Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.60
      1 /*	$NetBSD: kern_fork.c,v 1.60 1999/07/22 18:28:30 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     41  */
     42 
     43 #include "opt_ktrace.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/map.h>
     48 #include <sys/filedesc.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/pool.h>
     52 #include <sys/mount.h>
     53 #include <sys/proc.h>
     54 #include <sys/resourcevar.h>
     55 #include <sys/vnode.h>
     56 #include <sys/file.h>
     57 #include <sys/acct.h>
     58 #include <sys/ktrace.h>
     59 #include <sys/vmmeter.h>
     60 #include <sys/sched.h>
     61 #include <sys/signalvar.h>
     62 
     63 #include <sys/syscallargs.h>
     64 
     65 #include <vm/vm.h>
     66 #include <vm/vm_kern.h>
     67 
     68 #include <uvm/uvm_extern.h>
     69 
     70 int	nprocs = 1;		/* process 0 */
     71 
     72 /*ARGSUSED*/
     73 int
     74 sys_fork(p, v, retval)
     75 	struct proc *p;
     76 	void *v;
     77 	register_t *retval;
     78 {
     79 
     80 	return (fork1(p, 0, SIGCHLD, NULL, 0, retval, NULL));
     81 }
     82 
     83 /*
     84  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
     85  * Address space is not shared, but parent is blocked until child exit.
     86  */
     87 /*ARGSUSED*/
     88 int
     89 sys_vfork(p, v, retval)
     90 	struct proc *p;
     91 	void *v;
     92 	register_t *retval;
     93 {
     94 
     95 	return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, retval, NULL));
     96 }
     97 
     98 /*
     99  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
    100  * semantics.  Address space is shared, and parent is blocked until child exit.
    101  */
    102 /*ARGSUSED*/
    103 int
    104 sys___vfork14(p, v, retval)
    105 	struct proc *p;
    106 	void *v;
    107 	register_t *retval;
    108 {
    109 
    110 	return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    111 	    retval, NULL));
    112 }
    113 
    114 int
    115 fork1(p1, flags, exitsig, stack, stacksize, retval, rnewprocp)
    116 	register struct proc *p1;
    117 	int flags;
    118 	int exitsig;
    119 	void *stack;
    120 	size_t stacksize;
    121 	register_t *retval;
    122 	struct proc **rnewprocp;
    123 {
    124 	register struct proc *p2;
    125 	register uid_t uid;
    126 	struct proc *newproc;
    127 	int count, s;
    128 	vaddr_t uaddr;
    129 	static int nextpid, pidchecked = 0;
    130 
    131 	/*
    132 	 * Although process entries are dynamically created, we still keep
    133 	 * a global limit on the maximum number we will create.  Don't allow
    134 	 * a nonprivileged user to use the last process; don't let root
    135 	 * exceed the limit. The variable nprocs is the current number of
    136 	 * processes, maxproc is the limit.
    137 	 */
    138 	uid = p1->p_cred->p_ruid;
    139 	if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
    140 		tablefull("proc");
    141 		return (EAGAIN);
    142 	}
    143 
    144 	/*
    145 	 * Increment the count of procs running with this uid. Don't allow
    146 	 * a nonprivileged user to exceed their current limit.
    147 	 */
    148 	count = chgproccnt(uid, 1);
    149 	if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
    150 		(void)chgproccnt(uid, -1);
    151 		return (EAGAIN);
    152 	}
    153 
    154 	/*
    155 	 * Allocate virtual address space for the U-area now, while it
    156 	 * is still easy to abort the fork operation if we're out of
    157 	 * kernel virtual address space.  The actual U-area pages will
    158 	 * be allocated and wired in vm_fork().
    159 	 */
    160 	uaddr = uvm_km_valloc(kernel_map, USPACE);
    161 	if (uaddr == 0) {
    162 		(void)chgproccnt(uid, -1);
    163 		return (ENOMEM);
    164 	}
    165 
    166 	/*
    167 	 * We are now committed to the fork.  From here on, we may
    168 	 * block on resources, but resource allocation may NOT fail.
