kern_fork.c revision 1.76 1 /* $NetBSD: kern_fork.c,v 1.76 2000/11/08 05:16:23 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
41 */
42
43 #include "opt_ktrace.h"
44 #include "opt_multiprocessor.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/map.h>
49 #include <sys/filedesc.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/pool.h>
53 #include <sys/mount.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/acct.h>
59 #include <sys/ktrace.h>
60 #include <sys/vmmeter.h>
61 #include <sys/sched.h>
62 #include <sys/signalvar.h>
63
64 #include <sys/syscallargs.h>
65
66 #include <uvm/uvm_extern.h>
67
68 int nprocs = 1; /* process 0 */
69
70 /*ARGSUSED*/
71 int
72 sys_fork(struct proc *p, void *v, register_t *retval)
73 {
74
75 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
76 }
77
78 /*
79 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
80 * Address space is not shared, but parent is blocked until child exit.
81 */
82 /*ARGSUSED*/
83 int
84 sys_vfork(struct proc *p, void *v, register_t *retval)
85 {
86
87 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
88 retval, NULL));
89 }
90
91 /*
92 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
93 * semantics. Address space is shared, and parent is blocked until child exit.
94 */
95 /*ARGSUSED*/
96 int
97 sys___vfork14(struct proc *p, void *v, register_t *retval)
98 {
99
100 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
101 NULL, NULL, retval, NULL));
102 }
103
104 int
105 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
106 void (*func)(void *), void *arg, register_t *retval,
107 struct proc **rnewprocp)
108 {
109 struct proc *p2, *tp;
110 uid_t uid;
111 int count, s;
112 vaddr_t uaddr;
113 static int nextpid, pidchecked = 0;
114
115 /*
116 * Although process entries are dynamically created, we still keep
117 * a global limit on the maximum number we will create. Don't allow
118 * a nonprivileged user to use the last process; don't let root
119 * exceed the limit. The variable nprocs is the current number of
120 * processes, maxproc is the limit.
121 */
122 uid = p1->p_cred->p_ruid;
123 if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
124 nprocs >= maxproc)) {
125 tablefull("proc", "increase kern.maxproc or NPROC");
126 return (EAGAIN);
127 }
128 nprocs++;
129
130 /*
131 * Increment the count of procs running with this uid. Don't allow
132 * a nonprivileged user to exceed their current limit.
133 */
134 count = chgproccnt(uid, 1);
135 if (__predict_false(uid != 0 && count >
136 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
137 (void)chgproccnt(uid, -1);
138 nprocs--;
139 return (EAGAIN);
140 }
141
142 /*
143 * Allocate virtual address space for the U-area now, while it
144 * is still easy to abort the fork operation if we're out of
145 * kernel virtual address space. The actual U-area pages will
146 * be allocated and wired in vm_fork().
147 */
148 uaddr = uvm_km_valloc(kernel_map, USPACE);
149 if (__predict_false(uaddr == 0)) {
150 (void)chgproccnt(uid, -1);
151 nprocs--;
152 return (ENOMEM);
153 }
154
155 /*
156 * We are now committed to the fork. From here on, we may
157 * block on resources, but resource allocation may NOT fail.
158 */
159
160 /* Allocate new proc. */
161 p2 = pool_get(&proc_pool, PR_WAITOK);
162
163 /*
164 * Make a proc table entry for the new process.
165 * Start by zeroing the section of proc that is zero-initialized,
166 * then copy the section that is copied directly from the parent.
167 */
168 memset(&p2->p_startzero, 0,
169 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
170 memcpy(&p2->p_startcopy, &p1->p_startcopy,
171 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
172
173 #if !defined(MULTIPROCESSOR)
174 /*
175 * In the single-processor case, all processes will always run
176 * on the same CPU. So, initialize the child's CPU to the parent's
177 * now. In the multiprocessor case, the child's CPU will be
178 * initialized in the low-level context switch code when the
179 * process runs.
