 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
353 }
354
355 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
356 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
357 rw_init(&p2->p_reflock);
358 cv_init(&p2->p_waitcv, "wait");
359 cv_init(&p2->p_lwpcv, "lwpwait");
360
361 /*
362 * Share a lock between the processes if they are to share signal
363 * state: we must synchronize access to it.
364 */
365 if (flags & FORK_SHARESIGS) {
366 p2->p_lock = p1->p_lock;
367 mutex_obj_hold(p1->p_lock);
368 } else
369 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
370
371 kauth_proc_fork(p1, p2);
372
373 p2->p_raslist = NULL;
374 #if defined(__HAVE_RAS)
375 ras_fork(p1, p2);
376 #endif
377
378 /* bump references to the text vnode (for procfs) */
379 p2->p_textvp = p1->p_textvp;
380 if (p2->p_textvp)
381 vref(p2->p_textvp);
382 if (p1->p_path)
383 p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
384 else
385 p2->p_path = NULL;
386
387 if (flags & FORK_SHAREFILES)
388 fd_share(p2);
389 else if (flags & FORK_CLEANFILES)
390 p2->p_fd = fd_init(NULL);
391 else
392 p2->p_fd = fd_copy();
393
394 /* XXX racy */
395 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
396
397 if (flags & FORK_SHARECWD)
398 cwdshare(p2);
399 else
400 p2->p_cwdi = cwdinit();
401
402 /*
403 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
404 * we just need increase pl_refcnt.
405 */
406 p1_lim = p1->p_limit;
407 if (!p1_lim->pl_writeable) {
408 lim_addref(p1_lim);
409 p2->p_limit = p1_lim;
410 } else {
411 p2->p_limit = lim_copy(p1_lim);
412 }
413
414 if (flags & FORK_PPWAIT) {
415 /* Mark ourselves as waiting for a child. */
416 p2->p_lflag = PL_PPWAIT;
417 l1->l_vforkwaiting = true;
418 p2->p_vforklwp = l1;
419 } else {
420 p2->p_lflag = 0;
421 l1->l_vforkwaiting = false;
422 }
423 p2->p_sflag = 0;
424 p2->p_slflag = 0;
425 parent = (flags & FORK_NOWAIT) ? initproc : p1;
426 p2->p_pptr = parent;
427 p2->p_ppid = parent->p_pid;
428 LIST_INIT(&p2->p_children);
429
430 p2->p_aio = NULL;
431
432 #ifdef KTRACE
433 /*
434 * Copy traceflag and tracefile if enabled.
435 * If not inherited, these were zeroed above.
436 */
437 if (p1->p_traceflag & KTRFAC_INHERIT) {
438 mutex_enter(&ktrace_lock);
439 p2->p_traceflag = p1->p_traceflag;
440 if ((p2->p_tracep = p1->p_tracep) != NULL)
441 ktradref(p2);
442 mutex_exit(&ktrace_lock);
443 }
444 #endif
445
446 /*
447 * Create signal actions for the child process.
448 */
449 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
450 mutex_enter(p1->p_lock);
451 p2->p_sflag |=
452 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
453 sched_proc_fork(p1, p2);
454 mutex_exit(p1->p_lock);
455
456 p2->p_stflag = p1->p_stflag;
457
458 /*
459 * p_stats.
460 * Copy parts of p_stats, and zero out the rest.
461 */
462 p2->p_stats = pstatscopy(p1->p_stats);
463
464 /*
465 * Set up the new process address space.
466 */
467 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
468
469 /*
470 * Finish creating the child process.
471 * It will return through a different path later.
472 */
473 lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
474 stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
475 l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
476
477 /*
478 * Inherit l_private from the parent.
479 * Note that we cannot use lwp_setprivate() here since that
480 * also sets the CPU TLS register, which is incorrect if the
481 * process has changed that without letting the kernel know.
482 */
483 l2->l_private = l1->l_private;
484
485 /*
486 * If emulation has a process fork hook, call it now.
487 */
488 if (p2->p_emul->e_proc_fork)
489 (*p2->p_emul->e_proc_fork)(p2, l1, flags);
490
491 /*
492 * ...and finally, any other random fork hooks that subsystems
493 * might have registered.
494 */
495 doforkhooks(p2, p1);
496
497 SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
498
499 /*
500 * It's now safe for the scheduler and other processes to see the
501 * child process.
