kern_fork.c revision 1.232 1 /* $NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.232 2025/07/16 19:14:13 kre Exp $");
72
73 #include "opt_ktrace.h"
74 #include "opt_dtrace.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/filedesc.h>
79 #include <sys/kernel.h>
80 #include <sys/pool.h>
81 #include <sys/mount.h>
82 #include <sys/proc.h>
83 #include <sys/ras.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vnode.h>
86 #include <sys/file.h>
87 #include <sys/acct.h>
88 #include <sys/ktrace.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/syscall.h>
92 #include <sys/kauth.h>
93 #include <sys/atomic.h>
94 #include <sys/syscallargs.h>
95 #include <sys/uidinfo.h>
96 #include <sys/sdt.h>
97 #include <sys/ptrace.h>
98
99 /*
100 * DTrace SDT provider definitions
101 */
102 SDT_PROVIDER_DECLARE(proc);
103 SDT_PROBE_DEFINE3(proc, kernel, , create,
104 "struct proc *", /* new process */
105 "struct proc *", /* parent process */
106 "int" /* flags */);
107
108 u_int nprocs __cacheline_aligned = 1; /* process 0 */
109
110 /*
111 * Number of ticks to sleep if fork() would fail due to process hitting
112 * limits. Exported in milliseconds to userland via sysctl.
113 */
114 int forkfsleep = 0;
115
116 int
117 sys_fork(struct lwp *l, const void *v, register_t *retval)
118 {
119
120 return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
121 }
122
123 /*
124 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
125 * Address space is not shared, but parent is blocked until child exit.
126 */
127 int
128 sys_vfork(struct lwp *l, const void *v, register_t *retval)
129 {
130
131 return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
132 retval);
133 }
134
135 /*
136 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
137 * semantics. Address space is shared, and parent is blocked until child exit.
138 */
139 int
140 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
141 {
142
143 return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
144 NULL, NULL, retval);
145 }
146
147 /*
148 * Linux-compatible __clone(2) system call.
149 */
150 int
151 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
152 register_t *retval)
153 {
154 /* {
155 syscallarg(int) flags;
156 syscallarg(void *) stack;
157 } */
158 int flags, sig;
159
160 /*
161 * We don't support the CLONE_PTRACE flag.
162 */
163 if (SCARG(uap, flags) & (CLONE_PTRACE))
164 return EINVAL;
165
166 /*
167 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
168 */
169 if (SCARG(uap, flags) & CLONE_SIGHAND
170 && (SCARG(uap, flags) & CLONE_VM) == 0)
171 return EINVAL;
172
173 flags = 0;
174
175 if (SCARG(uap, flags) & CLONE_VM)
176 flags |= FORK_SHAREVM;
177 if (SCARG(uap, flags) & CLONE_FS)
178 flags |= FORK_SHARECWD;
179 if (SCARG(uap, flags) & CLONE_FILES)
180 flags |= FORK_SHAREFILES;
181 if (SCARG(uap, flags) & CLONE_SIGHAND)
182 flags |= FORK_SHARESIGS;
183 if (SCARG(uap, flags) & CLONE_VFORK)
184 flags |= FORK_PPWAIT;
185
186 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
187 if (sig < 0 || sig >= _NSIG)
188 return EINVAL;
189
190 /*
191 * Linux doesn't have close-on-fork yet, so we don't
192 * know what they will do combining CLONE_FILES with
193 * close-on-fork (which are not really compatible).
194 * This might need to be changed in the future (another
195 * option would be to just disable FORK_SHAREFILES)
196 */
197 if ((flags & FORK_SHAREFILES) != 0) {
198 if (l->l_fd != NULL && l->l_fd->fd_foclose)
199 return EINVAL;
200 }
201
202 /*
203 * Note that the Linux API does not provide a portable way of
204 * specifying the stack area; the caller must know if the stack
205 * grows up or down. So, we pass a stack size of 0, so that the
206 * code that makes this adjustment is a noop.
207 */
208 return fork1(l, flags, sig, SCARG(uap, stack), 0,
209 NULL, NULL, retval);
210 }
211
212 /*
213 * Print the 'table full' message once per 10 seconds.
214 */
215 static struct timeval fork_tfmrate = { 10, 0 };
216
217 /*
218 * Check if a process is traced and shall inform about FORK events.
219 */
220 static inline bool
221 tracefork(struct proc *p, int flags)
222 {
223
224 return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
225 (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
226 }
227
228 /*
229 * Check if a process is traced and shall inform about VFORK events.