180 */
181 p2->p_cpu = p1->p_cpu;
182 #else
183 /*
184 * zero child's cpu pointer so we don't get trash.
185 */
186 p2->p_cpu = NULL;
187 #endif /* ! MULTIPROCESSOR */
188
189 /*
190 * Duplicate sub-structures as needed.
191 * Increase reference counts on shared objects.
192 * The p_stats and p_sigacts substructs are set in uvm_fork().
193 */
194 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
195 p2->p_emul = p1->p_emul;
196 if (p1->p_flag & P_PROFIL)
197 startprofclock(p2);
198 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
199 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
200 p2->p_cred->p_refcnt = 1;
201 crhold(p1->p_ucred);
202
203 /* bump references to the text vnode (for procfs) */
204 p2->p_textvp = p1->p_textvp;
205 if (p2->p_textvp)
206 VREF(p2->p_textvp);
207
208 if (flags & FORK_SHAREFILES)
209 fdshare(p1, p2);
210 else
211 p2->p_fd = fdcopy(p1);
212
213 if (flags & FORK_SHARECWD)
214 cwdshare(p1, p2);
215 else
216 p2->p_cwdi = cwdinit(p1);
217
218 /*
219 * If p_limit is still copy-on-write, bump refcnt,
220 * otherwise get a copy that won't be modified.
221 * (If PL_SHAREMOD is clear, the structure is shared
222 * copy-on-write.)
223 */
224 if (p1->p_limit->p_lflags & PL_SHAREMOD)
225 p2->p_limit = limcopy(p1->p_limit);
226 else {
227 p2->p_limit = p1->p_limit;
228 p2->p_limit->p_refcnt++;
229 }
230
231 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
232 p2->p_flag |= P_CONTROLT;
233 if (flags & FORK_PPWAIT)
234 p2->p_flag |= P_PPWAIT;
235 LIST_INSERT_AFTER(p1, p2, p_pglist);
236 p2->p_pptr = p1;
237 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
238 LIST_INIT(&p2->p_children);
239
240 callout_init(&p2->p_realit_ch);
241 callout_init(&p2->p_tsleep_ch);
242
243 #ifdef KTRACE
244 /*
245 * Copy traceflag and tracefile if enabled.
246 * If not inherited, these were zeroed above.
247 */
248 if (p1->p_traceflag&KTRFAC_INHERIT) {
249 p2->p_traceflag = p1->p_traceflag;
250 if ((p2->p_tracep = p1->p_tracep) != NULL)
251 ktradref(p2);
252 }
253 #endif
254 scheduler_fork_hook(p1, p2);
255
256 /*
257 * Create signal actions for the child process.
258 */
259 if (flags & FORK_SHARESIGS)
260 sigactsshare(p1, p2);
261 else
262 p2->p_sigacts = sigactsinit(p1);
263
264 /*
265 * If emulation has process fork hook, call it now.
266 */
267 if (p2->p_emul->e_proc_fork)
268 (*p2->p_emul->e_proc_fork)(p2, p1);
269
270 /*
271 * This begins the section where we must prevent the parent
272 * from being swapped.
273 */
274 PHOLD(p1);
275
276 /*
277 * Finish creating the child process. It will return through a
278 * different path later.
279 */
280 p2->p_addr = (struct user *)uaddr;
281 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
282 stack, stacksize,
283 (func != NULL) ? func : child_return,
284 (arg != NULL) ? arg : p2);
285
286 /*
287 * BEGIN PID ALLOCATION.
288 */
289 s = proclist_lock_write();
290
291 /*
292 * Find an unused process ID. We remember a range of unused IDs
293 * ready to use (from nextpid+1 through pidchecked-1).
294 */
295 nextpid++;
296 retry:
297 /*
298 * If the process ID prototype has wrapped around,
299 * restart somewhat above 0, as the low-numbered procs
300 * tend to include daemons that don't exit.
