Home | History | Annotate | Line # | Download | only in kern
kern_fork.c revision 1.81
      1 /*	$NetBSD: kern_fork.c,v 1.81 2000/12/22 22:59:00 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     41  */
     42 
     43 #include "opt_ktrace.h"
     44 #include "opt_multiprocessor.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/map.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/kernel.h>
     51 #include <sys/malloc.h>
     52 #include <sys/pool.h>
     53 #include <sys/mount.h>
     54 #include <sys/proc.h>
     55 #include <sys/resourcevar.h>
     56 #include <sys/vnode.h>
     57 #include <sys/file.h>
     58 #include <sys/acct.h>
     59 #include <sys/ktrace.h>
     60 #include <sys/vmmeter.h>
     61 #include <sys/sched.h>
     62 #include <sys/signalvar.h>
     63 
     64 #include <sys/syscallargs.h>
     65 
     66 #include <uvm/uvm_extern.h>
     67 
     68 int	nprocs = 1;		/* process 0 */
     69 
     70 /*ARGSUSED*/
     71 int
     72 sys_fork(struct proc *p, void *v, register_t *retval)
     73 {
     74 
     75 	return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
     76 }
     77 
     78 /*
     79  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
     80  * Address space is not shared, but parent is blocked until child exit.
     81  */
     82 /*ARGSUSED*/
     83 int
     84 sys_vfork(struct proc *p, void *v, register_t *retval)
     85 {
     86 
     87 	return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
     88 	    retval, NULL));
     89 }
     90 
     91 /*
     92  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
     93  * semantics.  Address space is shared, and parent is blocked until child exit.
     94  */
     95 /*ARGSUSED*/
     96 int
     97 sys___vfork14(struct proc *p, void *v, register_t *retval)
     98 {
     99 
    100 	return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    101 	    NULL, NULL, retval, NULL));
    102 }
    103 
    104 int
    105 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
    106     void (*func)(void *), void *arg, register_t *retval,
    107     struct proc **rnewprocp)
    108 {
    109 	struct proc *p2, *tp;
    110 	uid_t uid;
    111 	int count, s;
    112 	vaddr_t uaddr;
    113 	static int nextpid, pidchecked = 0;
    114 
    115 	/*
    116 	 * Although process entries are dynamically created, we still keep
    117 	 * a global limit on the maximum number we will create.  Don't allow
    118 	 * a nonprivileged user to use the last process; don't let root
    119 	 * exceed the limit. The variable nprocs is the current number of
    120 	 * processes, maxproc is the limit.
    121 	 */
    122 	uid = p1->p_cred->p_ruid;
    123 	if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
    124 			    nprocs >= maxproc)) {
    125 		tablefull("proc", "increase kern.maxproc or NPROC");
    126 		return (EAGAIN);
    127 	}
    128 	nprocs++;
    129 
    130 	/*
    131 	 * Increment the count of procs running with this uid. Don't allow
    132 	 * a nonprivileged user to exceed their current limit.
    133 	 */
    134 	count = chgproccnt(uid, 1);
    135 	if (__predict_false(uid != 0 && count >
    136 			    p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    137 		(void)chgproccnt(uid, -1);
    138 		nprocs--;
    139 		return (EAGAIN);
    140 	}
    141 
    142 	/*
    143 	 * Allocate virtual address space for the U-area now, while it
    144 	 * is still easy to abort the fork operation if we're out of
    145 	 * kernel virtual address space.  The actual U-area pages will
    146 	 * be allocated and wired in vm_fork().
    147 	 */
    148 
    149 #ifndef USPACE_ALIGN
    150 #define USPACE_ALIGN	0
    151 #endif
    152 
    153 	uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
    154 	if (__predict_false(uaddr == 0)) {
    155 		(void)chgproccnt(uid, -1);
    156 		nprocs--;
    157 		return (ENOMEM);
    158 	}
    159 
    160 	/*
    161 	 * We are now committed to the fork.  From here on, we may
    162 	 * block on resources, but resource allocation may NOT fail.
    163 	 */
    164 
    165 	/* Allocate new proc. */
    166 	p2 = pool_get(&proc_pool, PR_WAITOK);
    167 
    168 	/*
    169 	 * Make a proc table entry for the new process.
    170 	 * Start by zeroing the section of proc that is zero-initialized,
    171 	 * then copy the section that is copied directly from the parent.
    172 	 */
    173 	memset(&p2->p_startzero, 0,
    174 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
    175 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    176 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
    177 
    178 #if !defined(MULTIPROCESSOR)
    179 	/*
    180 	 * In the single-processor case, all processes will always run
    181 	 * on the same CPU.  So, initialize the child's CPU to the parent's
    182 	 * now.  In the multiprocessor case, the child's CPU will be
    183 	 * initialized in the low-level context switch code when the
    184 	 * process runs.