230 */
231 static inline bool
232 tracevfork(struct proc *p, int flags)
233 {
234
235 return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
236 (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
237 }
238
239 /*
240 * Check if a process is traced and shall inform about VFORK_DONE events.
241 */
242 static inline bool
243 tracevforkdone(struct proc *p, int flags)
244 {
245
246 return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
247 (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
248 }
249
250 /*
251 * General fork call. Note that another LWP in the process may call exec()
252 * or exit() while we are forking. It's safe to continue here, because
253 * neither operation will complete until all LWPs have exited the process.
254 */
255 int
256 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
257 void (*func)(void *), void *arg, register_t *retval)
258 {
259 struct proc *p1, *p2, *parent;
260 struct plimit *p1_lim;
261 uid_t uid;
262 struct lwp *l2;
263 int count;
264 vaddr_t uaddr;
265 int tnprocs;
266 int error = 0;
267
268 p1 = l1->l_proc;
269 uid = kauth_cred_getuid(l1->l_cred);
270 tnprocs = atomic_inc_uint_nv(&nprocs);
271
272 /*
273 * Although process entries are dynamically created, we still keep
274 * a global limit on the maximum number we will create.
275 */
276 if (__predict_false(tnprocs >= maxproc))
277 error = -1;
278 else
279 error = kauth_authorize_process(l1->l_cred,
280 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
281
282 if (error) {
283 static struct timeval lasttfm;
284 atomic_dec_uint(&nprocs);
285 if (ratecheck(&lasttfm, &fork_tfmrate))
286 tablefull("proc", "increase kern.maxproc or NPROC");
287 if (forkfsleep)
288 kpause("forkmx", false, forkfsleep, NULL);
289 return EAGAIN;
290 }
291
292 /*
293 * Enforce limits.
294 */
295 count = chgproccnt(uid, 1);
296 if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
297 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
298 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
299 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
300 (void)chgproccnt(uid, -1);
301 atomic_dec_uint(&nprocs);
302 if (forkfsleep)
303 kpause("forkulim", false, forkfsleep, NULL);
304 return EAGAIN;
305 }
306 }
307
308 /*
309 * Allocate virtual address space for the U-area now, while it
310 * is still easy to abort the fork operation if we're out of
311 * kernel virtual address space.
312 */
313 uaddr = uvm_uarea_alloc();
314 if (__predict_false(uaddr == 0)) {
315 (void)chgproccnt(uid, -1);
316 atomic_dec_uint(&nprocs);
317 return ENOMEM;
318 }
319
320 /* Allocate new proc. */
321 p2 = proc_alloc();
322 if (p2 == NULL) {
323 /* We were unable to allocate a process ID. */
324 uvm_uarea_free(uaddr);
325 mutex_enter(p1->p_lock);
326 uid = kauth_cred_getuid(p1->p_cred);
327 (void)chgproccnt(uid, -1);
328 mutex_exit(p1->p_lock);
329 atomic_dec_uint(&nprocs);
330 return EAGAIN;
331 }
332
333 /*
334 * We are now committed to the fork. From here on, we may
335 * block on resources, but resource allocation may NOT fail.
336 */
337
338 /*
339 * Make a proc table entry for the new process.
340 * Start by zeroing the section of proc that is zero-initialized,
341 * then copy the section that is copied directly from the parent.
342 */
343 memset(&p2->p_startzero, 0,
344 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
345 memcpy(&p2->p_startcopy, &p1->p_startcopy,
346 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
347
348 TAILQ_INIT(&p2->p_sigpend.sp_info);
349
350 LIST_INIT(&p2->p_lwps);
351 LIST_INIT(&p2->p_sigwaiters);
352
353 /*
354 * Duplicate sub-structures as needed.
355 * Increase reference counts on shared objects.
356 * Inherit flags we want to keep. The flags related to SIGCHLD
357 * handling are important in order to keep a consistent behaviour
358 * for the child after the fork. If we are a 32-bit process, the
359 * child will be too.
360 */
361 p2->p_flag =
362 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
363 p2->p_emul = p1->p_emul;
364 p2->p_execsw = p1->p_execsw;
365
366 if (flags & FORK_SYSTEM) {
367 /*
368 * Mark it as a system process. Set P_NOCLDWAIT so that
369 * children are reparented to init(8) when they exit.
370 * init(8) can easily wait them out for us.
