kern_fork.c revision 1.51 1 /* $NetBSD: kern_fork.c,v 1.51 1999/01/23 17:02:35 sommerfe Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_uvm.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61
62 #include <sys/syscallargs.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_kern.h>
66
67 #if defined(UVM)
68 #include <uvm/uvm_extern.h>
69 #endif
70
71 int nprocs = 1; /* process 0 */
72
73 /*ARGSUSED*/
74 int
75 sys_fork(p, v, retval)
76 struct proc *p;
77 void *v;
78 register_t *retval;
79 {
80
81 return (fork1(p, 0, retval, NULL));
82 }
83
84 /*
85 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
86 * Address space is not shared, but parent is blocked until child exit.
87 */
88 /*ARGSUSED*/
89 int
90 sys_vfork(p, v, retval)
91 struct proc *p;
92 void *v;
93 register_t *retval;
94 {
95
96 return (fork1(p, FORK_PPWAIT, retval, NULL));
97 }
98
99 /*
100 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
101 * semantics. Address space is shared, and parent is blocked until child exit.
102 */
103 /*ARGSUSED*/
104 int
105 sys___vfork14(p, v, retval)
106 struct proc *p;
107 void *v;
108 register_t *retval;
109 {
110
111 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, retval, NULL));
112 }
113
114 int slowchild = 1;
115
116 int
117 fork1(p1, flags, retval, rnewprocp)
118 register struct proc *p1;
119 int flags;
120 register_t *retval;
121 struct proc **rnewprocp;
122 {
123 register struct proc *p2;
124 register uid_t uid;
125 struct proc *newproc;
126 int count, s;
127 vaddr_t uaddr;
128 static int nextpid, pidchecked = 0;
129
130 /*
131 * Although process entries are dynamically created, we still keep
132 * a global limit on the maximum number we will create. Don't allow
133 * a nonprivileged user to use the last process; don't let root
134 * exceed the limit. The variable nprocs is the current number of
135 * processes, maxproc is the limit.
136 */
137 uid = p1->p_cred->p_ruid;
138 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
139 tablefull("proc");
140 return (EAGAIN);
141 }
142
143 /*
144 * Increment the count of procs running with this uid. Don't allow
145 * a nonprivileged user to exceed their current limit.
146 */
147 count = chgproccnt(uid, 1);
148 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
149 (void)chgproccnt(uid, -1);
150 return (EAGAIN);
151 }
152
153 /*
154 * Allocate virtual address space for the U-area now, while it
155 * is still easy to abort the fork operation if we're out of
156 * kernel virtual address space. The actual U-area pages will
157 * be allocated and wired in vm_fork().
158 */
159 #if defined(UVM)
160 uaddr = uvm_km_valloc(kernel_map, USPACE);
161 #else
162 uaddr = kmem_alloc_pageable(kernel_map, USPACE);
163 #endif
164 if (uaddr == 0) {
165 (void)chgproccnt(uid, -1);
166 return (ENOMEM);
167 }
168
169 /*
170 * We are now committed to the fork. From here on, we may
171 * block on resources, but resource allocation may NOT fail.
172 */
173
174 /* Allocate new proc. */
175 newproc = pool_get(&proc_pool, PR_WAITOK);
176
177 /*
178 * BEGIN PID ALLOCATION. (Lock PID allocation variables eventually).
179 */
180
181 /*
182 * Find an unused process ID. We remember a range of unused IDs
183 * ready to use (from nextpid+1 through pidchecked-1).
184 */
185 nextpid++;
186 retry:
187 /*
188 * If the process ID prototype has wrapped around,
189 * restart somewhat above 0, as the low-numbered procs
190 * tend to include daemons that don't exit.
191 */
192 if (nextpid >= PID_MAX) {
193 nextpid = 100;
194 pidchecked = 0;
195 }
196 if (nextpid >= pidchecked) {
197 const struct proclist_desc *pd;
198
199 pidchecked = PID_MAX;
200 /*
201 * Scan the process lists to check whether this pid
202 * is in use. Remember the lowest pid that's greater
203 * than nextpid, so we can avoid checking for a while.
204 */
205 pd = proclists;
206 again:
207 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
208 p2 = LIST_NEXT(p2, p_list)) {
209 while (p2->p_pid == nextpid ||
210 p2->p_pgrp->pg_id == nextpid ||
211 p2->p_session->s_sid == nextpid) {
212 nextpid++;
213 if (nextpid >= pidchecked)
214 goto retry;
215 }
216 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
217 pidchecked = p2->p_pid;
218
219 if (p2->p_pgrp->pg_id > nextpid &&
220 pidchecked > p2->p_pgrp->pg_id)
221 pidchecked = p2->p_pgrp->pg_id;
222
223 if (p2->p_session->s_sid > nextpid &&
224 pidchecked > p2->p_session->s_sid)
225 pidchecked = p2->p_session->s_sid;
226 }
227
228 /*
229 * If there's another list, scan it. If we have checked
230 * them all, we've found one!
