Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.69
      1 /*	$NetBSD: kern_fork.c,v 1.69 2000/07/04 15:33:30 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     41  */
     42 
     43 #include "opt_ktrace.h"
     44 #include "opt_multiprocessor.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/map.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/pool.h>
     53 #include <sys/mount.h>
     54 #include <sys/proc.h>
     55 #include <sys/resourcevar.h>
     56 #include <sys/vnode.h>
     57 #include <sys/file.h>
     58 #include <sys/acct.h>
     59 #include <sys/ktrace.h>
     60 #include <sys/vmmeter.h>
     61 #include <sys/sched.h>
     62 #include <sys/signalvar.h>
     63 
     64 #include <sys/syscallargs.h>
     65 
     66 #include <uvm/uvm_extern.h>
     67 
     68 int	nprocs = 1;		/* process 0 */
     69 
     70 /*ARGSUSED*/
     71 int
     72 sys_fork(p, v, retval)
     73 	struct proc *p;
     74 	void *v;
     75 	register_t *retval;
     76 {
     77 
     78 	return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
     79 }
     80 
     81 /*
     82  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
     83  * Address space is not shared, but parent is blocked until child exit.
     84  */
     85 /*ARGSUSED*/
     86 int
     87 sys_vfork(p, v, retval)
     88 	struct proc *p;
     89 	void *v;
     90 	register_t *retval;
     91 {
     92 
     93 	return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
     94 	    retval, NULL));
     95 }
     96 
     97 /*
     98  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
     99  * semantics.  Address space is shared, and parent is blocked until child exit.
    100  */
    101 /*ARGSUSED*/
    102 int
    103 sys___vfork14(p, v, retval)
    104 	struct proc *p;
    105 	void *v;
    106 	register_t *retval;
    107 {
    108 
    109 	return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    110 	    NULL, NULL, retval, NULL));
    111 }
    112 
    113 int
    114 fork1(p1, flags, exitsig, stack, stacksize, func, arg, retval, rnewprocp)
    115 	struct proc *p1;
    116 	int flags;
    117 	int exitsig;
    118 	void *stack;
    119 	size_t stacksize;
    120 	void (*func) __P((void *));
    121 	void *arg;
    122 	register_t *retval;
    123 	struct proc **rnewprocp;
    124 {
    125 	struct proc *p2;
    126 	uid_t uid;
    127 	struct proc *newproc;
    128 	int count, s;
    129 	vaddr_t uaddr;
    130 	static int nextpid, pidchecked = 0;
    131 
    132 	/*
    133 	 * Although process entries are dynamically created, we still keep
    134 	 * a global limit on the maximum number we will create.  Don't allow
    135 	 * a nonprivileged user to use the last process; don't let root
    136 	 * exceed the limit. The variable nprocs is the current number of
    137 	 * processes, maxproc is the limit.
    138 	 */
    139 	uid = p1->p_cred->p_ruid;
    140 	if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
    141 			    nprocs >= maxproc)) {
    142 		tablefull("proc", "increase kern.maxproc or NPROC");
    143 		return (EAGAIN);
    144 	}
    145 
    146 	/*
    147 	 * Increment the count of procs running with this uid. Don't allow
    148 	 * a nonprivileged user to exceed their current limit.
    149 	 */
    150 	count = chgproccnt(uid, 1);
    151 	if (__predict_false(uid != 0 && count >
    152 			    p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    153 		(void)chgproccnt(uid, -1);
    154 		return (EAGAIN);
    155 	}
    156 
    157 	/*
    158 	 * Allocate virtual address space for the U-area now, while it
    159 	 * is still easy to abort the fork operation if we're out of
    160 	 * kernel virtual address space.  The actual U-area pages will
    161 	 * be allocated and wired in vm_fork().
    162 	 */
    163 	uaddr = uvm_km_valloc(kernel_map, USPACE);
    164 	if (__predict_false(uaddr == 0)) {
    165 		(void)chgproccnt(uid, -1);
    166 		return (ENOMEM);
    167 	}
    168 
    169 	/*
    170 	 * We are now committed to the fork.  From here on, we may
    171 	 * block on resources, but resource allocation may NOT fail.
    172 	 */
    173 
    174 	/* Allocate new proc. */
    175 	newproc = pool_get(&proc_pool, PR_WAITOK);
    176 
    177 	/*
    178 	 * BEGIN PID ALLOCATION.