371 */
372 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
373 }
374
375 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
376 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
377 rw_init(&p2->p_reflock);
378 cv_init(&p2->p_waitcv, "wait");
379 cv_init(&p2->p_lwpcv, "lwpwait");
380
381 /*
382 * Share a lock between the processes if they are to share signal
383 * state: we must synchronize access to it.
384 */
385 if (flags & FORK_SHARESIGS) {
386 p2->p_lock = p1->p_lock;
387 mutex_obj_hold(p1->p_lock);
388 } else
389 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
390
391 kauth_proc_fork(p1, p2);
392
393 p2->p_raslist = NULL;
394 #if defined(__HAVE_RAS)
395 ras_fork(p1, p2);
396 #endif
397
398 /* bump references to the text vnode (for procfs) */
399 p2->p_textvp = p1->p_textvp;
400 if (p2->p_textvp)
401 vref(p2->p_textvp);
402 if (p1->p_path)
403 p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
404 else
405 p2->p_path = NULL;
406
407 if (flags & FORK_SHAREFILES)
408 fd_share(p2);
409 else if (flags & FORK_CLEANFILES)
410 p2->p_fd = fd_init(NULL);
411 else
412 p2->p_fd = fd_copy();
413
414 /* XXX racy */
415 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
416
417 if (flags & FORK_SHARECWD)
418 cwdshare(p2);
419 else
420 p2->p_cwdi = cwdinit();
421
422 /*
423 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
424 * we just need increase pl_refcnt.
425 */
426 p1_lim = p1->p_limit;
427 if (!p1_lim->pl_writeable) {
428 lim_addref(p1_lim);
429 p2->p_limit = p1_lim;
430 } else {
431 p2->p_limit = lim_copy(p1_lim);
432 }
433
434 if (flags & FORK_PPWAIT) {
435 /* Mark ourselves as waiting for a child. */
436 p2->p_lflag = PL_PPWAIT;
437 l1->l_vforkwaiting = true;
438 p2->p_vforklwp = l1;
439 } else {
440 p2->p_lflag = 0;
441 l1->l_vforkwaiting = false;
442 }
443 p2->p_sflag = 0;
444 p2->p_slflag = 0;
445 parent = (flags & FORK_NOWAIT) ? initproc : p1;
446 p2->p_pptr = parent;
447 p2->p_ppid = parent->p_pid;
448 LIST_INIT(&p2->p_children);
449
450 p2->p_aio = NULL;
451
452 #ifdef KTRACE
453 /*
454 * Copy traceflag and tracefile if enabled.
455 * If not inherited, these were zeroed above.
456 */
457 if (p1->p_traceflag & KTRFAC_INHERIT) {
458 mutex_enter(&ktrace_lock);
459 p2->p_traceflag = p1->p_traceflag;
460 if ((p2->p_tracep = p1->p_tracep) != NULL)
461 ktradref(p2);
462 mutex_exit(&ktrace_lock);
463 }
464 #endif
465
466 /*
467 * Create signal actions for the child process.
468 */
469 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
470 mutex_enter(p1->p_lock);
471 p2->p_sflag |=
472 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
473 sched_proc_fork(p1, p2);
474 mutex_exit(p1->p_lock);
475
476 p2->p_stflag = p1->p_stflag;
477
478 /*
479 * p_stats.
480 * Copy parts of p_stats, and zero out the rest.
481 */
482 p2->p_stats = pstatscopy(p1->p_stats);
483
484 /*
485 * Set up the new process address space.
486 */
487 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
488
489 /*
490 * Finish creating the child process.
491 * It will return through a different path later.
492 */
493 lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
494 stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
495 l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
496
497 /*
498 * Inherit l_private from the parent.
499 * Note that we cannot use lwp_setprivate() here since that
500 * also sets the CPU TLS register, which is incorrect if the
501 * process has changed that without letting the kernel know.
502 */
503 l2->l_private = l1->l_private;
504
505 /*
506 * If emulation has a process fork hook, call it now.
507 */
508 if (p2->p_emul->e_proc_fork)
509 (*p2->p_emul->e_proc_fork)(p2, l1, flags);
510
511 /*
512 * ...and finally, any other random fork hooks that subsystems
513 * might have registered.
514 */
515 doforkhooks(p2, p1);
516
517 SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
518
519 /*
520 * It's now safe for the scheduler and other processes to see the
521 * child process.