231 */
232 pd++;
233 if (pd->pd_list != NULL)
234 goto again;
235 }
236
237 nprocs++;
238 p2 = newproc;
239
240 /* Record the pid we've allocated. */
241 p2->p_pid = nextpid;
242
243 /*
244 * Put the proc on allproc before unlocking PID allocation
245 * so that waiters won't grab it as soon as we unlock.
246 */
247 LIST_INSERT_HEAD(&allproc, p2, p_list);
248
249 /*
250 * END PID ALLOCATION. (Unlock PID allocation variables).
251 */
252
253 p2->p_stat = SIDL; /* protect against others */
254 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
255 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
256
257 /*
258 * Make a proc table entry for the new process.
259 * Start by zeroing the section of proc that is zero-initialized,
260 * then copy the section that is copied directly from the parent.
261 */
262 memset(&p2->p_startzero, 0,
263 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
264 memcpy(&p2->p_startcopy, &p1->p_startcopy,
265 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
266
267 /*
268 * Duplicate sub-structures as needed.
269 * Increase reference counts on shared objects.
270 * The p_stats and p_sigacts substructs are set in vm_fork.
271 */
272 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
273 p2->p_emul = p1->p_emul;
274 if (p1->p_flag & P_PROFIL)
275 startprofclock(p2);
276 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
277 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
278 p2->p_cred->p_refcnt = 1;
279 crhold(p1->p_ucred);
280
281 /*
282 * slow us down if parent was cpu-bound
283 */
284 if (slowchild)
285 p2->p_estcpu = p1->p_estcpu;
286
287 /* bump references to the text vnode (for procfs) */
288 p2->p_textvp = p1->p_textvp;
289 if (p2->p_textvp)
290 VREF(p2->p_textvp);
291
292 p2->p_fd = fdcopy(p1);
293 /*
294 * If p_limit is still copy-on-write, bump refcnt,
295 * otherwise get a copy that won't be modified.
296 * (If PL_SHAREMOD is clear, the structure is shared
297 * copy-on-write.)
298 */
299 if (p1->p_limit->p_lflags & PL_SHAREMOD)
300 p2->p_limit = limcopy(p1->p_limit);
301 else {
302 p2->p_limit = p1->p_limit;
303 p2->p_limit->p_refcnt++;
304 }
305
306 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
307 p2->p_flag |= P_CONTROLT;
308 if (flags & FORK_PPWAIT)
309 p2->p_flag |= P_PPWAIT;
310 LIST_INSERT_AFTER(p1, p2, p_pglist);
311 p2->p_pptr = p1;
312 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
313 LIST_INIT(&p2->p_children);
314
315 #ifdef KTRACE
316 /*
317 * Copy traceflag and tracefile if enabled.
318 * If not inherited, these were zeroed above.
319 */
320 if (p1->p_traceflag&KTRFAC_INHERIT) {
321 p2->p_traceflag = p1->p_traceflag;
322 if ((p2->p_tracep = p1->p_tracep) != NULL)
323 ktradref(p2);
324 }
325 #endif
326
327 /*
328 * This begins the section where we must prevent the parent
329 * from being swapped.
330 */
331 PHOLD(p1);
332
333 /*
334 * Finish creating the child process. It will return through a
335 * different path later.
336 */
337 p2->p_addr = (struct user *)uaddr;
338 #if defined(UVM)
339 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
340 #else
341 vm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
342 #endif
343
344 /*
345 * Make child runnable, set start time, and add to run queue.
346 */
347 s = splstatclock();
348 p2->p_stats->p_start = time;
349 p2->p_acflag = AFORK;
350 p2->p_stat = SRUN;
351 setrunqueue(p2);
352 splx(s);
353
354 /*
355 * Now can be swapped.
356 */
357 PRELE(p1);
358
359 /*
360 * Update stats now that we know the fork was successful.
361 */
362 #if defined(UVM)
363 uvmexp.forks++;
364 if (flags & FORK_PPWAIT)
365 uvmexp.forks_ppwait++;
366 if (flags & FORK_SHAREVM)
367 uvmexp.forks_sharevm++;
368 #else
369 cnt.v_forks++;
370 if (flags & FORK_PPWAIT)
371 cnt.v_forks_ppwait++;
372 if (flags & FORK_SHAREVM)
373 cnt.v_forks_sharevm++;
374 #endif
375
376 /*
377 * Pass a pointer to the new process to the caller.
378 */
379 if (rnewprocp != NULL)
380 *rnewprocp = p2;
381
382 /*
383 * Preserve synchronization semantics of vfork. If waiting for
384 * child to exec or exit, set P_PPWAIT on child, and sleep on our
385 * proc (in case of exit).
386 */
387 if (flags & FORK_PPWAIT)
388 while (p2->p_flag & P_PPWAIT)
389 tsleep(p1, PWAIT, "ppwait", 0);
390
391 /*
392 * Return child pid to parent process,
393 * marking us as parent via retval[1].
394 */
395 if (retval != NULL) {
396 retval[0] = p2->p_pid;
397 retval[1] = 0;
398 }
399 return (0);
400 }
401