kern_fork.c revision 1.53 1 /* $NetBSD: kern_fork.c,v 1.53 1999/02/23 02:57:18 ross Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_uvm.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61 #include <sys/sched.h>
62
63 #include <sys/syscallargs.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_kern.h>
67
68 #if defined(UVM)
69 #include <uvm/uvm_extern.h>
70 #endif
71
72 int nprocs = 1; /* process 0 */
73
74 /*ARGSUSED*/
75 int
76 sys_fork(p, v, retval)
77 struct proc *p;
78 void *v;
79 register_t *retval;
80 {
81
82 return (fork1(p, 0, retval, NULL));
83 }
84
85 /*
86 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
87 * Address space is not shared, but parent is blocked until child exit.
88 */
89 /*ARGSUSED*/
90 int
91 sys_vfork(p, v, retval)
92 struct proc *p;
93 void *v;
94 register_t *retval;
95 {
96
97 return (fork1(p, FORK_PPWAIT, retval, NULL));
98 }
99
100 /*
101 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
102 * semantics. Address space is shared, and parent is blocked until child exit.
103 */
104 /*ARGSUSED*/
105 int
106 sys___vfork14(p, v, retval)
107 struct proc *p;
108 void *v;
109 register_t *retval;
110 {
111
112 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, retval, NULL));
113 }
114
115 int
116 fork1(p1, flags, retval, rnewprocp)
117 register struct proc *p1;
118 int flags;
119 register_t *retval;
120 struct proc **rnewprocp;
121 {
122 register struct proc *p2;
123 register uid_t uid;
124 struct proc *newproc;
125 int count, s;
126 vaddr_t uaddr;
127 static int nextpid, pidchecked = 0;
128
129 /*
130 * Although process entries are dynamically created, we still keep
131 * a global limit on the maximum number we will create. Don't allow
132 * a nonprivileged user to use the last process; don't let root
133 * exceed the limit. The variable nprocs is the current number of
134 * processes, maxproc is the limit.
135 */
136 uid = p1->p_cred->p_ruid;
137 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
138 tablefull("proc");
139 return (EAGAIN);
140 }
141
142 /*
143 * Increment the count of procs running with this uid. Don't allow
144 * a nonprivileged user to exceed their current limit.
145 */
146 count = chgproccnt(uid, 1);
147 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
148 (void)chgproccnt(uid, -1);
149 return (EAGAIN);
150 }
151
152 /*
153 * Allocate virtual address space for the U-area now, while it
154 * is still easy to abort the fork operation if we're out of
155 * kernel virtual address space. The actual U-area pages will
156 * be allocated and wired in vm_fork().
157 */
158 #if defined(UVM)
159 uaddr = uvm_km_valloc(kernel_map, USPACE);
160 #else
161 uaddr = kmem_alloc_pageable(kernel_map, USPACE);
162 #endif
163 if (uaddr == 0) {
164 (void)chgproccnt(uid, -1);
165 return (ENOMEM);
166 }
167
168 /*
169 * We are now committed to the fork. From here on, we may
170 * block on resources, but resource allocation may NOT fail.
171 */
172
173 /* Allocate new proc. */
174 newproc = pool_get(&proc_pool, PR_WAITOK);
175
176 /*
177 * BEGIN PID ALLOCATION. (Lock PID allocation variables eventually).
178 */
179
180 /*
181 * Find an unused process ID. We remember a range of unused IDs
182 * ready to use (from nextpid+1 through pidchecked-1).
183 */
184 nextpid++;
185 retry:
186 /*
187 * If the process ID prototype has wrapped around,
188 * restart somewhat above 0, as the low-numbered procs
189 * tend to include daemons that don't exit.
190 */
191 if (nextpid >= PID_MAX) {
192 nextpid = 100;
193 pidchecked = 0;
194 }
195 if (nextpid >= pidchecked) {
196 const struct proclist_desc *pd;
197
198 pidchecked = PID_MAX;
199 /*
200 * Scan the process lists to check whether this pid
201 * is in use. Remember the lowest pid that's greater
202 * than nextpid, so we can avoid checking for a while.
203 */
204 pd = proclists;
205 again:
206 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
207 p2 = LIST_NEXT(p2, p_list)) {
208 while (p2->p_pid == nextpid ||
209 p2->p_pgrp->pg_id == nextpid ||
210 p2->p_session->s_sid == nextpid) {
211 nextpid++;
212 if (nextpid >= pidchecked)
213 goto retry;
214 }
215 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
216 pidchecked = p2->p_pid;
217
218 if (p2->p_pgrp->pg_id > nextpid &&
219 pidchecked > p2->p_pgrp->pg_id)
220 pidchecked = p2->p_pgrp->pg_id;
221
222 if (p2->p_session->s_sid > nextpid &&
223 pidchecked > p2->p_session->s_sid)
224 pidchecked = p2->p_session->s_sid;
225 }
226
227 /*
228 * If there's another list, scan it. If we have checked
229 * them all, we've found one!