502 */
503 mutex_enter(proc_lock);
504
505 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
506 p2->p_lflag |= PL_CONTROLT;
507
508 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
509 p2->p_exitsig = exitsig; /* signal for parent on exit */
510
511 /*
512 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
513 */
514 trace_fork = tracefork(p1, flags);
515 trace_vfork = tracevfork(p1, flags);
516 if (trace_fork || trace_vfork)
517 proc_changeparent(p2, p1->p_pptr);
518 if (trace_fork) {
519 p1->p_fpid = p2->p_pid;
520 p2->p_fpid = p1->p_pid;
521 }
522 if (trace_vfork) {
523 p1->p_vfpid = p2->p_pid;
524 p2->p_vfpid = p1->p_pid;
525 }
526
527 LIST_INSERT_AFTER(p1, p2, p_pglist);
528 LIST_INSERT_HEAD(&allproc, p2, p_list);
529
530 p2->p_trace_enabled = trace_is_enabled(p2);
531 #ifdef __HAVE_SYSCALL_INTERN
532 (*p2->p_emul->e_syscall_intern)(p2);
533 #endif
534
535 /*
536 * Update stats now that we know the fork was successful.
537 */
538 uvmexp.forks++;
539 if (flags & FORK_PPWAIT)
540 uvmexp.forks_ppwait++;
541 if (flags & FORK_SHAREVM)
542 uvmexp.forks_sharevm++;
543
544 if (ktrpoint(KTR_EMUL))
545 p2->p_traceflag |= KTRFAC_TRC_EMUL;
546
547 /*
548 * Notify any interested parties about the new process.
549 */
550 if (!SLIST_EMPTY(&p1->p_klist)) {
551 mutex_exit(proc_lock);
552 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
553 mutex_enter(proc_lock);
554 }
555
556 /*
557 * Make child runnable, set start time, and add to run queue except
558 * if the parent requested the child to start in SSTOP state.
559 */
560 mutex_enter(p2->p_lock);
561
562 /*
563 * Start profiling.
564 */
565 if ((p2->p_stflag & PST_PROFIL) != 0) {
566 mutex_spin_enter(&p2->p_stmutex);
567 startprofclock(p2);
568 mutex_spin_exit(&p2->p_stmutex);
569 }
570
571 getmicrotime(&p2->p_stats->p_start);
572 p2->p_acflag = AFORK;
573 lwp_lock(l2);
574 KASSERT(p2->p_nrlwps == 1);
575 if (p2->p_sflag & PS_STOPFORK) {
576 struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
577 p2->p_nrlwps = 0;
578 p2->p_stat = SSTOP;
579 p2->p_waited = 0;
580 p1->p_nstopchild++;
581 l2->l_stat = LSSTOP;
582 KASSERT(l2->l_wchan == NULL);
583 lwp_unlock_to(l2, spc->spc_lwplock);
584 } else {
585 p2->p_nrlwps = 1;
586 p2->p_stat = SACTIVE;
587 l2->l_stat = LSRUN;
588 sched_enqueue(l2, false);
589 lwp_unlock(l2);
590 }
591
592 /*
593 * Return child pid to parent process,
594 * marking us as parent via retval[1].
595 */
596 if (retval != NULL) {
597 retval[0] = p2->p_pid;
598 retval[1] = 0;
599 }
600
601 mutex_exit(p2->p_lock);
602
603 /*
604 * Let the parent know that we are tracing its child.
605 */
606 if (tracefork(p1, flags) || tracevfork(p1, flags)) {
607 mutex_enter(p1->p_lock);
608 eventswitch(TRAP_CHLD);
609 mutex_enter(proc_lock);
610 }
611
612 /*
613 * Preserve synchronization semantics of vfork. If waiting for
614 * child to exec or exit, sleep until it clears p_vforkwaiting.
615 */
616 while (l1->l_vforkwaiting)
617 cv_wait(&l1->l_waitcv, proc_lock);
618
619 /*
620 * Let the parent know that we are tracing its child.
621 */
622 if (tracevforkdone(p1, flags)) {
623 mutex_enter(p1->p_lock);
624 p1->p_vfpid_done = retval[0];
625 eventswitch(TRAP_CHLD);
626 } else
627 mutex_exit(proc_lock);
628
629 return 0;
630 }
631
632 /*
633 * MI code executed in each newly spawned process before returning to userland.
634 */
635 void
636 child_return(void *arg)
637 {
638 struct lwp *l = arg;
639 struct proc *p = l->l_proc;
640
641 if (p->p_slflag & PSL_TRACED) {
642 /* Paranoid check */
643 mutex_enter(proc_lock);
644 if (!(p->p_slflag & PSL_TRACED)) {
645 mutex_exit(proc_lock);
646 goto my_tracer_is_gone;
647 }
648
649 mutex_enter(p->p_lock);
650 eventswitch(TRAP_CHLD);
651 }
652
653 my_tracer_is_gone:
654 md_child_return(l);
655
656 /*
657 * Return SYS_fork for all fork types, including vfork(2) and clone(2).
658 *
659 * This approach simplifies the code and avoids extra locking.
660 */
661 ktrsysret(SYS_fork, 0, 0);
662 }
663