kern_fork.c revision 1.59 1 /* $NetBSD: kern_fork.c,v 1.59 1999/05/13 21:58:37 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/map.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/pool.h>
52 #include <sys/mount.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 #include <sys/acct.h>
58 #include <sys/ktrace.h>
59 #include <sys/vmmeter.h>
60 #include <sys/sched.h>
61 #include <sys/signalvar.h>
62
63 #include <sys/syscallargs.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_kern.h>
67
68 #include <uvm/uvm_extern.h>
69
70 int nprocs = 1; /* process 0 */
71
72 /*ARGSUSED*/
73 int
74 sys_fork(p, v, retval)
75 struct proc *p;
76 void *v;
77 register_t *retval;
78 {
79
80 return (fork1(p, 0, SIGCHLD, NULL, 0, retval, NULL));
81 }
82
83 /*
84 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
85 * Address space is not shared, but parent is blocked until child exit.
86 */
87 /*ARGSUSED*/
88 int
89 sys_vfork(p, v, retval)
90 struct proc *p;
91 void *v;
92 register_t *retval;
93 {
94
95 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, retval, NULL));
96 }
97
98 /*
99 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
100 * semantics. Address space is shared, and parent is blocked until child exit.
101 */
102 /*ARGSUSED*/
103 int
104 sys___vfork14(p, v, retval)
105 struct proc *p;
106 void *v;
107 register_t *retval;
108 {
109
110 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
111 retval, NULL));
112 }
113
114 int
115 fork1(p1, flags, exitsig, stack, stacksize, retval, rnewprocp)
116 register struct proc *p1;
117 int flags;
118 int exitsig;
119 void *stack;
120 size_t stacksize;
121 register_t *retval;
122 struct proc **rnewprocp;
123 {
124 register struct proc *p2;
125 register uid_t uid;
126 struct proc *newproc;
127 int count, s;
128 vaddr_t uaddr;
129 static int nextpid, pidchecked = 0;
130
131 /*
132 * Although process entries are dynamically created, we still keep
133 * a global limit on the maximum number we will create. Don't allow
134 * a nonprivileged user to use the last process; don't let root
135 * exceed the limit. The variable nprocs is the current number of
136 * processes, maxproc is the limit.
137 */
138 uid = p1->p_cred->p_ruid;
139 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
140 tablefull("proc");
141 return (EAGAIN);
142 }
143
144 /*
145 * Increment the count of procs running with this uid. Don't allow
146 * a nonprivileged user to exceed their current limit.
147 */
148 count = chgproccnt(uid, 1);
149 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
150 (void)chgproccnt(uid, -1);
151 return (EAGAIN);
152 }
153
154 /*
155 * Allocate virtual address space for the U-area now, while it
156 * is still easy to abort the fork operation if we're out of
157 * kernel virtual address space. The actual U-area pages will
158 * be allocated and wired in vm_fork().
159 */
160 uaddr = uvm_km_valloc(kernel_map, USPACE);
161 if (uaddr == 0) {
162 (void)chgproccnt(uid, -1);
163 return (ENOMEM);
164 }
165
166 /*
167 * We are now committed to the fork. From here on, we may
168 * block on resources, but resource allocation may NOT fail.
169 */
170
171 /* Allocate new proc. */
172 newproc = pool_get(&proc_pool, PR_WAITOK);
173
174 /*
175 * BEGIN PID ALLOCATION. (Lock PID allocation variables eventually).
176 */
177
178 /*
179 * Find an unused process ID. We remember a range of unused IDs
180 * ready to use (from nextpid+1 through pidchecked-1).
181 */
182 nextpid++;
183 retry:
184 /*
185 * If the process ID prototype has wrapped around,
186 * restart somewhat above 0, as the low-numbered procs
187 * tend to include daemons that don't exit.
188 */
189 if (nextpid >= PID_MAX) {
190 nextpid = 100;
191 pidchecked = 0;
192 }
193 if (nextpid >= pidchecked) {
194 const struct proclist_desc *pd;
195
196 pidchecked = PID_MAX;
197 /*
198 * Scan the process lists to check whether this pid
199 * is in use. Remember the lowest pid that's greater
200 * than nextpid, so we can avoid checking for a while.
201 */
202 pd = proclists;
203 again:
204 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
205 p2 = LIST_NEXT(p2, p_list)) {
206 while (p2->p_pid == nextpid ||
207 p2->p_pgrp->pg_id == nextpid ||
208 p2->p_session->s_sid == nextpid) {
209 nextpid++;
210 if (nextpid >= pidchecked)
211 goto retry;
212 }
213 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
214 pidchecked = p2->p_pid;
215
216 if (p2->p_pgrp->pg_id > nextpid &&
217 pidchecked > p2->p_pgrp->pg_id)
218 pidchecked = p2->p_pgrp->pg_id;
219
220 if (p2->p_session->s_sid > nextpid &&
221 pidchecked > p2->p_session->s_sid)
222 pidchecked = p2->p_session->s_sid;
223 }
224
225 /*
226 * If there's another list, scan it. If we have checked
227 * them all, we've found one!
