kern_fork.c revision 1.58 1 /* $NetBSD: kern_fork.c,v 1.58 1999/05/13 00:59:04 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/map.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/pool.h>
52 #include <sys/mount.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 #include <sys/acct.h>
58 #include <sys/ktrace.h>
59 #include <sys/vmmeter.h>
60 #include <sys/sched.h>
61 #include <sys/signalvar.h>
62
63 #include <sys/syscallargs.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_kern.h>
67
68 #include <uvm/uvm_extern.h>
69
70 int nprocs = 1; /* process 0 */
71
72 /*ARGSUSED*/
73 int
74 sys_fork(p, v, retval)
75 struct proc *p;
76 void *v;
77 register_t *retval;
78 {
79
80 return (fork1(p, 0, SIGCHLD, retval, NULL));
81 }
82
83 /*
84 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
85 * Address space is not shared, but parent is blocked until child exit.
86 */
87 /*ARGSUSED*/
88 int
89 sys_vfork(p, v, retval)
90 struct proc *p;
91 void *v;
92 register_t *retval;
93 {
94
95 return (fork1(p, FORK_PPWAIT, SIGCHLD, retval, NULL));
96 }
97
98 /*
99 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
100 * semantics. Address space is shared, and parent is blocked until child exit.
101 */
102 /*ARGSUSED*/
103 int
104 sys___vfork14(p, v, retval)
105 struct proc *p;
106 void *v;
107 register_t *retval;
108 {
109
110 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, retval, NULL));
111 }
112
113 int
114 fork1(p1, flags, exitsig, retval, rnewprocp)
115 register struct proc *p1;
116 int flags;
117 int exitsig;
118 register_t *retval;
119 struct proc **rnewprocp;
120 {
121 register struct proc *p2;
122 register uid_t uid;
123 struct proc *newproc;
124 int count, s;
125 vaddr_t uaddr;
126 static int nextpid, pidchecked = 0;
127
128 /*
129 * Although process entries are dynamically created, we still keep
130 * a global limit on the maximum number we will create. Don't allow
131 * a nonprivileged user to use the last process; don't let root
132 * exceed the limit. The variable nprocs is the current number of
133 * processes, maxproc is the limit.
134 */
135 uid = p1->p_cred->p_ruid;
136 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
137 tablefull("proc");
138 return (EAGAIN);
139 }
140
141 /*
142 * Increment the count of procs running with this uid. Don't allow
143 * a nonprivileged user to exceed their current limit.
144 */
145 count = chgproccnt(uid, 1);
146 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
147 (void)chgproccnt(uid, -1);
148 return (EAGAIN);
149 }
150
151 /*
152 * Allocate virtual address space for the U-area now, while it
153 * is still easy to abort the fork operation if we're out of
154 * kernel virtual address space. The actual U-area pages will
155 * be allocated and wired in vm_fork().
156 */
157 uaddr = uvm_km_valloc(kernel_map, USPACE);
158 if (uaddr == 0) {
159 (void)chgproccnt(uid, -1);
160 return (ENOMEM);
161 }
162
163 /*
164 * We are now committed to the fork. From here on, we may
165 * block on resources, but resource allocation may NOT fail.
166 */
167
168 /* Allocate new proc. */
169 newproc = pool_get(&proc_pool, PR_WAITOK);
170
171 /*
172 * BEGIN PID ALLOCATION. (Lock PID allocation variables eventually).
173 */
174
175 /*
176 * Find an unused process ID. We remember a range of unused IDs
177 * ready to use (from nextpid+1 through pidchecked-1).
178 */
179 nextpid++;
180 retry:
181 /*
182 * If the process ID prototype has wrapped around,
183 * restart somewhat above 0, as the low-numbered procs
184 * tend to include daemons that don't exit.
185 */
186 if (nextpid >= PID_MAX) {
187 nextpid = 100;
188 pidchecked = 0;
189 }
190 if (nextpid >= pidchecked) {
191 const struct proclist_desc *pd;
192
193 pidchecked = PID_MAX;
194 /*
195 * Scan the process lists to check whether this pid
196 * is in use. Remember the lowest pid that's greater
197 * than nextpid, so we can avoid checking for a while.
198 */
199 pd = proclists;
200 again:
201 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
202 p2 = LIST_NEXT(p2, p_list)) {
203 while (p2->p_pid == nextpid ||
204 p2->p_pgrp->pg_id == nextpid ||
205 p2->p_session->s_sid == nextpid) {
206 nextpid++;
207 if (nextpid >= pidchecked)
208 goto retry;
209 }
210 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
211 pidchecked = p2->p_pid;
212
213 if (p2->p_pgrp->pg_id > nextpid &&
214 pidchecked > p2->p_pgrp->pg_id)
215 pidchecked = p2->p_pgrp->pg_id;
216
217 if (p2->p_session->s_sid > nextpid &&
218 pidchecked > p2->p_session->s_sid)
219 pidchecked = p2->p_session->s_sid;
220 }
221
222 /*
223 * If there's another list, scan it. If we have checked
224 * them all, we've found one!