    185 	 */
    186 	p2->p_cpu = p1->p_cpu;
    187 #else
    188 	/*
    189 	 * zero child's cpu pointer so we don't get trash.
    190 	 */
    191 	p2->p_cpu = NULL;
    192 #endif /* ! MULTIPROCESSOR */
    193 
    194 	/*
    195 	 * Duplicate sub-structures as needed.
    196 	 * Increase reference counts on shared objects.
    197 	 * The p_stats and p_sigacts substructs are set in uvm_fork().
    198 	 */
    199 	p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
    200 	p2->p_emul = p1->p_emul;
    201 #ifdef __HAVE_SYSCALL_INTERN
    202 	(*p2->p_emul->e_syscall_intern)(p2);
    203 #endif
    204 	if (p1->p_flag & P_PROFIL)
    205 		startprofclock(p2);
    206 	p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
    207 	memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
    208 	p2->p_cred->p_refcnt = 1;
    209 	crhold(p1->p_ucred);
    210 
    211 	/* bump references to the text vnode (for procfs) */
    212 	p2->p_textvp = p1->p_textvp;
    213 	if (p2->p_textvp)
    214 		VREF(p2->p_textvp);
    215 
    216 	if (flags & FORK_SHAREFILES)
    217 		fdshare(p1, p2);
    218 	else
    219 		p2->p_fd = fdcopy(p1);
    220 
    221 	if (flags & FORK_SHARECWD)
    222 		cwdshare(p1, p2);
    223 	else
    224 		p2->p_cwdi = cwdinit(p1);
    225 
    226 	/*
    227 	 * If p_limit is still copy-on-write, bump refcnt,
    228 	 * otherwise get a copy that won't be modified.
    229 	 * (If PL_SHAREMOD is clear, the structure is shared
    230 	 * copy-on-write.)
    231 	 */
    232 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
    233 		p2->p_limit = limcopy(p1->p_limit);
    234 	else {
    235 		p2->p_limit = p1->p_limit;
    236 		p2->p_limit->p_refcnt++;
    237 	}
    238 
    239 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
    240 		p2->p_flag |= P_CONTROLT;
    241 	if (flags & FORK_PPWAIT)
    242 		p2->p_flag |= P_PPWAIT;
    243 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    244 	p2->p_pptr = p1;
    245 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
    246 	LIST_INIT(&p2->p_children);
    247 
    248 	callout_init(&p2->p_realit_ch);
    249 	callout_init(&p2->p_tsleep_ch);
    250 
    251 #ifdef KTRACE
    252 	/*
    253 	 * Copy traceflag and tracefile if enabled.
    254 	 * If not inherited, these were zeroed above.
    255 	 */
    256 	if (p1->p_traceflag&KTRFAC_INHERIT) {
    257 		p2->p_traceflag = p1->p_traceflag;
    258 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    259 			ktradref(p2);
    260 	}
    261 #endif
    262 	scheduler_fork_hook(p1, p2);
    263 
    264 	/*
    265 	 * Create signal actions for the child process.
    266 	 */
    267 	sigactsinit(p2, p1, flags & FORK_SHARESIGS);
    268 
    269 	/*
    270 	 * If emulation has process fork hook, call it now.
    271 	 */
    272 	if (p2->p_emul->e_proc_fork)
    273 		(*p2->p_emul->e_proc_fork)(p2, p1);
    274 
    275 	/*
    276 	 * This begins the section where we must prevent the parent
    277 	 * from being swapped.
    278 	 */
    279 	PHOLD(p1);
    280 
    281 	/*
    282 	 * Finish creating the child process.  It will return through a
    283 	 * different path later.
    284 	 */
    285 	p2->p_addr = (struct user *)uaddr;
    286 	uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
    287 	    stack, stacksize,
    288 	    (func != NULL) ? func : child_return,
    289 	    (arg != NULL) ? arg : p2);
    290 
    291 	/*
    292 	 * BEGIN PID ALLOCATION.
    293 	 */
    294 	s = proclist_lock_write();
    295 
    296 	/*
    297 	 * Find an unused process ID.  We remember a range of unused IDs
    298 	 * ready to use (from nextpid+1 through pidchecked-1).
    299 	 */
    300 	nextpid++;
    301 retry:
    302 	/*
    303 	 * If the process ID prototype has wrapped around,
    304 	 * restart somewhat above 0, as the low-numbered procs
    305 	 * tend to include daemons that don't exit.