    169 	 */
    170 
    171 	/* Allocate new proc. */
    172 	newproc = pool_get(&proc_pool, PR_WAITOK);
    173 
    174 	/*
    175 	 * BEGIN PID ALLOCATION.  (Lock PID allocation variables eventually).
    176 	 */
    177 
    178 	/*
    179 	 * Find an unused process ID.  We remember a range of unused IDs
    180 	 * ready to use (from nextpid+1 through pidchecked-1).
    181 	 */
    182 	nextpid++;
    183 retry:
    184 	/*
    185 	 * If the process ID prototype has wrapped around,
    186 	 * restart somewhat above 0, as the low-numbered procs
    187 	 * tend to include daemons that don't exit.
    188 	 */
    189 	if (nextpid >= PID_MAX) {
    190 		nextpid = 100;
    191 		pidchecked = 0;
    192 	}
    193 	if (nextpid >= pidchecked) {
    194 		const struct proclist_desc *pd;
    195 
    196 		pidchecked = PID_MAX;
    197 		/*
    198 		 * Scan the process lists to check whether this pid
    199 		 * is in use.  Remember the lowest pid that's greater
    200 		 * than nextpid, so we can avoid checking for a while.
    201 		 */
    202 		pd = proclists;
    203 again:
    204 		for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
    205 		     p2 = LIST_NEXT(p2, p_list)) {
    206 			while (p2->p_pid == nextpid ||
    207 			    p2->p_pgrp->pg_id == nextpid ||
    208 			    p2->p_session->s_sid == nextpid) {
    209 				nextpid++;
    210 				if (nextpid >= pidchecked)
    211 					goto retry;
    212 			}
    213 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
    214 				pidchecked = p2->p_pid;
    215 
    216 			if (p2->p_pgrp->pg_id > nextpid &&
    217 			    pidchecked > p2->p_pgrp->pg_id)
    218 				pidchecked = p2->p_pgrp->pg_id;
    219 
    220 			if (p2->p_session->s_sid > nextpid &&
    221 			    pidchecked > p2->p_session->s_sid)
    222 				pidchecked = p2->p_session->s_sid;
    223 		}
    224 
    225 		/*
    226 		 * If there's another list, scan it.  If we have checked
    227 		 * them all, we've found one!
    228 		 */
    229 		pd++;
    230 		if (pd->pd_list != NULL)
    231 			goto again;
    232 	}
    233 
    234 	nprocs++;
    235 	p2 = newproc;
    236 
    237 	/* Record the pid we've allocated. */
    238 	p2->p_pid = nextpid;
    239 
    240 	/* Record the signal to be delivered to the parent on exit. */
    241 	p2->p_exitsig = exitsig;
    242 
    243 	/*
    244 	 * Put the proc on allproc before unlocking PID allocation
    245 	 * so that waiters won't grab it as soon as we unlock.
    246 	 */
    247 
    248 	p2->p_stat = SIDL;			/* protect against others */
    249 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
    250 
    251 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    252 
    253 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
    254 
    255 	/*
    256 	 * END PID ALLOCATION.  (Unlock PID allocation variables).
    257 	 */
    258 
    259 	/*
    260 	 * Make a proc table entry for the new process.
    261 	 * Start by zeroing the section of proc that is zero-initialized,
    262 	 * then copy the section that is copied directly from the parent.
    263 	 */
    264 	memset(&p2->p_startzero, 0,
    265 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
    266 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    267 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
    268 
    269 	/*
    270 	 * Duplicate sub-structures as needed.
    271 	 * Increase reference counts on shared objects.
    272 	 * The p_stats and p_sigacts substructs are set in vm_fork.
