kern_fork.c revision 1.85 1 /* $NetBSD: kern_fork.c,v 1.85 2001/07/01 18:06:11 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
78 */
79
80 #include "opt_ktrace.h"
81 #include "opt_multiprocessor.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/map.h>
86 #include <sys/filedesc.h>
87 #include <sys/kernel.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/mount.h>
91 #include <sys/proc.h>
92 #include <sys/resourcevar.h>
93 #include <sys/vnode.h>
94 #include <sys/file.h>
95 #include <sys/acct.h>
96 #include <sys/ktrace.h>
97 #include <sys/vmmeter.h>
98 #include <sys/sched.h>
99 #include <sys/signalvar.h>
100
101 #include <sys/syscallargs.h>
102
103 #include <uvm/uvm_extern.h>
104
105 int nprocs = 1; /* process 0 */
106
107 /*ARGSUSED*/
108 int
109 sys_fork(struct proc *p, void *v, register_t *retval)
110 {
111
112 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
113 }
114
115 /*
116 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
117 * Address space is not shared, but parent is blocked until child exit.
118 */
119 /*ARGSUSED*/
120 int
121 sys_vfork(struct proc *p, void *v, register_t *retval)
122 {
123
124 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
125 retval, NULL));
126 }
127
128 /*
129 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
130 * semantics. Address space is shared, and parent is blocked until child exit.
131 */
132 /*ARGSUSED*/
133 int
134 sys___vfork14(struct proc *p, void *v, register_t *retval)
135 {
136
137 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
138 NULL, NULL, retval, NULL));
139 }
140
141 /*
142 * Linux-compatible __clone(2) system call.
143 */
144 int
145 sys___clone(struct proc *p, void *v, register_t *retval)
146 {
147 struct sys___clone_args /* {
148 syscallarg(int) flags;
149 syscallarg(void *) stack;
150 } */ *uap = v;
151 int flags, sig;
152
153 /*
154 * We don't support the CLONE_PID or CLONE_PTRACE flags.
155 */
156 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
157 return (EINVAL);
158
159 if (SCARG(uap, flags) & CLONE_VM)
160 flags |= FORK_SHAREVM;
161 if (SCARG(uap, flags) & CLONE_FS)
162 flags |= FORK_SHARECWD;
163 if (SCARG(uap, flags) & CLONE_FILES)
164 flags |= FORK_SHAREFILES;
165 if (SCARG(uap, flags) & CLONE_SIGHAND)
166 flags |= FORK_SHARESIGS;
167 if (SCARG(uap, flags) & CLONE_VFORK)
168 flags |= FORK_PPWAIT;
169
170 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
171 if (sig < 0 || sig >= _NSIG)
172 return (EINVAL);
173
174 /*
175 * Note that the Linux API does not provide a portable way of
176 * specifying the stack area; the caller must know if the stack
177 * grows up or down. So, we pass a stack size of 0, so that the
178 * code that makes this adjustment is a noop.
179 */
180 return (fork1(p, flags, sig, SCARG(uap, stack), 0,
181 NULL, NULL, retval, NULL));
182 }
183
184 int
185 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
186 void (*func)(void *), void *arg, register_t *retval,
187 struct proc **rnewprocp)
188 {
189 struct proc *p2, *tp;
190 uid_t uid;
191 int count, s;
192 vaddr_t uaddr;
193 static int nextpid, pidchecked;
194
195 /*
196 * Although process entries are dynamically created, we still keep
197 * a global limit on the maximum number we will create. Don't allow
198 * a nonprivileged user to use the last process; don't let root
199 * exceed the limit. The variable nprocs is the current number of
200 * processes, maxproc is the limit.
201 */
202 uid = p1->p_cred->p_ruid;
203 if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
204 nprocs >= maxproc)) {
205 tablefull("proc", "increase kern.maxproc or NPROC");
206 return (EAGAIN);
207 }
208 nprocs++;
209
210 /*
211 * Increment the count of procs running with this uid. Don't allow
212 * a nonprivileged user to exceed their current limit.
213 */
214 count = chgproccnt(uid, 1);
215 if (__predict_false(uid != 0 && count >
216 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
217 (void)chgproccnt(uid, -1);
218 nprocs--;
219 return (EAGAIN);
220 }
221
222 /*
223 * Allocate virtual address space for the U-area now, while it
224 * is still easy to abort the fork operation if we're out of
225 * kernel virtual address space. The actual U-area pages will
226 * be allocated and wired in vm_fork().