230 */
231 pd++;
232 if (pd->pd_list != NULL)
233 goto again;
234 }
235
236 nprocs++;
237 p2 = newproc;
238
239 /* Record the pid we've allocated. */
240 p2->p_pid = nextpid;
241
242 /*
243 * Put the proc on allproc before unlocking PID allocation
244 * so that waiters won't grab it as soon as we unlock.
245 */
246 LIST_INSERT_HEAD(&allproc, p2, p_list);
247
248 /*
249 * END PID ALLOCATION. (Unlock PID allocation variables).
250 */
251
252 p2->p_stat = SIDL; /* protect against others */
253 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
254 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
255
256 /*
257 * Make a proc table entry for the new process.
258 * Start by zeroing the section of proc that is zero-initialized,
259 * then copy the section that is copied directly from the parent.
260 */
261 memset(&p2->p_startzero, 0,
262 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
263 memcpy(&p2->p_startcopy, &p1->p_startcopy,
264 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
265
266 /*
267 * Duplicate sub-structures as needed.
268 * Increase reference counts on shared objects.
269 * The p_stats and p_sigacts substructs are set in vm_fork.
270 */
271 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
272 p2->p_emul = p1->p_emul;
273 if (p1->p_flag & P_PROFIL)
274 startprofclock(p2);
275 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
276 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
277 p2->p_cred->p_refcnt = 1;
278 crhold(p1->p_ucred);
279
280 /* bump references to the text vnode (for procfs) */
281 p2->p_textvp = p1->p_textvp;
282 if (p2->p_textvp)
283 VREF(p2->p_textvp);
284
285 p2->p_fd = fdcopy(p1);
286 /*
287 * If p_limit is still copy-on-write, bump refcnt,
288 * otherwise get a copy that won't be modified.
289 * (If PL_SHAREMOD is clear, the structure is shared
290 * copy-on-write.)
291 */
292 if (p1->p_limit->p_lflags & PL_SHAREMOD)
293 p2->p_limit = limcopy(p1->p_limit);
294 else {
295 p2->p_limit = p1->p_limit;
296 p2->p_limit->p_refcnt++;
297 }
298
299 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
300 p2->p_flag |= P_CONTROLT;
301 if (flags & FORK_PPWAIT)
302 p2->p_flag |= P_PPWAIT;
303 LIST_INSERT_AFTER(p1, p2, p_pglist);
304 p2->p_pptr = p1;
305 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
306 LIST_INIT(&p2->p_children);
307
308 #ifdef KTRACE
309 /*
310 * Copy traceflag and tracefile if enabled.
311 * If not inherited, these were zeroed above.
312 */
313 if (p1->p_traceflag&KTRFAC_INHERIT) {
314 p2->p_traceflag = p1->p_traceflag;
315 if ((p2->p_tracep = p1->p_tracep) != NULL)
316 ktradref(p2);
317 }
318 #endif
319 scheduler_fork_hook(p1, p2);
320
321 /*
322 * This begins the section where we must prevent the parent
323 * from being swapped.
324 */
325 PHOLD(p1);
326
327 /*
328 * Finish creating the child process. It will return through a
329 * different path later.
330 */
331 p2->p_addr = (struct user *)uaddr;
332 #if defined(UVM)
333 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
334 #else
335 vm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
336 #endif
337
338 /*
339 * Make child runnable, set start time, and add to run queue.
340 */
341 s = splstatclock();
342 p2->p_stats->p_start = time;
343 p2->p_acflag = AFORK;
344 p2->p_stat = SRUN;
345 setrunqueue(p2);
346 splx(s);
347
348 /*
349 * Now can be swapped.
350 */
351 PRELE(p1);
352
353 /*
354 * Update stats now that we know the fork was successful.
355 */
356 #if defined(UVM)
357 uvmexp.forks++;
358 if (flags & FORK_PPWAIT)
359 uvmexp.forks_ppwait++;
360 if (flags & FORK_SHAREVM)
361 uvmexp.forks_sharevm++;
362 #else
363 cnt.v_forks++;
364 if (flags & FORK_PPWAIT)
365 cnt.v_forks_ppwait++;
366 if (flags & FORK_SHAREVM)
367 cnt.v_forks_sharevm++;
368 #endif
369
370 /*
371 * Pass a pointer to the new process to the caller.
372 */
373 if (rnewprocp != NULL)
374 *rnewprocp = p2;
375
376 /*
377 * Preserve synchronization semantics of vfork. If waiting for
378 * child to exec or exit, set P_PPWAIT on child, and sleep on our
379 * proc (in case of exit).
380 */
381 if (flags & FORK_PPWAIT)
382 while (p2->p_flag & P_PPWAIT)
383 tsleep(p1, PWAIT, "ppwait", 0);
384
385 /*
386 * Return child pid to parent process,
387 * marking us as parent via retval[1].
388 */
389 if (retval != NULL) {
390 retval[0] = p2->p_pid;
391 retval[1] = 0;
392 }
393 return (0);
394 }
395