kern_fork.c revision 1.69 1 /* $NetBSD: kern_fork.c,v 1.69 2000/07/04 15:33:30 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_multiprocessor.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61 #include <sys/sched.h>
62 #include <sys/signalvar.h>
63
64 #include <sys/syscallargs.h>
65
66 #include <uvm/uvm_extern.h>
67
68 int nprocs = 1; /* process 0 */
69
70 /*ARGSUSED*/
71 int
72 sys_fork(p, v, retval)
73 struct proc *p;
74 void *v;
75 register_t *retval;
76 {
77
78 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
79 }
80
81 /*
82 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
83 * Address space is not shared, but parent is blocked until child exit.
84 */
85 /*ARGSUSED*/
86 int
87 sys_vfork(p, v, retval)
88 struct proc *p;
89 void *v;
90 register_t *retval;
91 {
92
93 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
94 retval, NULL));
95 }
96
97 /*
98 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
99 * semantics. Address space is shared, and parent is blocked until child exit.
100 */
101 /*ARGSUSED*/
102 int
103 sys___vfork14(p, v, retval)
104 struct proc *p;
105 void *v;
106 register_t *retval;
107 {
108
109 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
110 NULL, NULL, retval, NULL));
111 }
112
113 int
114 fork1(p1, flags, exitsig, stack, stacksize, func, arg, retval, rnewprocp)
115 struct proc *p1;
116 int flags;
117 int exitsig;
118 void *stack;
119 size_t stacksize;
120 void (*func) __P((void *));
121 void *arg;
122 register_t *retval;
123 struct proc **rnewprocp;
124 {
125 struct proc *p2;
126 uid_t uid;
127 struct proc *newproc;
128 int count, s;
129 vaddr_t uaddr;
130 static int nextpid, pidchecked = 0;
131
132 /*
133 * Although process entries are dynamically created, we still keep
134 * a global limit on the maximum number we will create. Don't allow
135 * a nonprivileged user to use the last process; don't let root
136 * exceed the limit. The variable nprocs is the current number of
137 * processes, maxproc is the limit.
138 */
139 uid = p1->p_cred->p_ruid;
140 if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
141 nprocs >= maxproc)) {
142 tablefull("proc", "increase kern.maxproc or NPROC");
143 return (EAGAIN);
144 }
145
146 /*
147 * Increment the count of procs running with this uid. Don't allow
148 * a nonprivileged user to exceed their current limit.
149 */
150 count = chgproccnt(uid, 1);
151 if (__predict_false(uid != 0 && count >
152 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
153 (void)chgproccnt(uid, -1);
154 return (EAGAIN);
155 }
156
157 /*
158 * Allocate virtual address space for the U-area now, while it
159 * is still easy to abort the fork operation if we're out of
160 * kernel virtual address space. The actual U-area pages will
161 * be allocated and wired in vm_fork().
162 */
163 uaddr = uvm_km_valloc(kernel_map, USPACE);
164 if (__predict_false(uaddr == 0)) {
165 (void)chgproccnt(uid, -1);
166 return (ENOMEM);
167 }
168
169 /*
170 * We are now committed to the fork. From here on, we may
171 * block on resources, but resource allocation may NOT fail.
172 */
173
174 /* Allocate new proc. */
175 newproc = pool_get(&proc_pool, PR_WAITOK);
176
177 /*
178 * BEGIN PID ALLOCATION.
179 */
180 s = proclist_lock_write();
181
182 /*
183 * Find an unused process ID. We remember a range of unused IDs
184 * ready to use (from nextpid+1 through pidchecked-1).
185 */
186 nextpid++;
187 retry:
188 /*
189 * If the process ID prototype has wrapped around,
190 * restart somewhat above 0, as the low-numbered procs
191 * tend to include daemons that don't exit.
192 */
193 if (nextpid >= PID_MAX) {
194 nextpid = 100;
195 pidchecked = 0;
196 }
197 if (nextpid >= pidchecked) {
198 const struct proclist_desc *pd;
199
200 pidchecked = PID_MAX;
201 /*
202 * Scan the process lists to check whether this pid
203 * is in use. Remember the lowest pid that's greater
204 * than nextpid, so we can avoid checking for a while.
205 */
206 pd = proclists;
207 again:
208 for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
209 p2 = LIST_NEXT(p2, p_list)) {
210 while (p2->p_pid == nextpid ||
211 p2->p_pgrp->pg_id == nextpid ||
212 p2->p_session->s_sid == nextpid) {
213 nextpid++;
214 if (nextpid >= pidchecked)
215 goto retry;
216 }
217 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
218 pidchecked = p2->p_pid;
219
220 if (p2->p_pgrp->pg_id > nextpid &&
221 pidchecked > p2->p_pgrp->pg_id)
222 pidchecked = p2->p_pgrp->pg_id;
223
224 if (p2->p_session->s_sid > nextpid &&
225 pidchecked > p2->p_session->s_sid)
226 pidchecked = p2->p_session->s_sid;
227 }
228
229 /*
230 * If there's another list, scan it. If we have checked
231 * them all, we've found one!
232 */
233 pd++;
234 if (pd->pd_list != NULL)
235 goto again;
236 }
237
238 nprocs++;
239 p2 = newproc;
240
241 /* Record the pid we've allocated. */
242 p2->p_pid = nextpid;
243
244 /* Record the signal to be delivered to the parent on exit. */
245 p2->p_exitsig = exitsig;
246
247 /*
248 * Put the proc on allproc before unlocking PID allocation
249 * so that waiters won't grab it as soon as we unlock.