228 */
229 pd++;
230 if (pd->pd_list != NULL)
231 goto again;
232 }
233
234 nprocs++;
235 p2 = newproc;
236
237 /* Record the pid we've allocated. */
238 p2->p_pid = nextpid;
239
240 /* Record the signal to be delivered to the parent on exit. */
241 p2->p_exitsig = exitsig;
242
243 /*
244 * Put the proc on allproc before unlocking PID allocation
245 * so that waiters won't grab it as soon as we unlock.
246 */
247 LIST_INSERT_HEAD(&allproc, p2, p_list);
248
249 /*
250 * END PID ALLOCATION. (Unlock PID allocation variables).
251 */
252
253 p2->p_stat = SIDL; /* protect against others */
254 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
255 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
256
257 /*
258 * Make a proc table entry for the new process.
259 * Start by zeroing the section of proc that is zero-initialized,
260 * then copy the section that is copied directly from the parent.
261 */
262 memset(&p2->p_startzero, 0,
263 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
264 memcpy(&p2->p_startcopy, &p1->p_startcopy,
265 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
266
267 /*
268 * Duplicate sub-structures as needed.
269 * Increase reference counts on shared objects.
270 * The p_stats and p_sigacts substructs are set in vm_fork.
271 */
272 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
273 p2->p_emul = p1->p_emul;
274 if (p1->p_flag & P_PROFIL)
275 startprofclock(p2);
276 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
277 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
278 p2->p_cred->p_refcnt = 1;
279 crhold(p1->p_ucred);
280
281 /* bump references to the text vnode (for procfs) */
282 p2->p_textvp = p1->p_textvp;
283 if (p2->p_textvp)
284 VREF(p2->p_textvp);
285
286 if (flags & FORK_SHAREFILES)
287 fdshare(p1, p2);
288 else
289 p2->p_fd = fdcopy(p1);
290
291 if (flags & FORK_SHARECWD)
292 cwdshare(p1, p2);
293 else
294 p2->p_cwdi = cwdinit(p1);
295
296 /*
297 * If p_limit is still copy-on-write, bump refcnt,
298 * otherwise get a copy that won't be modified.
299 * (If PL_SHAREMOD is clear, the structure is shared
300 * copy-on-write.)
301 */
302 if (p1->p_limit->p_lflags & PL_SHAREMOD)
303 p2->p_limit = limcopy(p1->p_limit);
304 else {
305 p2->p_limit = p1->p_limit;
306 p2->p_limit->p_refcnt++;
307 }
308
309 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
310 p2->p_flag |= P_CONTROLT;
311 if (flags & FORK_PPWAIT)
312 p2->p_flag |= P_PPWAIT;
313 LIST_INSERT_AFTER(p1, p2, p_pglist);
314 p2->p_pptr = p1;
315 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
316 LIST_INIT(&p2->p_children);
317
318 #ifdef KTRACE
319 /*
320 * Copy traceflag and tracefile if enabled.
321 * If not inherited, these were zeroed above.
322 */
323 if (p1->p_traceflag&KTRFAC_INHERIT) {
324 p2->p_traceflag = p1->p_traceflag;
325 if ((p2->p_tracep = p1->p_tracep) != NULL)
326 ktradref(p2);
327 }
328 #endif
329 scheduler_fork_hook(p1, p2);
330
331 /*
332 * Create signal actions for the child process.
333 */
334 if (flags & FORK_SHARESIGS)
335 sigactsshare(p1, p2);
336 else
337 p2->p_sigacts = sigactsinit(p1);
338
339 /*
340 * This begins the section where we must prevent the parent
341 * from being swapped.
342 */
343 PHOLD(p1);
344
345 /*
346 * Finish creating the child process. It will return through a
347 * different path later.
348 */
349 p2->p_addr = (struct user *)uaddr;
350 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
351 stack, stacksize);
352
353 /*
354 * Make child runnable, set start time, and add to run queue.
355 */
356 s = splstatclock();
357 p2->p_stats->p_start = time;
358 p2->p_acflag = AFORK;
359 p2->p_stat = SRUN;
360 setrunqueue(p2);
361 splx(s);
362
363 /*
364 * Now can be swapped.
365 */
366 PRELE(p1);
367
368 /*
369 * Update stats now that we know the fork was successful.
370 */
371 uvmexp.forks++;
372 if (flags & FORK_PPWAIT)
373 uvmexp.forks_ppwait++;
374 if (flags & FORK_SHAREVM)
375 uvmexp.forks_sharevm++;
376
377 /*
378 * Pass a pointer to the new process to the caller.
379 */
380 if (rnewprocp != NULL)
381 *rnewprocp = p2;
382
383 /*
384 * Preserve synchronization semantics of vfork. If waiting for
385 * child to exec or exit, set P_PPWAIT on child, and sleep on our
386 * proc (in case of exit).
387 */
388 if (flags & FORK_PPWAIT)
389 while (p2->p_flag & P_PPWAIT)
390 tsleep(p1, PWAIT, "ppwait", 0);
391
392 /*
393 * Return child pid to parent process,
394 * marking us as parent via retval[1].
395 */
396 if (retval != NULL) {
397 retval[0] = p2->p_pid;
398 retval[1] = 0;
399 }
400 return (0);
401 }
402