Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.75
      1 /*	$NetBSD: kern_fork.c,v 1.75 2000/11/07 12:41:52 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     41  */
     42 
     43 #include "opt_ktrace.h"
     44 #include "opt_multiprocessor.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/map.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/pool.h>
     53 #include <sys/mount.h>
     54 #include <sys/proc.h>
     55 #include <sys/resourcevar.h>
     56 #include <sys/vnode.h>
     57 #include <sys/file.h>
     58 #include <sys/acct.h>
     59 #include <sys/ktrace.h>
     60 #include <sys/vmmeter.h>
     61 #include <sys/sched.h>
     62 #include <sys/signalvar.h>
     63 
     64 #include <sys/syscallargs.h>
     65 
     66 #include <uvm/uvm_extern.h>
     67 
     68 int	nprocs = 1;		/* process 0 */
     69 
     70 /*ARGSUSED*/
     71 int
     72 sys_fork(struct proc *p, void *v, register_t *retval)
     73 {
     74 
     75 	return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
     76 }
     77 
     78 /*
     79  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
     80  * Address space is not shared, but parent is blocked until child exit.
     81  */
     82 /*ARGSUSED*/
     83 int
     84 sys_vfork(struct proc *p, void *v, register_t *retval)
     85 {
     86 
     87 	return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
     88 	    retval, NULL));
     89 }
     90 
     91 /*
     92  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
     93  * semantics.  Address space is shared, and parent is blocked until child exit.
     94  */
     95 /*ARGSUSED*/
     96 int
     97 sys___vfork14(struct proc *p, void *v, register_t *retval)
     98 {
     99 
    100 	return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    101 	    NULL, NULL, retval, NULL));
    102 }
    103 
    104 int
    105 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
    106     void (*func)(void *), void *arg, register_t *retval,
    107     struct proc **rnewprocp)
    108 {
    109 	struct proc *p2;
    110 	uid_t uid;
    111 	struct proc *newproc;
    112 	int count, s;
    113 	vaddr_t uaddr;
    114 	static int nextpid, pidchecked = 0;
    115 
    116 	/*
    117 	 * Although process entries are dynamically created, we still keep
    118 	 * a global limit on the maximum number we will create.  Don't allow
    119 	 * a nonprivileged user to use the last process; don't let root
    120 	 * exceed the limit. The variable nprocs is the current number of
    121 	 * processes, maxproc is the limit.
    122 	 */
    123 	uid = p1->p_cred->p_ruid;
    124 	if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
    125 			    nprocs >= maxproc)) {
    126 		tablefull("proc", "increase kern.maxproc or NPROC");
    127 		return (EAGAIN);
    128 	}
    129 
    130 	/*
    131 	 * Increment the count of procs running with this uid. Don't allow
    132 	 * a nonprivileged user to exceed their current limit.
    133 	 */
    134 	count = chgproccnt(uid, 1);
    135 	if (__predict_false(uid != 0 && count >
    136 			    p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    137 		(void)chgproccnt(uid, -1);
    138 		return (EAGAIN);
    139 	}
    140 
    141 	/*
    142 	 * Allocate virtual address space for the U-area now, while it
    143 	 * is still easy to abort the fork operation if we're out of
    144 	 * kernel virtual address space.  The actual U-area pages will
    145 	 * be allocated and wired in vm_fork().
    146 	 */
    147 	uaddr = uvm_km_valloc(kernel_map, USPACE);
    148 	if (__predict_false(uaddr == 0)) {
    149 		(void)chgproccnt(uid, -1);
    150 		return (ENOMEM);
    151 	}
    152 
    153 	/*
    154 	 * We are now committed to the fork.  From here on, we may
    155 	 * block on resources, but resource allocation may NOT fail.
    156 	 */
    157 
    158 	/* Allocate new proc. */
    159 	newproc = pool_get(&proc_pool, PR_WAITOK);
    160 
    161 	/*
    162 	 * BEGIN PID ALLOCATION.
    163 	 */
    164 	s = proclist_lock_write();
    165 
    166 	/*
    167 	 * Find an unused process ID.  We remember a range of unused IDs
    168 	 * ready to use (from nextpid+1 through pidchecked-1).
    169 	 */
    170 	nextpid++;
    171 retry:
    172 	/*
    173 	 * If the process ID prototype has wrapped around,
    174 	 * restart somewhat above 0, as the low-numbered procs
    175 	 * tend to include daemons that don't exit.