    306 	 */
    307 	if (nextpid >= PID_MAX) {
    308 		nextpid = 100;
    309 		pidchecked = 0;
    310 	}
    311 	if (nextpid >= pidchecked) {
    312 		const struct proclist_desc *pd;
    313 
    314 		pidchecked = PID_MAX;
    315 		/*
    316 		 * Scan the process lists to check whether this pid
    317 		 * is in use.  Remember the lowest pid that's greater
    318 		 * than nextpid, so we can avoid checking for a while.
    319 		 */
    320 		pd = proclists;
    321 again:
    322 		LIST_FOREACH(tp, pd->pd_list, p_list) {
    323 			while (tp->p_pid == nextpid ||
    324 			    tp->p_pgrp->pg_id == nextpid ||
    325 			    tp->p_session->s_sid == nextpid) {
    326 				nextpid++;
    327 				if (nextpid >= pidchecked)
    328 					goto retry;
    329 			}
    330 			if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
    331 				pidchecked = tp->p_pid;
    332 
    333 			if (tp->p_pgrp->pg_id > nextpid &&
    334 			    pidchecked > tp->p_pgrp->pg_id)
    335 				pidchecked = tp->p_pgrp->pg_id;
    336 
    337 			if (tp->p_session->s_sid > nextpid &&
    338 			    pidchecked > tp->p_session->s_sid)
    339 				pidchecked = tp->p_session->s_sid;
    340 		}
    341 
    342 		/*
    343 		 * If there's another list, scan it.  If we have checked
    344 		 * them all, we've found one!
    345 		 */
    346 		pd++;
    347 		if (pd->pd_list != NULL)
    348 			goto again;
    349 	}
    350 
    351 	/* Record the pid we've allocated. */
    352 	p2->p_pid = nextpid;
    353 
    354 	/* Record the signal to be delivered to the parent on exit. */
    355 	p2->p_exitsig = exitsig;
    356 
    357 	/*
    358 	 * Put the proc on allproc before unlocking PID allocation
    359 	 * so that waiters won't grab it as soon as we unlock.
    360 	 */
    361 
    362 	p2->p_stat = SIDL;			/* protect against others */
    363 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
    364 
    365 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    366 
    367 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
    368 
    369 	/*
    370 	 * END PID ALLOCATION.
    371 	 */
    372 	proclist_unlock_write(s);
    373 
    374 	/*
    375 	 * Make child runnable, set start time, and add to run queue.
    376 	 */
    377 	SCHED_LOCK(s);
    378 	p2->p_stats->p_start = time;
    379 	p2->p_acflag = AFORK;
    380 	p2->p_stat = SRUN;
    381 	setrunqueue(p2);
    382 	SCHED_UNLOCK(s);
    383 
    384 	/*
    385 	 * Now can be swapped.
    386 	 */
    387 	PRELE(p1);
    388 
    389 	/*
    390 	 * Update stats now that we know the fork was successful.
    391 	 */
    392 	uvmexp.forks++;
    393 	if (flags & FORK_PPWAIT)
    394 		uvmexp.forks_ppwait++;
    395 	if (flags & FORK_SHAREVM)
    396 		uvmexp.forks_sharevm++;
    397 
    398 	/*
    399 	 * Pass a pointer to the new process to the caller.
    400 	 */
    401 	if (rnewprocp != NULL)
    402 		*rnewprocp = p2;
    403 
    404 #ifdef KTRACE
    405 	if (KTRPOINT(p2, KTR_EMUL))
    406 		ktremul(p2);
    407 #endif
    408 
    409 	/*
    410 	 * Preserve synchronization semantics of vfork.  If waiting for
    411 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
    412 	 * proc (in case of exit).
    413 	 */
    414 	if (flags & FORK_PPWAIT)
    415 		while (p2->p_flag & P_PPWAIT)
    416 			tsleep(p1, PWAIT, "ppwait", 0);
    417 
    418 	/*
    419 	 * Return child pid to parent process,
    420 	 * marking us as parent via retval[1].
    421 	 */
    422 	if (retval != NULL) {
    423 		retval[0] = p2->p_pid;
    424 		retval[1] = 0;
    425 	}
    426 
    427 	return (0);
    428 }
    429 
    430 #if defined(MULTIPROCESSOR)
    431 /*
    432  * XXX This is a slight hack to get newly-formed processes to
    433  * XXX acquire the kernel lock as soon as they run.
    434  */
    435 void
    436 proc_trampoline_mp(void)
    437 {
    438 	struct proc *p = curproc;
    439 
    440 	SCHED_ASSERT_UNLOCKED();
    441 	KERNEL_PROC_LOCK(p);
    442 }
    443 #endif
    444