kern_fork.c revision 1.66 1 /* $NetBSD: kern_fork.c,v 1.66 2000/05/31 05:02:32 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_multiprocessor.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61 #include <sys/sched.h>
62 #include <sys/signalvar.h>
63
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm.h>
67 #include <vm/vm_kern.h>
68
69 #include <uvm/uvm_extern.h>
70
71 int nprocs = 1; /* process 0 */
72
73 /*ARGSUSED*/
74 int
75 sys_fork(p, v, retval)
76 struct proc *p;
77 void *v;
78 register_t *retval;
79 {
80
81 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
82 }
83
84 /*
85 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
86 * Address space is not shared, but parent is blocked until child exit.
87 */
88 /*ARGSUSED*/
89 int
90 sys_vfork(p, v, retval)
91 struct proc *p;
92 void *v;
93 register_t *retval;
94 {
95
96 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
97 retval, NULL));
98 }
99
100 /*
101 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
102 * semantics. Address space is shared, and parent is blocked until child exit.
103 */
104 /*ARGSUSED*/
105 int
106 sys___vfork14(p, v, retval)
107 struct proc *p;
108 void *v;
109 register_t *retval;
110 {
111
112 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
113 NULL, NULL, retval, NULL));
114 }
115
116 int
117 fork1(p1, flags, exitsig, stack, stacksize, func, arg, retval, rnewprocp)
118 struct proc *p1;
119 int flags;
120 int exitsig;
121 void *stack;
122 size_t stacksize;
123 void (*func) __P((void *));
124 void *arg;
125 register_t *retval;
126 struct proc **rnewprocp;
127 {
128 struct proc *p2;
129 uid_t uid;
130 struct proc *newproc;
131 int count, s;
132 vaddr_t uaddr;
133 static int nextpid, pidchecked = 0;
134
135 /*
136 * Although process entries are dynamically created, we still keep
137 * a global limit on the maximum number we will create. Don't allow
138 * a nonprivileged user to use the last process; don't let root
139 * exceed the limit. The variable nprocs is the current number of
140 * processes, maxproc is the limit.
141 */
142 uid = p1->p_cred->p_ruid;
143 if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
144 nprocs >= maxproc)) {
145 tablefull("proc");
146 return (EAGAIN);
147 }
148
149 /*
150 * Increment the count of procs running with this uid. Don't allow
151 * a nonprivileged user to exceed their current limit.
152 */
153 count = chgproccnt(uid, 1);
154 if (__predict_false(uid != 0 && count >
155 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
156 (void)chgproccnt(uid, -1);
157 return (EAGAIN);
158 }
159
160 /*
161 * Allocate virtual address space for the U-area now, while it
162 * is still easy to abort the fork operation if we're out of
163 * kernel virtual address space. The actual U-area pages will
164 * be allocated and wired in vm_fork().
165 */
166 uaddr = uvm_km_valloc(kernel_map, USPACE);
167 if (__predict_false(uaddr == 0)) {
168 (void)chgproccnt(uid, -1);
169 return (ENOMEM);
170 }
171
172 /*
173 * We are now committed to the fork. From here on, we may
174 * block on resources, but resource allocation may NOT fail.
175 */
176
177 /* Allocate new proc. */
178 newproc = pool_get(&proc_pool, PR_WAITOK);
179
180 /*
181 * BEGIN PID ALLOCATION.
182 */
183 s = proclist_lock_write();
184
185 /*
186 * Find an unused process ID. We remember a range of unused IDs
187 * ready to use (from nextpid+1 through pidchecked-1).
188 */
189 nextpid++;
190 retry:
191 /*
192 * If the process ID prototype has wrapped around,
193 * restart somewhat above 0, as the low-numbered procs
194 * tend to include daemons that don't exit.
195 */
196 if (nextpid >= PID_MAX) {
197 nextpid = 100;
198 pidchecked = 0;
199 }
200 if (nextpid >= pidchecked) {
201 const struct proclist_desc *pd;
202
203 pidchecked = PID_MAX;
204 /*
205 * Scan the process lists to check whether this pid
206 * is in use. Remember the lowest pid that's greater
207 * than nextpid, so we can avoid checking for a while.
208 */
209 pd = proclists;
210 again:
211 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
212 p2 = LIST_NEXT(p2, p_list)) {
213 while (p2->p_pid == nextpid ||
214 p2->p_pgrp->pg_id == nextpid ||
215 p2->p_session->s_sid == nextpid) {
216 nextpid++;
217 if (nextpid >= pidchecked)
218 goto retry;
219 }
220 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
221 pidchecked = p2->p_pid;
222
223 if (p2->p_pgrp->pg_id > nextpid &&
224 pidchecked > p2->p_pgrp->pg_id)
225 pidchecked = p2->p_pgrp->pg_id;
226
227 if (p2->p_session->s_sid > nextpid &&
228 pidchecked > p2->p_session->s_sid)
229 pidchecked = p2->p_session->s_sid;
230 }
231
232 /*
233 * If there's another list, scan it. If we have checked
234 * them all, we've found one!
235 */
236 pd++;
237 if (pd->pd_list != NULL)
238 goto again;
239 }
240
241 nprocs++;
242 p2 = newproc;
243
244 /* Record the pid we've allocated. */
245 p2->p_pid = nextpid;
246
247 /* Record the signal to be delivered to the parent on exit. */
248 p2->p_exitsig = exitsig;
249
250 /*
251 * Put the proc on allproc before unlocking PID allocation
252 * so that waiters won't grab it as soon as we unlock.