    176 	 */
    177 	if (nextpid >= PID_MAX) {
    178 		nextpid = 100;
    179 		pidchecked = 0;
    180 	}
    181 	if (nextpid >= pidchecked) {
    182 		const struct proclist_desc *pd;
    183 
    184 		pidchecked = PID_MAX;
    185 		/*
    186 		 * Scan the process lists to check whether this pid
    187 		 * is in use.  Remember the lowest pid that's greater
    188 		 * than nextpid, so we can avoid checking for a while.
    189 		 */
    190 		pd = proclists;
    191 again:
    192 		for (p2 = LIST_FIRST(pd->pd_list); p2 != 0;
    193 		     p2 = LIST_NEXT(p2, p_list)) {
    194 			while (p2->p_pid == nextpid ||
    195 			    p2->p_pgrp->pg_id == nextpid ||
    196 			    p2->p_session->s_sid == nextpid) {
    197 				nextpid++;
    198 				if (nextpid >= pidchecked)
    199 					goto retry;
    200 			}
    201 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
    202 				pidchecked = p2->p_pid;
    203 
    204 			if (p2->p_pgrp->pg_id > nextpid &&
    205 			    pidchecked > p2->p_pgrp->pg_id)
    206 				pidchecked = p2->p_pgrp->pg_id;
    207 
    208 			if (p2->p_session->s_sid > nextpid &&
    209 			    pidchecked > p2->p_session->s_sid)
    210 				pidchecked = p2->p_session->s_sid;
    211 		}
    212 
    213 		/*
    214 		 * If there's another list, scan it.  If we have checked
    215 		 * them all, we've found one!
    216 		 */
    217 		pd++;
    218 		if (pd->pd_list != NULL)
    219 			goto again;
    220 	}
    221 
    222 	nprocs++;
    223 	p2 = newproc;
    224 
    225 	/* Record the pid we've allocated. */
    226 	p2->p_pid = nextpid;
    227 
    228 	/* Record the signal to be delivered to the parent on exit. */
    229 	p2->p_exitsig = exitsig;
    230 
    231 	/*
    232 	 * Put the proc on allproc before unlocking PID allocation
    233 	 * so that waiters won't grab it as soon as we unlock.
    234 	 */
    235 
    236 	p2->p_stat = SIDL;			/* protect against others */
    237 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
    238 
    239 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    240 
    241 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
    242 
    243 	/*
    244 	 * END PID ALLOCATION.
    245 	 */
    246 	proclist_unlock_write(s);
    247 
    248 	/*
    249 	 * Make a proc table entry for the new process.
    250 	 * Start by zeroing the section of proc that is zero-initialized,
    251 	 * then copy the section that is copied directly from the parent.
    252 	 */
    253 	memset(&p2->p_startzero, 0,
    254 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
    255 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    256 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
    257 
    258 #if !defined(MULTIPROCESSOR)
    259 	/*
    260 	 * In the single-processor case, all processes will always run
    261 	 * on the same CPU.  So, initialize the child's CPU to the parent's
    262 	 * now.  In the multiprocessor case, the child's CPU will be
    263 	 * initialized in the low-level context switch code when the
    264 	 * process runs.
    265 	 */
    266 	p2->p_cpu = p1->p_cpu;
    267 #else
    268 	/*
    269 	 * zero child's cpu pointer so we don't get trash.
    270 	 */
    271 	p2->p_cpu = NULL;
    272 #endif /* ! MULTIPROCESSOR */
    273 
    274 	/*
    275 	 * Duplicate sub-structures as needed.
    276 	 * Increase reference counts on shared objects.
    277 	 * The p_stats and p_sigacts substructs are set in vm_fork.
    278 	 */
    279 	p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
    280 	p2->p_emul = p1->p_emul;
    281 	if (p1->p_flag & P_PROFIL)
    282 		startprofclock(p2);
    283 	p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
    284 	memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
    285 	p2->p_cred->p_refcnt = 1;
    286 	crhold(p1->p_ucred);
    287 
    288 	/* bump references to the text vnode (for procfs) */
    289 	p2->p_textvp = p1->p_textvp;
    290 	if (p2->p_textvp)
    291 		VREF(p2->p_textvp);
    292 
    293 	if (flags & FORK_SHAREFILES)
    294 		fdshare(p1, p2);
    295 	else
    296 		p2->p_fd = fdcopy(p1);
    297 
    298 	if (flags & FORK_SHARECWD)
    299 		cwdshare(p1, p2);
    300 	else
    301 		p2->p_cwdi = cwdinit(p1);
    302 
    303 	/*
    304 	 * If p_limit is still copy-on-write, bump refcnt,
    305 	 * otherwise get a copy that won't be modified.