522 */
523 mutex_enter(&proc_lock);
524
525 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
526 p2->p_lflag |= PL_CONTROLT;
527
528 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
529 p2->p_exitsig = exitsig; /* signal for parent on exit */
530
531 /*
532 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
533 */
534 if (tracefork(p1, flags) || tracevfork(p1, flags)) {
535 proc_changeparent(p2, p1->p_pptr);
536 SET(p2->p_slflag, PSL_TRACEDCHILD);
537 }
538
539 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
540
541 LIST_INSERT_AFTER(p1, p2, p_pglist);
542 LIST_INSERT_HEAD(&allproc, p2, p_list);
543
544 p2->p_trace_enabled = trace_is_enabled(p2);
545 #ifdef __HAVE_SYSCALL_INTERN
546 (*p2->p_emul->e_syscall_intern)(p2);
547 #endif
548
549 /*
550 * Update stats now that we know the fork was successful.
551 */
552 KPREEMPT_DISABLE(l1);
553 CPU_COUNT(CPU_COUNT_FORKS, 1);
554 if (flags & FORK_PPWAIT)
555 CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1);
556 if (flags & FORK_SHAREVM)
557 CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1);
558 KPREEMPT_ENABLE(l1);
559
560 if (ktrpoint(KTR_EMUL))
561 p2->p_traceflag |= KTRFAC_TRC_EMUL;
562
563 /*
564 * Notify any interested parties about the new process.
565 */
566 if (!SLIST_EMPTY(&p1->p_klist)) {
567 mutex_exit(&proc_lock);
568 knote_proc_fork(p1, p2);
569 mutex_enter(&proc_lock);
570 }
571
572 /*
573 * Make child runnable, set start time, and add to run queue except
574 * if the parent requested the child to start in SSTOP state.
575 */
576 mutex_enter(p2->p_lock);
577
578 /*
579 * Start profiling.
580 */
581 if ((p2->p_stflag & PST_PROFIL) != 0) {
582 mutex_spin_enter(&p2->p_stmutex);
583 startprofclock(p2);
584 mutex_spin_exit(&p2->p_stmutex);
585 }
586
587 getmicrotime(&p2->p_stats->p_start);
588 p2->p_acflag = AFORK;
589 lwp_lock(l2);
590 KASSERT(p2->p_nrlwps == 1);
591 KASSERT(l2->l_stat == LSIDL);
592 if (p2->p_sflag & PS_STOPFORK) {
593 p2->p_nrlwps = 0;
594 p2->p_stat = SSTOP;
595 p2->p_waited = 0;
596 p1->p_nstopchild++;
597 l2->l_stat = LSSTOP;
598 KASSERT(l2->l_wchan == NULL);
599 lwp_unlock(l2);
600 } else {
601 p2->p_nrlwps = 1;
602 p2->p_stat = SACTIVE;
603 setrunnable(l2);
604 /* LWP now unlocked */
605 }
606
607 /*
608 * Return child pid to parent process,
609 * marking us as parent via retval[1].
610 */
611 if (retval != NULL) {
612 retval[0] = p2->p_pid;
613 retval[1] = 0;
614 }
615
616 mutex_exit(p2->p_lock);
617
618 /*
619 * Let the parent know that we are tracing its child.
620 */
621 if (tracefork(p1, flags) || tracevfork(p1, flags)) {
622 mutex_enter(p1->p_lock);
623 eventswitch(TRAP_CHLD,
624 tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK,
625 retval[0]);
626 mutex_enter(&proc_lock);
627 }
628
629 /*
630 * Preserve synchronization semantics of vfork. If waiting for
631 * child to exec or exit, sleep until it clears p_vforkwaiting.
632 */
633 while (l1->l_vforkwaiting)
634 cv_wait(&l1->l_waitcv, &proc_lock);
635
636 /*
637 * Let the parent know that we are tracing its child.
638 */
639 if (tracevforkdone(p1, flags)) {
640 mutex_enter(p1->p_lock);
641 eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]);
642 } else
643 mutex_exit(&proc_lock);
644
645 return 0;
646 }
647
648 /*
649 * MI code executed in each newly spawned process before returning to userland.
650 */
651 void
652 child_return(void *arg)
653 {
654 struct lwp *l = curlwp;
655 struct proc *p = l->l_proc;
656
657 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
658 (PSL_TRACED|PSL_TRACEDCHILD)) {
659 eventswitchchild(p, TRAP_CHLD,
660 ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK);
661 }
662
663 md_child_return(l);
664
665 /*
666 * Return SYS_fork for all fork types, including vfork(2) and clone(2).
667 *
668 * This approach simplifies the code and avoids extra locking.
669 */
670 ktrsysret(SYS_fork, 0, 0);
671 }
672