253 */
254
255 p2->p_stat = SIDL; /* protect against others */
256 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
257
258 LIST_INSERT_HEAD(&allproc, p2, p_list);
259
260 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
261
262 /*
263 * END PID ALLOCATION.
264 */
265 proclist_unlock_write(s);
266
267 /*
268 * Make a proc table entry for the new process.
269 * Start by zeroing the section of proc that is zero-initialized,
270 * then copy the section that is copied directly from the parent.
271 */
272 memset(&p2->p_startzero, 0,
273 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
274 memcpy(&p2->p_startcopy, &p1->p_startcopy,
275 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
276
277 #if !defined(MULTIPROCESSOR)
278 /*
279 * In the single-processor case, all processes will always run
280 * on the same CPU. So, initialize the child's CPU to the parent's
281 * now. In the multiprocessor case, the child's CPU will be
282 * initialized in the low-level context switch code when the
283 * process runs.
284 */
285 p2->p_cpu = p1->p_cpu;
286 #endif /* ! MULTIPROCESSOR */
287
288 /*
289 * Duplicate sub-structures as needed.
290 * Increase reference counts on shared objects.
291 * The p_stats and p_sigacts substructs are set in vm_fork.
292 */
293 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
294 p2->p_emul = p1->p_emul;
295 if (p1->p_flag & P_PROFIL)
296 startprofclock(p2);
297 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
298 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
299 p2->p_cred->p_refcnt = 1;
300 crhold(p1->p_ucred);
301
302 /* bump references to the text vnode (for procfs) */
303 p2->p_textvp = p1->p_textvp;
304 if (p2->p_textvp)
305 VREF(p2->p_textvp);
306
307 if (flags & FORK_SHAREFILES)
308 fdshare(p1, p2);
309 else
310 p2->p_fd = fdcopy(p1);
311
312 if (flags & FORK_SHARECWD)
313 cwdshare(p1, p2);
314 else
315 p2->p_cwdi = cwdinit(p1);
316
317 /*
318 * If p_limit is still copy-on-write, bump refcnt,
319 * otherwise get a copy that won't be modified.
320 * (If PL_SHAREMOD is clear, the structure is shared
321 * copy-on-write.)
322 */
323 if (p1->p_limit->p_lflags & PL_SHAREMOD)
324 p2->p_limit = limcopy(p1->p_limit);
325 else {
326 p2->p_limit = p1->p_limit;
327 p2->p_limit->p_refcnt++;
328 }
329
330 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
331 p2->p_flag |= P_CONTROLT;
332 if (flags & FORK_PPWAIT)
333 p2->p_flag |= P_PPWAIT;
334 LIST_INSERT_AFTER(p1, p2, p_pglist);
335 p2->p_pptr = p1;
336 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
337 LIST_INIT(&p2->p_children);
338
339 callout_init(&p2->p_realit_ch);
340 callout_init(&p2->p_tsleep_ch);
341
342 #ifdef KTRACE
343 /*
344 * Copy traceflag and tracefile if enabled.
345 * If not inherited, these were zeroed above.
346 */
347 if (p1->p_traceflag&KTRFAC_INHERIT) {
348 p2->p_traceflag = p1->p_traceflag;
349 if ((p2->p_tracep = p1->p_tracep) != NULL)
350 ktradref(p2);
351 }
352 #endif
353 scheduler_fork_hook(p1, p2);
354
355 /*
356 * Create signal actions for the child process.
357 */
358 if (flags & FORK_SHARESIGS)
359 sigactsshare(p1, p2);
360 else
361 p2->p_sigacts = sigactsinit(p1);
362
363 /*
364 * This begins the section where we must prevent the parent
365 * from being swapped.
366 */
367 PHOLD(p1);
368
369 /*
370 * Finish creating the child process. It will return through a
371 * different path later.
372 */
373 p2->p_addr = (struct user *)uaddr;
374 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
375 stack, stacksize,
376 (func != NULL) ? func : child_return,
377 (arg != NULL) ? arg : p2);
378
379 /*
380 * Make child runnable, set start time, and add to run queue.
381 */
382 s = splstatclock();
383 p2->p_stats->p_start = time;
384 p2->p_acflag = AFORK;
385 p2->p_stat = SRUN;
386 setrunqueue(p2);
387 splx(s);
388
389 /*
390 * Now can be swapped.
391 */
392 PRELE(p1);
393
394 /*
395 * Update stats now that we know the fork was successful.
396 */
397 uvmexp.forks++;
398 if (flags & FORK_PPWAIT)
399 uvmexp.forks_ppwait++;
400 if (flags & FORK_SHAREVM)
401 uvmexp.forks_sharevm++;
402
403 /*
404 * Pass a pointer to the new process to the caller.
405 */
406 if (rnewprocp != NULL)
407 *rnewprocp = p2;
408
409 /*
410 * Preserve synchronization semantics of vfork. If waiting for
411 * child to exec or exit, set P_PPWAIT on child, and sleep on our
412 * proc (in case of exit).
413 */
414 if (flags & FORK_PPWAIT)
415 while (p2->p_flag & P_PPWAIT)
416 tsleep(p1, PWAIT, "ppwait", 0);
417
418 /*
419 * Return child pid to parent process,
420 * marking us as parent via retval[1].
421 */
422 if (retval != NULL) {
423 retval[0] = p2->p_pid;
424 retval[1] = 0;
425 }
426 return (0);
427 }
428