    306 	 * (If PL_SHAREMOD is clear, the structure is shared
    307 	 * copy-on-write.)
    308 	 */
    309 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
    310 		p2->p_limit = limcopy(p1->p_limit);
    311 	else {
    312 		p2->p_limit = p1->p_limit;
    313 		p2->p_limit->p_refcnt++;
    314 	}
    315 
    316 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
    317 		p2->p_flag |= P_CONTROLT;
    318 	if (flags & FORK_PPWAIT)
    319 		p2->p_flag |= P_PPWAIT;
    320 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    321 	p2->p_pptr = p1;
    322 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
    323 	LIST_INIT(&p2->p_children);
    324 
    325 	callout_init(&p2->p_realit_ch);
    326 	callout_init(&p2->p_tsleep_ch);
    327 
    328 #ifdef KTRACE
    329 	/*
    330 	 * Copy traceflag and tracefile if enabled.
    331 	 * If not inherited, these were zeroed above.
    332 	 */
    333 	if (p1->p_traceflag&KTRFAC_INHERIT) {
    334 		p2->p_traceflag = p1->p_traceflag;
    335 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    336 			ktradref(p2);
    337 	}
    338 #endif
    339 	scheduler_fork_hook(p1, p2);
    340 
    341 	/*
    342 	 * Create signal actions for the child process.
    343 	 */
    344 	if (flags & FORK_SHARESIGS)
    345 		sigactsshare(p1, p2);
    346 	else
    347 		p2->p_sigacts = sigactsinit(p1);
    348 
    349 	/*
    350 	 * If emulation has process fork hook, call it now.
    351 	 */
    352 	if (p2->p_emul->e_proc_fork)
    353 		(*p2->p_emul->e_proc_fork)(p2, p1);
    354 
    355 	/*
    356 	 * This begins the section where we must prevent the parent
    357 	 * from being swapped.
    358 	 */
    359 	PHOLD(p1);
    360 
    361 	/*
    362 	 * Finish creating the child process.  It will return through a
    363 	 * different path later.
    364 	 */
    365 	p2->p_addr = (struct user *)uaddr;
    366 	uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
    367 	    stack, stacksize,
    368 	    (func != NULL) ? func : child_return,
    369 	    (arg != NULL) ? arg : p2);
    370 
    371 	/*
    372 	 * Make child runnable, set start time, and add to run queue.
    373 	 */
    374 	SCHED_LOCK(s);
    375 	p2->p_stats->p_start = time;
    376 	p2->p_acflag = AFORK;
    377 	p2->p_stat = SRUN;
    378 	setrunqueue(p2);
    379 	SCHED_UNLOCK(s);
    380 
    381 	/*
    382 	 * Now can be swapped.
    383 	 */
    384 	PRELE(p1);
    385 
    386 	/*
    387 	 * Update stats now that we know the fork was successful.
    388 	 */
    389 	uvmexp.forks++;
    390 	if (flags & FORK_PPWAIT)
    391 		uvmexp.forks_ppwait++;
    392 	if (flags & FORK_SHAREVM)
    393 		uvmexp.forks_sharevm++;
    394 
    395 	/*
    396 	 * Pass a pointer to the new process to the caller.
    397 	 */
    398 	if (rnewprocp != NULL)
    399 		*rnewprocp = p2;
    400 
    401 	/*
    402 	 * Preserve synchronization semantics of vfork.  If waiting for
    403 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
    404 	 * proc (in case of exit).
    405 	 */
    406 	if (flags & FORK_PPWAIT)
    407 		while (p2->p_flag & P_PPWAIT)
    408 			tsleep(p1, PWAIT, "ppwait", 0);
    409 
    410 	/*
    411 	 * Return child pid to parent process,
    412 	 * marking us as parent via retval[1].
    413 	 */
    414 	if (retval != NULL) {
    415 		retval[0] = p2->p_pid;
    416 		retval[1] = 0;
    417 	}
    418 
    419 #ifdef KTRACE
    420 	if (KTRPOINT(p2, KTR_EMUL))
    421 		ktremul(p2);
    422 #endif
    423 
    424 	return (0);
    425 }
    426 
    427 #if defined(MULTIPROCESSOR)
    428 /*
    429  * XXX This is a slight hack to get newly-formed processes to
    430  * XXX acquire the kernel lock as soon as they run.
    431  */
    432 void
    433 proc_trampoline_mp(void)
    434 {
    435 	struct proc *p = curproc;
    436 
    437 	SCHED_ASSERT_UNLOCKED();
    438 	KERNEL_PROC_LOCK(p);
    439 }
    440 #endif
    441