301 */
302 if (nextpid >= PID_MAX) {
303 nextpid = 100;
304 pidchecked = 0;
305 }
306 if (nextpid >= pidchecked) {
307 const struct proclist_desc *pd;
308
309 pidchecked = PID_MAX;
310 /*
311 * Scan the process lists to check whether this pid
312 * is in use. Remember the lowest pid that's greater
313 * than nextpid, so we can avoid checking for a while.
314 */
315 pd = proclists;
316 again:
317 LIST_FOREACH(tp, pd->pd_list, p_list) {
318 while (tp->p_pid == nextpid ||
319 tp->p_pgrp->pg_id == nextpid ||
320 tp->p_session->s_sid == nextpid) {
321 nextpid++;
322 if (nextpid >= pidchecked)
323 goto retry;
324 }
325 if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
326 pidchecked = tp->p_pid;
327
328 if (tp->p_pgrp->pg_id > nextpid &&
329 pidchecked > tp->p_pgrp->pg_id)
330 pidchecked = tp->p_pgrp->pg_id;
331
332 if (tp->p_session->s_sid > nextpid &&
333 pidchecked > tp->p_session->s_sid)
334 pidchecked = tp->p_session->s_sid;
335 }
336
337 /*
338 * If there's another list, scan it. If we have checked
339 * them all, we've found one!
340 */
341 pd++;
342 if (pd->pd_list != NULL)
343 goto again;
344 }
345
346 /* Record the pid we've allocated. */
347 p2->p_pid = nextpid;
348
349 /* Record the signal to be delivered to the parent on exit. */
350 p2->p_exitsig = exitsig;
351
352 /*
353 * Put the proc on allproc before unlocking PID allocation
354 * so that waiters won't grab it as soon as we unlock.
355 */
356
357 p2->p_stat = SIDL; /* protect against others */
358 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
359
360 LIST_INSERT_HEAD(&allproc, p2, p_list);
361
362 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
363
364 /*
365 * END PID ALLOCATION.
366 */
367 proclist_unlock_write(s);
368
369 /*
370 * Make child runnable, set start time, and add to run queue.
371 */
372 SCHED_LOCK(s);
373 p2->p_stats->p_start = time;
374 p2->p_acflag = AFORK;
375 p2->p_stat = SRUN;
376 setrunqueue(p2);
377 SCHED_UNLOCK(s);
378
379 /*
380 * Now can be swapped.
381 */
382 PRELE(p1);
383
384 /*
385 * Update stats now that we know the fork was successful.
386 */
387 uvmexp.forks++;
388 if (flags & FORK_PPWAIT)
389 uvmexp.forks_ppwait++;
390 if (flags & FORK_SHAREVM)
391 uvmexp.forks_sharevm++;
392
393 /*
394 * Pass a pointer to the new process to the caller.
395 */
396 if (rnewprocp != NULL)
397 *rnewprocp = p2;
398
399 /*
400 * Preserve synchronization semantics of vfork. If waiting for
401 * child to exec or exit, set P_PPWAIT on child, and sleep on our
402 * proc (in case of exit).
403 */
404 if (flags & FORK_PPWAIT)
405 while (p2->p_flag & P_PPWAIT)
406 tsleep(p1, PWAIT, "ppwait", 0);
407
408 /*
409 * Return child pid to parent process,
410 * marking us as parent via retval[1].
411 */
412 if (retval != NULL) {
413 retval[0] = p2->p_pid;
414 retval[1] = 0;
415 }
416
417 #ifdef KTRACE
418 if (KTRPOINT(p2, KTR_EMUL))
419 ktremul(p2);
420 #endif
421
422 return (0);
423 }
424
425 #if defined(MULTIPROCESSOR)
426 /*
427 * XXX This is a slight hack to get newly-formed processes to
428 * XXX acquire the kernel lock as soon as they run.
429 */
430 void
431 proc_trampoline_mp(void)
432 {
433 struct proc *p = curproc;
434
435 SCHED_ASSERT_UNLOCKED();
436 KERNEL_PROC_LOCK(p);
437 }
438 #endif
439