    179 	 */
    180 	s = proclist_lock_write();
    181 
    182 	/*
    183 	 * Find an unused process ID.  We remember a range of unused IDs
    184 	 * ready to use (from nextpid+1 through pidchecked-1).
    185 	 */
    186 	nextpid++;
    187 retry:
    188 	/*
    189 	 * If the process ID prototype has wrapped around,
    190 	 * restart somewhat above 0, as the low-numbered procs
    191 	 * tend to include daemons that don't exit.
    192 	 */
    193 	if (nextpid >= PID_MAX) {
    194 		nextpid = 100;
    195 		pidchecked = 0;
    196 	}
    197 	if (nextpid >= pidchecked) {
    198 		const struct proclist_desc *pd;
    199 
    200 		pidchecked = PID_MAX;
    201 		/*
    202 		 * Scan the process lists to check whether this pid
    203 		 * is in use.  Remember the lowest pid that's greater
    204 		 * than nextpid, so we can avoid checking for a while.
    205 		 */
    206 		pd = proclists;
    207 again:
    208 		for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
    209 		     p2 = LIST_NEXT(p2, p_list)) {
    210 			while (p2->p_pid == nextpid ||
    211 			    p2->p_pgrp->pg_id == nextpid ||
    212 			    p2->p_session->s_sid == nextpid) {
    213 				nextpid++;
    214 				if (nextpid >= pidchecked)
    215 					goto retry;
    216 			}
    217 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
    218 				pidchecked = p2->p_pid;
    219 
    220 			if (p2->p_pgrp->pg_id > nextpid &&
    221 			    pidchecked > p2->p_pgrp->pg_id)
    222 				pidchecked = p2->p_pgrp->pg_id;
    223 
    224 			if (p2->p_session->s_sid > nextpid &&
    225 			    pidchecked > p2->p_session->s_sid)
    226 				pidchecked = p2->p_session->s_sid;
    227 		}
    228 
    229 		/*
    230 		 * If there's another list, scan it.  If we have checked
    231 		 * them all, we've found one!
    232 		 */
    233 		pd++;
    234 		if (pd->pd_list != NULL)
    235 			goto again;
    236 	}
    237 
    238 	nprocs++;
    239 	p2 = newproc;
    240 
    241 	/* Record the pid we've allocated. */
    242 	p2->p_pid = nextpid;
    243 
    244 	/* Record the signal to be delivered to the parent on exit. */
    245 	p2->p_exitsig = exitsig;
    246 
    247 	/*
    248 	 * Put the proc on allproc before unlocking PID allocation
    249 	 * so that waiters won't grab it as soon as we unlock.
    250 	 */
    251 
    252 	p2->p_stat = SIDL;			/* protect against others */
    253 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
    254 
    255 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    256 
    257 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
    258 
    259 	/*
    260 	 * END PID ALLOCATION.
    261 	 */
    262 	proclist_unlock_write(s);
    263 
    264 	/*
    265 	 * Make a proc table entry for the new process.
    266 	 * Start by zeroing the section of proc that is zero-initialized,
    267 	 * then copy the section that is copied directly from the parent.
    268 	 */
    269 	memset(&p2->p_startzero, 0,
    270 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
    271 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    272 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
    273 
    274 #if !defined(MULTIPROCESSOR)
    275 	/*
    276 	 * In the single-processor case, all processes will always run
    277 	 * on the same CPU.  So, initialize the child's CPU to the parent's
    278 	 * now.  In the multiprocessor case, the child's CPU will be
    279 	 * initialized in the low-level context switch code when the
    280 	 * process runs.
    281 	 */
    282 	p2->p_cpu = p1->p_cpu;
    283 #endif /* ! MULTIPROCESSOR */
    284 
    285 	/*
    286 	 * Duplicate sub-structures as needed.
    287 	 * Increase reference counts on shared objects.
    288 	 * The p_stats and p_sigacts substructs are set in vm_fork.
