kern_fork.c revision 1.48 1 /* $NetBSD: kern_fork.c,v 1.48 1998/09/08 23:50:14 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_uvm.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61
62 #include <sys/syscallargs.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_kern.h>
66
67 #if defined(UVM)
68 #include <uvm/uvm_extern.h>
69 #endif
70
71 int nprocs = 1; /* process 0 */
72
73 /*ARGSUSED*/
74 int
75 sys_fork(p, v, retval)
76 struct proc *p;
77 void *v;
78 register_t *retval;
79 {
80
81 return (fork1(p, 0, retval, NULL));
82 }
83
84 /*
85 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
86 * Address space is not shared, but parent is blocked until child exit.
87 */
88 /*ARGSUSED*/
89 int
90 sys_vfork(p, v, retval)
91 struct proc *p;
92 void *v;
93 register_t *retval;
94 {
95
96 return (fork1(p, FORK_PPWAIT, retval, NULL));
97 }
98
99 /*
100 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
101 * semantics. Address space is shared, and parent is blocked until child exit.
102 */
103 /*ARGSUSED*/
104 int
105 sys___vfork14(p, v, retval)
106 struct proc *p;
107 void *v;
108 register_t *retval;
109 {
110
111 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, retval, NULL));
112 }
113
114 int
115 fork1(p1, flags, retval, rnewprocp)
116 register struct proc *p1;
117 int flags;
118 register_t *retval;
119 struct proc **rnewprocp;
120 {
121 register struct proc *p2;
122 register uid_t uid;
123 struct proc *newproc;
124 int count;
125 vaddr_t uaddr;
126 static int nextpid, pidchecked = 0;
127
128 /*
129 * Although process entries are dynamically created, we still keep
130 * a global limit on the maximum number we will create. Don't allow
131 * a nonprivileged user to use the last process; don't let root
132 * exceed the limit. The variable nprocs is the current number of
133 * processes, maxproc is the limit.
134 */
135 uid = p1->p_cred->p_ruid;
136 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
137 tablefull("proc");
138 return (EAGAIN);
139 }
140
141 /*
142 * Increment the count of procs running with this uid. Don't allow
143 * a nonprivileged user to exceed their current limit.
144 */
145 count = chgproccnt(uid, 1);
146 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
147 (void)chgproccnt(uid, -1);
148 return (EAGAIN);
149 }
150
151 /*
152 * Allocate virtual address space for the U-area now, while it
153 * is still easy to abort the fork operation if we're out of
154 * kernel virtual address space. The actual U-area pages will
155 * be allocated and wired in vm_fork().
156 */
157 #if defined(UVM)
158 uaddr = uvm_km_valloc(kernel_map, USPACE);
159 #else
160 uaddr = kmem_alloc_pageable(kernel_map, USPACE);
161 #endif
162 if (uaddr == 0) {
163 (void)chgproccnt(uid, -1);
164 return (ENOMEM);
165 }
166
167 /*
168 * We are now committed to the fork. From here on, we may
169 * block on resources, but resource allocation may NOT fail.
170 */
171
172 /* Allocate new proc. */
173 newproc = pool_get(&proc_pool, PR_WAITOK);
174
175 /*
176 * BEGIN PID ALLOCATION. (Lock PID allocation variables eventually).
177 */
178
179 /*
180 * Find an unused process ID. We remember a range of unused IDs
181 * ready to use (from nextpid+1 through pidchecked-1).
182 */
183 nextpid++;
184 retry:
185 /*
186 * If the process ID prototype has wrapped around,
187 * restart somewhat above 0, as the low-numbered procs
188 * tend to include daemons that don't exit.
189 */
190 if (nextpid >= PID_MAX) {
191 nextpid = 100;
192 pidchecked = 0;
193 }
194 if (nextpid >= pidchecked) {
195 const struct proclist_desc *pd;
196
197 pidchecked = PID_MAX;
198 /*
199 * Scan the process lists to check whether this pid
200 * is in use. Remember the lowest pid that's greater
201 * than nextpid, so we can avoid checking for a while.
202 */
203 pd = proclists;
204 again:
205 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
206 p2 = LIST_NEXT(p2, p_list)) {
207 while (p2->p_pid == nextpid ||
208 p2->p_pgrp->pg_id == nextpid ||
209 p2->p_session->s_sid == nextpid) {
210 nextpid++;
211 if (nextpid >= pidchecked)
212 goto retry;
213 }
214 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
215 pidchecked = p2->p_pid;
216
217 if (p2->p_pgrp->pg_id > nextpid &&
218 pidchecked > p2->p_pgrp->pg_id)
219 pidchecked = p2->p_pgrp->pg_id;
220
221 if (p2->p_session->s_sid > nextpid &&
222 pidchecked > p2->p_session->s_sid)
223 pidchecked = p2->p_session->s_sid;
224 }
225
226 /*
227 * If there's another list, scan it. If we have checked
228 * them all, we've found one!