227 */
228
229 #ifndef USPACE_ALIGN
230 #define USPACE_ALIGN 0
231 #endif
232
233 uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
234 if (__predict_false(uaddr == 0)) {
235 (void)chgproccnt(uid, -1);
236 nprocs--;
237 return (ENOMEM);
238 }
239
240 /*
241 * We are now committed to the fork. From here on, we may
242 * block on resources, but resource allocation may NOT fail.
243 */
244
245 /* Allocate new proc. */
246 p2 = pool_get(&proc_pool, PR_WAITOK);
247
248 /*
249 * Make a proc table entry for the new process.
250 * Start by zeroing the section of proc that is zero-initialized,
251 * then copy the section that is copied directly from the parent.
252 */
253 memset(&p2->p_startzero, 0,
254 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
255 memcpy(&p2->p_startcopy, &p1->p_startcopy,
256 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
257
258 #if !defined(MULTIPROCESSOR)
259 /*
260 * In the single-processor case, all processes will always run
261 * on the same CPU. So, initialize the child's CPU to the parent's
262 * now. In the multiprocessor case, the child's CPU will be
263 * initialized in the low-level context switch code when the
264 * process runs.
265 */
266 p2->p_cpu = p1->p_cpu;
267 #else
268 /*
269 * zero child's cpu pointer so we don't get trash.
270 */
271 p2->p_cpu = NULL;
272 #endif /* ! MULTIPROCESSOR */
273
274 /*
275 * Duplicate sub-structures as needed.
276 * Increase reference counts on shared objects.
277 * The p_stats and p_sigacts substructs are set in uvm_fork().
278 */
279 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
280 p2->p_emul = p1->p_emul;
281
282 if (p1->p_flag & P_PROFIL)
283 startprofclock(p2);
284 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
285 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
286 p2->p_cred->p_refcnt = 1;
287 crhold(p1->p_ucred);
288
289 /* bump references to the text vnode (for procfs) */
290 p2->p_textvp = p1->p_textvp;
291 if (p2->p_textvp)
292 VREF(p2->p_textvp);
293
294 if (flags & FORK_SHAREFILES)
295 fdshare(p1, p2);
296 else
297 p2->p_fd = fdcopy(p1);
298
299 if (flags & FORK_SHARECWD)
300 cwdshare(p1, p2);
301 else
302 p2->p_cwdi = cwdinit(p1);
303
304 /*
305 * If p_limit is still copy-on-write, bump refcnt,
306 * otherwise get a copy that won't be modified.
307 * (If PL_SHAREMOD is clear, the structure is shared
308 * copy-on-write.)
309 */
310 if (p1->p_limit->p_lflags & PL_SHAREMOD)
311 p2->p_limit = limcopy(p1->p_limit);
312 else {
313 p2->p_limit = p1->p_limit;
314 p2->p_limit->p_refcnt++;
315 }
316
317 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
318 p2->p_flag |= P_CONTROLT;
319 if (flags & FORK_PPWAIT)
320 p2->p_flag |= P_PPWAIT;
321 LIST_INSERT_AFTER(p1, p2, p_pglist);
322 p2->p_pptr = p1;
323 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
324 LIST_INIT(&p2->p_children);
325
326 callout_init(&p2->p_realit_ch);
327 callout_init(&p2->p_tsleep_ch);
328
329 #ifdef KTRACE
330 /*
331 * Copy traceflag and tracefile if enabled.
332 * If not inherited, these were zeroed above.
333 */
334 if (p1->p_traceflag & KTRFAC_INHERIT) {
335 p2->p_traceflag = p1->p_traceflag;
336 if ((p2->p_tracep = p1->p_tracep) != NULL)
337 ktradref(p2);
338 }
339 #endif
340
341 #ifdef __HAVE_SYSCALL_INTERN
342 (*p2->p_emul->e_syscall_intern)(p2);
343 #endif
344
345 scheduler_fork_hook(p1, p2);
346
347 /*
348 * Create signal actions for the child process.
349 */
350 sigactsinit(p2, p1, flags & FORK_SHARESIGS);
351
352 /*
353 * If emulation has process fork hook, call it now.
354 */
355 if (p2->p_emul->e_proc_fork)
356 (*p2->p_emul->e_proc_fork)(p2, p1);
357
358 /*
359 * This begins the section where we must prevent the parent
360 * from being swapped.
361 */
362 PHOLD(p1);
363
364 /*
365 * Finish creating the child process. It will return through a
366 * different path later.
367 */
368 p2->p_addr = (struct user *)uaddr;
369 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
370 stack, stacksize,
371 (func != NULL) ? func : child_return,
372 (arg != NULL) ? arg : p2);
373
374 /*
375 * BEGIN PID ALLOCATION.
