kern_fork.c revision 1.34 1 /* $NetBSD: kern_fork.c,v 1.34 1998/01/04 03:52:02 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/map.h>
46 #include <sys/filedesc.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/acct.h>
55 #include <sys/ktrace.h>
56 #include <sys/vmmeter.h>
57
58 #include <sys/syscallargs.h>
59
60 #include <vm/vm.h>
61
62 int nprocs = 1; /* process 0 */
63
64 /*ARGSUSED*/
65 int
66 sys_fork(p, v, retval)
67 struct proc *p;
68 void *v;
69 register_t *retval;
70 {
71
72 return (fork1(p, 0, retval));
73 }
74
75 /*
76 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
77 * Address space is not shared, but parent is blocked until child exit.
78 */
79 /*ARGSUSED*/
80 int
81 sys_vfork(p, v, retval)
82 struct proc *p;
83 void *v;
84 register_t *retval;
85 {
86
87 return (fork1(p, FORK_PPWAIT, retval));
88 }
89
90 /*
91 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
92 * semantics. Address space is shared, and parent is blocked until child exit.
93 */
94 /*ARGSUSED*/
95 int
96 sys___vfork14(p, v, retval)
97 struct proc *p;
98 void *v;
99 register_t *retval;
100 {
101
102 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, retval));
103 }
104
105 int
106 fork1(p1, flags, retval)
107 register struct proc *p1;
108 int flags;
109 register_t *retval;
110 {
111 register struct proc *p2;
112 register uid_t uid;
113 struct proc *newproc;
114 int count;
115 static int nextpid, pidchecked = 0;
116
117 /*
118 * Although process entries are dynamically created, we still keep
119 * a global limit on the maximum number we will create. Don't allow
120 * a nonprivileged user to use the last process; don't let root
121 * exceed the limit. The variable nprocs is the current number of
122 * processes, maxproc is the limit.
123 */
124 uid = p1->p_cred->p_ruid;
125 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
126 tablefull("proc");
127 return (EAGAIN);
128 }
129
130 /*
131 * Increment the count of procs running with this uid. Don't allow
132 * a nonprivileged user to exceed their current limit.
133 */
134 count = chgproccnt(uid, 1);
135 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
136 (void)chgproccnt(uid, -1);
137 return (EAGAIN);
138 }
139
140 /* Allocate new proc. */
141 MALLOC(newproc, struct proc *, sizeof(struct proc), M_PROC, M_WAITOK);
142
143 /*
144 * Find an unused process ID. We remember a range of unused IDs
145 * ready to use (from nextpid+1 through pidchecked-1).
146 */
147 nextpid++;
148 retry:
149 /*
150 * If the process ID prototype has wrapped around,
151 * restart somewhat above 0, as the low-numbered procs
152 * tend to include daemons that don't exit.
153 */
154 if (nextpid >= PID_MAX) {
155 nextpid = 100;
156 pidchecked = 0;
157 }
158 if (nextpid >= pidchecked) {
159 int doingzomb = 0;
160
161 pidchecked = PID_MAX;
162 /*
163 * Scan the active and zombie procs to check whether this pid
164 * is in use. Remember the lowest pid that's greater
165 * than nextpid, so we can avoid checking for a while.
166 */
167 p2 = allproc.lh_first;
168 again:
169 for (; p2 != 0; p2 = p2->p_list.le_next) {
170 while (p2->p_pid == nextpid ||
171 p2->p_pgrp->pg_id == nextpid) {
172 nextpid++;
173 if (nextpid >= pidchecked)
174 goto retry;
175 }
176 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
177 pidchecked = p2->p_pid;
178 if (p2->p_pgrp->pg_id > nextpid &&
179 pidchecked > p2->p_pgrp->pg_id)
180 pidchecked = p2->p_pgrp->pg_id;
181 }
182 if (!doingzomb) {
183 doingzomb = 1;
184 p2 = zombproc.lh_first;
185 goto again;
186 }
187 }
188
189 nprocs++;
190 p2 = newproc;
191 p2->p_stat = SIDL; /* protect against others */
192 p2->p_pid = nextpid;
193 LIST_INSERT_HEAD(&allproc, p2, p_list);
194 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
195 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
196
197 /*
198 * Make a proc table entry for the new process.