229 */
230 pd++;
231 if (pd->pd_list != NULL)
232 goto again;
233 }
234
235 nprocs++;
236 p2 = newproc;
237
238 /* Record the pid we've allocated. */
239 p2->p_pid = nextpid;
240
241 /*
242 * Put the proc on allproc before unlocking PID allocation
243 * so that waiters won't grab it as soon as we unlock.
244 */
245 LIST_INSERT_HEAD(&allproc, p2, p_list);
246
247 /*
248 * END PID ALLOCATION. (Unlock PID allocation variables).
249 */
250
251 p2->p_stat = SIDL; /* protect against others */
252 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
253 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
254
255 /*
256 * Make a proc table entry for the new process.
257 * Start by zeroing the section of proc that is zero-initialized,
258 * then copy the section that is copied directly from the parent.
259 */
260 memset(&p2->p_startzero, 0,
261 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
262 memcpy(&p2->p_startcopy, &p1->p_startcopy,
263 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
264
265 /*
266 * Duplicate sub-structures as needed.
267 * Increase reference counts on shared objects.
268 * The p_stats and p_sigacts substructs are set in vm_fork.
269 */
270 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
271 p2->p_emul = p1->p_emul;
272 if (p1->p_flag & P_PROFIL)
273 startprofclock(p2);
274 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
275 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
276 p2->p_cred->p_refcnt = 1;
277 crhold(p1->p_ucred);
278
279 /* bump references to the text vnode (for procfs) */
280 p2->p_textvp = p1->p_textvp;
281 if (p2->p_textvp)
282 VREF(p2->p_textvp);
283
284 p2->p_fd = fdcopy(p1);
285 /*
286 * If p_limit is still copy-on-write, bump refcnt,
287 * otherwise get a copy that won't be modified.
288 * (If PL_SHAREMOD is clear, the structure is shared
289 * copy-on-write.)
290 */
291 if (p1->p_limit->p_lflags & PL_SHAREMOD)
292 p2->p_limit = limcopy(p1->p_limit);
293 else {
294 p2->p_limit = p1->p_limit;
295 p2->p_limit->p_refcnt++;
296 }
297
298 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
299 p2->p_flag |= P_CONTROLT;
300 if (flags & FORK_PPWAIT)
301 p2->p_flag |= P_PPWAIT;
302 LIST_INSERT_AFTER(p1, p2, p_pglist);
303 p2->p_pptr = p1;
304 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
305 LIST_INIT(&p2->p_children);
306
307 #ifdef KTRACE
308 /*
309 * Copy traceflag and tracefile if enabled.
310 * If not inherited, these were zeroed above.
311 */
312 if (p1->p_traceflag&KTRFAC_INHERIT) {
313 p2->p_traceflag = p1->p_traceflag;
314 if ((p2->p_tracep = p1->p_tracep) != NULL)
315 ktradref(p2);
316 }
317 #endif
318
319 /*
320 * This begins the section where we must prevent the parent
321 * from being swapped.
322 */
323 PHOLD(p1);
324
325 /*
326 * Finish creating the child process. It will return through a
327 * different path later.
328 */
329 p2->p_addr = (struct user *)uaddr;
330 #if defined(UVM)
331 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
332 #else
333 vm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
334 #endif
335
336 /*
337 * Make child runnable, set start time, and add to run queue.
338 */
339 (void) splstatclock();
340 p2->p_stats->p_start = time;
341 p2->p_acflag = AFORK;
342 p2->p_stat = SRUN;
343 setrunqueue(p2);
344 (void) spl0();
345
346 /*
347 * Now can be swapped.
348 */
349 PRELE(p1);
350
351 /*
352 * Update stats now that we know the fork was successful.
353 */
354 #if defined(UVM)
355 uvmexp.forks++;
356 if (flags & FORK_PPWAIT)
357 uvmexp.forks_ppwait++;
358 if (flags & FORK_SHAREVM)
359 uvmexp.forks_sharevm++;
360 #else
361 cnt.v_forks++;
362 if (flags & FORK_PPWAIT)
363 cnt.v_forks_ppwait++;
364 if (flags & FORK_SHAREVM)
365 cnt.v_forks_sharevm++;
366 #endif
367
368 /*
369 * Pass a pointer to the new process to the caller.
370 */
371 if (rnewprocp != NULL)
372 *rnewprocp = p2;
373
374 /*
375 * Preserve synchronization semantics of vfork. If waiting for
376 * child to exec or exit, set P_PPWAIT on child, and sleep on our
377 * proc (in case of exit).
378 */
379 if (flags & FORK_PPWAIT)
380 while (p2->p_flag & P_PPWAIT)
381 tsleep(p1, PWAIT, "ppwait", 0);
382
383 /*
384 * Return child pid to parent process,
385 * marking us as parent via retval[1].
386 */
387 if (retval != NULL) {
388 retval[0] = p2->p_pid;
389 retval[1] = 0;
390 }
391 return (0);
392 }
393