    289 	 */
    290 	p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
    291 	p2->p_emul = p1->p_emul;
    292 	if (p1->p_flag & P_PROFIL)
    293 		startprofclock(p2);
    294 	p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
    295 	memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
    296 	p2->p_cred->p_refcnt = 1;
    297 	crhold(p1->p_ucred);
    298 
    299 	/* bump references to the text vnode (for procfs) */
    300 	p2->p_textvp = p1->p_textvp;
    301 	if (p2->p_textvp)
    302 		VREF(p2->p_textvp);
    303 
    304 	if (flags & FORK_SHAREFILES)
    305 		fdshare(p1, p2);
    306 	else
    307 		p2->p_fd = fdcopy(p1);
    308 
    309 	if (flags & FORK_SHARECWD)
    310 		cwdshare(p1, p2);
    311 	else
    312 		p2->p_cwdi = cwdinit(p1);
    313 
    314 	/*
    315 	 * If p_limit is still copy-on-write, bump refcnt,
    316 	 * otherwise get a copy that won't be modified.
    317 	 * (If PL_SHAREMOD is clear, the structure is shared
    318 	 * copy-on-write.)
    319 	 */
    320 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
    321 		p2->p_limit = limcopy(p1->p_limit);
    322 	else {
    323 		p2->p_limit = p1->p_limit;
    324 		p2->p_limit->p_refcnt++;
    325 	}
    326 
    327 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
    328 		p2->p_flag |= P_CONTROLT;
    329 	if (flags & FORK_PPWAIT)
    330 		p2->p_flag |= P_PPWAIT;
    331 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    332 	p2->p_pptr = p1;
    333 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
    334 	LIST_INIT(&p2->p_children);
    335 
    336 	callout_init(&p2->p_realit_ch);
    337 	callout_init(&p2->p_tsleep_ch);
    338 
    339 #ifdef KTRACE
    340 	/*
    341 	 * Copy traceflag and tracefile if enabled.
    342 	 * If not inherited, these were zeroed above.
    343 	 */
    344 	if (p1->p_traceflag&KTRFAC_INHERIT) {
    345 		p2->p_traceflag = p1->p_traceflag;
    346 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    347 			ktradref(p2);
    348 	}
    349 #endif
    350 	scheduler_fork_hook(p1, p2);
    351 
    352 	/*
    353 	 * Create signal actions for the child process.
    354 	 */
    355 	if (flags & FORK_SHARESIGS)
    356 		sigactsshare(p1, p2);
    357 	else
    358 		p2->p_sigacts = sigactsinit(p1);
    359 
    360 	/*
    361 	 * This begins the section where we must prevent the parent
    362 	 * from being swapped.
    363 	 */
    364 	PHOLD(p1);
    365 
    366 	/*
    367 	 * Finish creating the child process.  It will return through a
    368 	 * different path later.
    369 	 */
    370 	p2->p_addr = (struct user *)uaddr;
    371 	uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
    372 	    stack, stacksize,
    373 	    (func != NULL) ? func : child_return,
    374 	    (arg != NULL) ? arg : p2);
    375 
    376 	/*
    377 	 * Make child runnable, set start time, and add to run queue.
    378 	 */
    379 	s = splstatclock();
    380 	p2->p_stats->p_start = time;
    381 	p2->p_acflag = AFORK;
    382 	p2->p_stat = SRUN;
    383 	setrunqueue(p2);
    384 	splx(s);
    385 
    386 	/*
    387 	 * Now can be swapped.
    388 	 */
    389 	PRELE(p1);
    390 
    391 	/*
    392 	 * Update stats now that we know the fork was successful.
    393 	 */
    394 	uvmexp.forks++;
    395 	if (flags & FORK_PPWAIT)
    396 		uvmexp.forks_ppwait++;
    397 	if (flags & FORK_SHAREVM)
    398 		uvmexp.forks_sharevm++;
    399 
    400 	/*
    401 	 * Pass a pointer to the new process to the caller.
    402 	 */
    403 	if (rnewprocp != NULL)
    404 		*rnewprocp = p2;
    405 
    406 	/*
    407 	 * Preserve synchronization semantics of vfork.  If waiting for
    408 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
    409 	 * proc (in case of exit).
    410 	 */
    411 	if (flags & FORK_PPWAIT)
    412 		while (p2->p_flag & P_PPWAIT)
    413 			tsleep(p1, PWAIT, "ppwait", 0);
    414 
    415 	/*
    416 	 * Return child pid to parent process,
    417 	 * marking us as parent via retval[1].
    418 	 */
    419 	if (retval != NULL) {
    420 		retval[0] = p2->p_pid;
    421 		retval[1] = 0;
    422 	}
    423 	return (0);
    424 }
    425