376 */
377 s = proclist_lock_write();
378
379 /*
380 * Find an unused process ID. We remember a range of unused IDs
381 * ready to use (from nextpid+1 through pidchecked-1).
382 */
383 nextpid++;
384 retry:
385 /*
386 * If the process ID prototype has wrapped around,
387 * restart somewhat above 0, as the low-numbered procs
388 * tend to include daemons that don't exit.
389 */
390 if (nextpid >= PID_MAX) {
391 nextpid = 500;
392 pidchecked = 0;
393 }
394 if (nextpid >= pidchecked) {
395 const struct proclist_desc *pd;
396
397 pidchecked = PID_MAX;
398 /*
399 * Scan the process lists to check whether this pid
400 * is in use. Remember the lowest pid that's greater
401 * than nextpid, so we can avoid checking for a while.
402 */
403 pd = proclists;
404 again:
405 LIST_FOREACH(tp, pd->pd_list, p_list) {
406 while (tp->p_pid == nextpid ||
407 tp->p_pgrp->pg_id == nextpid ||
408 tp->p_session->s_sid == nextpid) {
409 nextpid++;
410 if (nextpid >= pidchecked)
411 goto retry;
412 }
413 if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
414 pidchecked = tp->p_pid;
415
416 if (tp->p_pgrp->pg_id > nextpid &&
417 pidchecked > tp->p_pgrp->pg_id)
418 pidchecked = tp->p_pgrp->pg_id;
419
420 if (tp->p_session->s_sid > nextpid &&
421 pidchecked > tp->p_session->s_sid)
422 pidchecked = tp->p_session->s_sid;
423 }
424
425 /*
426 * If there's another list, scan it. If we have checked
427 * them all, we've found one!
428 */
429 pd++;
430 if (pd->pd_list != NULL)
431 goto again;
432 }
433
434 /* Record the pid we've allocated. */
435 p2->p_pid = nextpid;
436
437 /* Record the signal to be delivered to the parent on exit. */
438 p2->p_exitsig = exitsig;
439
440 /*
441 * Put the proc on allproc before unlocking PID allocation
442 * so that waiters won't grab it as soon as we unlock.
443 */
444
445 p2->p_stat = SIDL; /* protect against others */
446 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
447
448 LIST_INSERT_HEAD(&allproc, p2, p_list);
449
450 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
451
452 /*
453 * END PID ALLOCATION.
454 */
455 proclist_unlock_write(s);
456
457 /*
458 * Make child runnable, set start time, and add to run queue.
459 */
460 SCHED_LOCK(s);
461 p2->p_stats->p_start = time;
462 p2->p_acflag = AFORK;
463 p2->p_stat = SRUN;
464 setrunqueue(p2);
465 SCHED_UNLOCK(s);
466
467 /*
468 * Now can be swapped.
469 */
470 PRELE(p1);
471
472 /*
473 * Update stats now that we know the fork was successful.
474 */
475 uvmexp.forks++;
476 if (flags & FORK_PPWAIT)
477 uvmexp.forks_ppwait++;
478 if (flags & FORK_SHAREVM)
479 uvmexp.forks_sharevm++;
480
481 /*
482 * Pass a pointer to the new process to the caller.
483 */
484 if (rnewprocp != NULL)
485 *rnewprocp = p2;
486
487 #ifdef KTRACE
488 if (KTRPOINT(p2, KTR_EMUL))
489 ktremul(p2);
490 #endif
491
492 /*
493 * Preserve synchronization semantics of vfork. If waiting for
494 * child to exec or exit, set P_PPWAIT on child, and sleep on our
495 * proc (in case of exit).
496 */
497 if (flags & FORK_PPWAIT)
498 while (p2->p_flag & P_PPWAIT)
499 tsleep(p1, PWAIT, "ppwait", 0);
500
501 /*
502 * Return child pid to parent process,
503 * marking us as parent via retval[1].
504 */
505 if (retval != NULL) {
506 retval[0] = p2->p_pid;
507 retval[1] = 0;
508 }
509
510 return (0);
511 }
512
513 #if defined(MULTIPROCESSOR)
514 /*
515 * XXX This is a slight hack to get newly-formed processes to
516 * XXX acquire the kernel lock as soon as they run.
517 */
518 void
519 proc_trampoline_mp(void)
520 {
521 struct proc *p;
522
523 p = curproc;
524
525 SCHED_ASSERT_UNLOCKED();
526 KERNEL_PROC_LOCK(p);
527 }
528 #endif
529