    273 	 */
    274 	p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
    275 	p2->p_emul = p1->p_emul;
    276 	if (p1->p_flag & P_PROFIL)
    277 		startprofclock(p2);
    278 	p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
    279 	memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
    280 	p2->p_cred->p_refcnt = 1;
    281 	crhold(p1->p_ucred);
    282 
    283 	/* bump references to the text vnode (for procfs) */
    284 	p2->p_textvp = p1->p_textvp;
    285 	if (p2->p_textvp)
    286 		VREF(p2->p_textvp);
    287 
    288 	if (flags & FORK_SHAREFILES)
    289 		fdshare(p1, p2);
    290 	else
    291 		p2->p_fd = fdcopy(p1);
    292 
    293 	if (flags & FORK_SHARECWD)
    294 		cwdshare(p1, p2);
    295 	else
    296 		p2->p_cwdi = cwdinit(p1);
    297 
    298 	/*
    299 	 * If p_limit is still copy-on-write, bump refcnt,
    300 	 * otherwise get a copy that won't be modified.
    301 	 * (If PL_SHAREMOD is clear, the structure is shared
    302 	 * copy-on-write.)
    303 	 */
    304 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
    305 		p2->p_limit = limcopy(p1->p_limit);
    306 	else {
    307 		p2->p_limit = p1->p_limit;
    308 		p2->p_limit->p_refcnt++;
    309 	}
    310 
    311 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
    312 		p2->p_flag |= P_CONTROLT;
    313 	if (flags & FORK_PPWAIT)
    314 		p2->p_flag |= P_PPWAIT;
    315 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    316 	p2->p_pptr = p1;
    317 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
    318 	LIST_INIT(&p2->p_children);
    319 
    320 #ifdef KTRACE
    321 	/*
    322 	 * Copy traceflag and tracefile if enabled.
    323 	 * If not inherited, these were zeroed above.
    324 	 */
    325 	if (p1->p_traceflag&KTRFAC_INHERIT) {
    326 		p2->p_traceflag = p1->p_traceflag;
    327 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    328 			ktradref(p2);
    329 	}
    330 #endif
    331 	scheduler_fork_hook(p1, p2);
    332 
    333 	/*
    334 	 * Create signal actions for the child process.
    335 	 */
    336 	if (flags & FORK_SHARESIGS)
    337 		sigactsshare(p1, p2);
    338 	else
    339 		p2->p_sigacts = sigactsinit(p1);
    340 
    341 	/*
    342 	 * This begins the section where we must prevent the parent
    343 	 * from being swapped.
    344 	 */
    345 	PHOLD(p1);
    346 
    347 	/*
    348 	 * Finish creating the child process.  It will return through a
    349 	 * different path later.
    350 	 */
    351 	p2->p_addr = (struct user *)uaddr;
    352 	uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
    353 	    stack, stacksize);
    354 
    355 	/*
    356 	 * Make child runnable, set start time, and add to run queue.
    357 	 */
    358 	s = splstatclock();
    359 	p2->p_stats->p_start = time;
    360 	p2->p_acflag = AFORK;
    361 	p2->p_stat = SRUN;
    362 	setrunqueue(p2);
    363 	splx(s);
    364 
    365 	/*
    366 	 * Now can be swapped.
    367 	 */
    368 	PRELE(p1);
    369 
    370 	/*
    371 	 * Update stats now that we know the fork was successful.
    372 	 */
    373 	uvmexp.forks++;
    374 	if (flags & FORK_PPWAIT)
    375 		uvmexp.forks_ppwait++;
    376 	if (flags & FORK_SHAREVM)
    377 		uvmexp.forks_sharevm++;
    378 
    379 	/*
    380 	 * Pass a pointer to the new process to the caller.
    381 	 */
    382 	if (rnewprocp != NULL)
    383 		*rnewprocp = p2;
    384 
    385 	/*
    386 	 * Preserve synchronization semantics of vfork.  If waiting for
    387 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
    388 	 * proc (in case of exit).
    389 	 */
    390 	if (flags & FORK_PPWAIT)
    391 		while (p2->p_flag & P_PPWAIT)
    392 			tsleep(p1, PWAIT, "ppwait", 0);
    393 
    394 	/*
    395 	 * Return child pid to parent process,
    396 	 * marking us as parent via retval[1].
    397 	 */
    398 	if (retval != NULL) {
    399 		retval[0] = p2->p_pid;
    400 		retval[1] = 0;
    401 	}
    402 	return (0);
    403 }
    404