225 */
226 pd++;
227 if (pd->pd_list != NULL)
228 goto again;
229 }
230
231 nprocs++;
232 p2 = newproc;
233
234 /* Record the pid we've allocated. */
235 p2->p_pid = nextpid;
236
237 /* Record the signal to be delivered to the parent on exit. */
238 p2->p_exitsig = exitsig;
239
240 /*
241 * Put the proc on allproc before unlocking PID allocation
242 * so that waiters won't grab it as soon as we unlock.
243 */
244 LIST_INSERT_HEAD(&allproc, p2, p_list);
245
246 /*
247 * END PID ALLOCATION. (Unlock PID allocation variables).
248 */
249
250 p2->p_stat = SIDL; /* protect against others */
251 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
252 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
253
254 /*
255 * Make a proc table entry for the new process.
256 * Start by zeroing the section of proc that is zero-initialized,
257 * then copy the section that is copied directly from the parent.
258 */
259 memset(&p2->p_startzero, 0,
260 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
261 memcpy(&p2->p_startcopy, &p1->p_startcopy,
262 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
263
264 /*
265 * Duplicate sub-structures as needed.
266 * Increase reference counts on shared objects.
267 * The p_stats and p_sigacts substructs are set in vm_fork.
268 */
269 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
270 p2->p_emul = p1->p_emul;
271 if (p1->p_flag & P_PROFIL)
272 startprofclock(p2);
273 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
274 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
275 p2->p_cred->p_refcnt = 1;
276 crhold(p1->p_ucred);
277
278 /* bump references to the text vnode (for procfs) */
279 p2->p_textvp = p1->p_textvp;
280 if (p2->p_textvp)
281 VREF(p2->p_textvp);
282
283 if (flags & FORK_SHAREFILES)
284 fdshare(p1, p2);
285 else
286 p2->p_fd = fdcopy(p1);
287
288 if (flags & FORK_SHARECWD)
289 cwdshare(p1, p2);
290 else
291 p2->p_cwdi = cwdinit(p1);
292
293 /*
294 * If p_limit is still copy-on-write, bump refcnt,
295 * otherwise get a copy that won't be modified.
296 * (If PL_SHAREMOD is clear, the structure is shared
297 * copy-on-write.)
298 */
299 if (p1->p_limit->p_lflags & PL_SHAREMOD)
300 p2->p_limit = limcopy(p1->p_limit);
301 else {
302 p2->p_limit = p1->p_limit;
303 p2->p_limit->p_refcnt++;
304 }
305
306 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
307 p2->p_flag |= P_CONTROLT;
308 if (flags & FORK_PPWAIT)
309 p2->p_flag |= P_PPWAIT;
310 LIST_INSERT_AFTER(p1, p2, p_pglist);
311 p2->p_pptr = p1;
312 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
313 LIST_INIT(&p2->p_children);
314
315 #ifdef KTRACE
316 /*
317 * Copy traceflag and tracefile if enabled.
318 * If not inherited, these were zeroed above.
319 */
320 if (p1->p_traceflag&KTRFAC_INHERIT) {
321 p2->p_traceflag = p1->p_traceflag;
322 if ((p2->p_tracep = p1->p_tracep) != NULL)
323 ktradref(p2);
324 }
325 #endif
326 scheduler_fork_hook(p1, p2);
327
328 /*
329 * Create signal actions for the child process.
330 */
331 if (flags & FORK_SHARESIGS)
332 sigactsshare(p1, p2);
333 else
334 p2->p_sigacts = sigactsinit(p1);
335
336 /*
337 * This begins the section where we must prevent the parent
338 * from being swapped.
339 */
340 PHOLD(p1);
341
342 /*
343 * Finish creating the child process. It will return through a
344 * different path later.
345 */
346 p2->p_addr = (struct user *)uaddr;
347 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE);
348
349 /*
350 * Make child runnable, set start time, and add to run queue.
351 */
352 s = splstatclock();
353 p2->p_stats->p_start = time;
354 p2->p_acflag = AFORK;
355 p2->p_stat = SRUN;
356 setrunqueue(p2);
357 splx(s);
358
359 /*
360 * Now can be swapped.
361 */
362 PRELE(p1);
363
364 /*
365 * Update stats now that we know the fork was successful.
366 */
367 uvmexp.forks++;
368 if (flags & FORK_PPWAIT)
369 uvmexp.forks_ppwait++;
370 if (flags & FORK_SHAREVM)
371 uvmexp.forks_sharevm++;
372
373 /*
374 * Pass a pointer to the new process to the caller.
375 */
376 if (rnewprocp != NULL)
377 *rnewprocp = p2;
378
379 /*
380 * Preserve synchronization semantics of vfork. If waiting for
381 * child to exec or exit, set P_PPWAIT on child, and sleep on our
382 * proc (in case of exit).
383 */
384 if (flags & FORK_PPWAIT)
385 while (p2->p_flag & P_PPWAIT)
386 tsleep(p1, PWAIT, "ppwait", 0);
387
388 /*
389 * Return child pid to parent process,
390 * marking us as parent via retval[1].
391 */
392 if (retval != NULL) {
393 retval[0] = p2->p_pid;
394 retval[1] = 0;
395 }
396 return (0);
397 }
398