250 */
251
252 p2->p_stat = SIDL; /* protect against others */
253 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
254
255 LIST_INSERT_HEAD(&allproc, p2, p_list);
256
257 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
258
259 /*
260 * END PID ALLOCATION.
261 */
262 proclist_unlock_write(s);
263
264 /*
265 * Make a proc table entry for the new process.
266 * Start by zeroing the section of proc that is zero-initialized,
267 * then copy the section that is copied directly from the parent.
268 */
269 memset(&p2->p_startzero, 0,
270 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
271 memcpy(&p2->p_startcopy, &p1->p_startcopy,
272 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
273
274 #if !defined(MULTIPROCESSOR)
275 /*
276 * In the single-processor case, all processes will always run
277 * on the same CPU. So, initialize the child's CPU to the parent's
278 * now. In the multiprocessor case, the child's CPU will be
279 * initialized in the low-level context switch code when the
280 * process runs.
281 */
282 p2->p_cpu = p1->p_cpu;
283 #endif /* ! MULTIPROCESSOR */
284
285 /*
286 * Duplicate sub-structures as needed.
287 * Increase reference counts on shared objects.
288 * The p_stats and p_sigacts substructs are set in vm_fork.
289 */
290 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
291 p2->p_emul = p1->p_emul;
292 if (p1->p_flag & P_PROFIL)
293 startprofclock(p2);
294 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
295 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
296 p2->p_cred->p_refcnt = 1;
297 crhold(p1->p_ucred);
298
299 /* bump references to the text vnode (for procfs) */
300 p2->p_textvp = p1->p_textvp;
301 if (p2->p_textvp)
302 VREF(p2->p_textvp);
303
304 if (flags & FORK_SHAREFILES)
305 fdshare(p1, p2);
306 else
307 p2->p_fd = fdcopy(p1);
308
309 if (flags & FORK_SHARECWD)
310 cwdshare(p1, p2);
311 else
312 p2->p_cwdi = cwdinit(p1);
313
314 /*
315 * If p_limit is still copy-on-write, bump refcnt,
316 * otherwise get a copy that won't be modified.
317 * (If PL_SHAREMOD is clear, the structure is shared
318 * copy-on-write.)
319 */
320 if (p1->p_limit->p_lflags & PL_SHAREMOD)
321 p2->p_limit = limcopy(p1->p_limit);
322 else {
323 p2->p_limit = p1->p_limit;
324 p2->p_limit->p_refcnt++;
325 }
326
327 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
328 p2->p_flag |= P_CONTROLT;
329 if (flags & FORK_PPWAIT)
330 p2->p_flag |= P_PPWAIT;
331 LIST_INSERT_AFTER(p1, p2, p_pglist);
332 p2->p_pptr = p1;
333 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
334 LIST_INIT(&p2->p_children);
335
336 callout_init(&p2->p_realit_ch);
337 callout_init(&p2->p_tsleep_ch);
338
339 #ifdef KTRACE
340 /*
341 * Copy traceflag and tracefile if enabled.
342 * If not inherited, these were zeroed above.
343 */
344 if (p1->p_traceflag&KTRFAC_INHERIT) {
345 p2->p_traceflag = p1->p_traceflag;
346 if ((p2->p_tracep = p1->p_tracep) != NULL)
347 ktradref(p2);
348 }
349 #endif
350 scheduler_fork_hook(p1, p2);
351
352 /*
353 * Create signal actions for the child process.
354 */
355 if (flags & FORK_SHARESIGS)
356 sigactsshare(p1, p2);
357 else
358 p2->p_sigacts = sigactsinit(p1);
359
360 /*
361 * This begins the section where we must prevent the parent
362 * from being swapped.
363 */
364 PHOLD(p1);
365
366 /*
367 * Finish creating the child process. It will return through a
368 * different path later.
369 */
370 p2->p_addr = (struct user *)uaddr;
371 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
372 stack, stacksize,
373 (func != NULL) ? func : child_return,
374 (arg != NULL) ? arg : p2);
375
376 /*
377 * Make child runnable, set start time, and add to run queue.
378 */
379 s = splstatclock();
380 p2->p_stats->p_start = time;
381 p2->p_acflag = AFORK;
382 p2->p_stat = SRUN;
383 setrunqueue(p2);
384 splx(s);
385
386 /*
387 * Now can be swapped.
388 */
389 PRELE(p1);
390
391 /*
392 * Update stats now that we know the fork was successful.
393 */
394 uvmexp.forks++;
395 if (flags & FORK_PPWAIT)
396 uvmexp.forks_ppwait++;
397 if (flags & FORK_SHAREVM)
398 uvmexp.forks_sharevm++;
399
400 /*
401 * Pass a pointer to the new process to the caller.
402 */
403 if (rnewprocp != NULL)
404 *rnewprocp = p2;
405
406 /*
407 * Preserve synchronization semantics of vfork. If waiting for
408 * child to exec or exit, set P_PPWAIT on child, and sleep on our
409 * proc (in case of exit).
410 */
411 if (flags & FORK_PPWAIT)
412 while (p2->p_flag & P_PPWAIT)
413 tsleep(p1, PWAIT, "ppwait", 0);
414
415 /*
416 * Return child pid to parent process,
417 * marking us as parent via retval[1].
418 */
419 if (retval != NULL) {
420 retval[0] = p2->p_pid;
421 retval[1] = 0;
422 }
423 return (0);
424 }
425