199 * Start by zeroing the section of proc that is zero-initialized,
200 * then copy the section that is copied directly from the parent.
201 */
202 bzero(&p2->p_startzero,
203 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
204 bcopy(&p1->p_startcopy, &p2->p_startcopy,
205 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
206
207 /*
208 * Duplicate sub-structures as needed.
209 * Increase reference counts on shared objects.
210 * The p_stats and p_sigacts substructs are set in vm_fork.
211 */
212 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
213 p2->p_emul = p1->p_emul;
214 if (p1->p_flag & P_PROFIL)
215 startprofclock(p2);
216 MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
217 M_SUBPROC, M_WAITOK);
218 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
219 p2->p_cred->p_refcnt = 1;
220 crhold(p1->p_ucred);
221
222 /* bump references to the text vnode (for procfs) */
223 p2->p_textvp = p1->p_textvp;
224 if (p2->p_textvp)
225 VREF(p2->p_textvp);
226
227 p2->p_fd = fdcopy(p1);
228 /*
229 * If p_limit is still copy-on-write, bump refcnt,
230 * otherwise get a copy that won't be modified.
231 * (If PL_SHAREMOD is clear, the structure is shared
232 * copy-on-write.)
233 */
234 if (p1->p_limit->p_lflags & PL_SHAREMOD)
235 p2->p_limit = limcopy(p1->p_limit);
236 else {
237 p2->p_limit = p1->p_limit;
238 p2->p_limit->p_refcnt++;
239 }
240
241 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
242 p2->p_flag |= P_CONTROLT;
243 if (flags & FORK_PPWAIT)
244 p2->p_flag |= P_PPWAIT;
245 LIST_INSERT_AFTER(p1, p2, p_pglist);
246 p2->p_pptr = p1;
247 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
248 LIST_INIT(&p2->p_children);
249
250 #ifdef KTRACE
251 /*
252 * Copy traceflag and tracefile if enabled.
253 * If not inherited, these were zeroed above.
254 */
255 if (p1->p_traceflag&KTRFAC_INHERIT) {
256 p2->p_traceflag = p1->p_traceflag;
257 if ((p2->p_tracep = p1->p_tracep) != NULL)
258 VREF(p2->p_tracep);
259 }
260 #endif
261
262 /*
263 * This begins the section where we must prevent the parent
264 * from being swapped.
265 */
266 PHOLD(p1);
267
268 /*
269 * Finish creating the child process. It will return through a
270 * different path later.
271 */
272 vm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
273
274 /*
275 * Make child runnable, set start time, and add to run queue.
276 */
277 (void) splstatclock();
278 p2->p_stats->p_start = time;
279 p2->p_acflag = AFORK;
280 p2->p_stat = SRUN;
281 setrunqueue(p2);
282 (void) spl0();
283
284 /*
285 * Now can be swapped.
286 */
287 PRELE(p1);
288
289 /*
290 * Update stats now that we know the fork was successful.
291 */
292 cnt.v_forks++;
293 if (flags & FORK_PPWAIT)
294 cnt.v_forks_ppwait++;
295 if (flags & FORK_SHAREVM)
296 cnt.v_forks_sharevm++;
297
298 /*
299 * Preserve synchronization semantics of vfork. If waiting for
300 * child to exec or exit, set P_PPWAIT on child, and sleep on our
301 * proc (in case of exit).
302 */
303 if (flags & FORK_PPWAIT)
304 while (p2->p_flag & P_PPWAIT)
305 tsleep(p1, PWAIT, "ppwait", 0);
306
307 /*
308 * Return child pid to parent process,
309 * marking us as parent via retval[1].
310 */
311 retval[0] = p2->p_pid;
312 retval[1] = 0;
313 return (0);
314 }
315