kern_fork.c revision 1.86 1 /* $NetBSD: kern_fork.c,v 1.86 2001/07/07 23:33:54 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
78 */
79
80 #include "opt_ktrace.h"
81 #include "opt_multiprocessor.h"
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/map.h>
86 #include <sys/filedesc.h>
87 #include <sys/kernel.h>
88 #include <sys/malloc.h>
89 #include <sys/pool.h>
90 #include <sys/mount.h>
91 #include <sys/proc.h>
92 #include <sys/resourcevar.h>
93 #include <sys/vnode.h>
94 #include <sys/file.h>
95 #include <sys/acct.h>
96 #include <sys/ktrace.h>
97 #include <sys/vmmeter.h>
98 #include <sys/sched.h>
99 #include <sys/signalvar.h>
100
101 #include <sys/syscallargs.h>
102
103 #include <uvm/uvm_extern.h>
104
105 int nprocs = 1; /* process 0 */
106
107 /*ARGSUSED*/
108 int
109 sys_fork(struct proc *p, void *v, register_t *retval)
110 {
111
112 return (fork1(p, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
113 }
114
115 /*
116 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
117 * Address space is not shared, but parent is blocked until child exit.
118 */
119 /*ARGSUSED*/
120 int
121 sys_vfork(struct proc *p, void *v, register_t *retval)
122 {
123
124 return (fork1(p, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
125 retval, NULL));
126 }
127
128 /*
129 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
130 * semantics. Address space is shared, and parent is blocked until child exit.
131 */
132 /*ARGSUSED*/
133 int
134 sys___vfork14(struct proc *p, void *v, register_t *retval)
135 {
136
137 return (fork1(p, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
138 NULL, NULL, retval, NULL));
139 }
140
141 /*
142 * Linux-compatible __clone(2) system call.
143 */
144 int
145 sys___clone(struct proc *p, void *v, register_t *retval)
146 {
147 struct sys___clone_args /* {
148 syscallarg(int) flags;
149 syscallarg(void *) stack;
150 } */ *uap = v;
151 int flags, sig;
152
153 /*
154 * We don't support the CLONE_PID or CLONE_PTRACE flags.
155 */
156 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
157 return (EINVAL);
158
159 flags = 0;
160
161 if (SCARG(uap, flags) & CLONE_VM)
162 flags |= FORK_SHAREVM;
163 if (SCARG(uap, flags) & CLONE_FS)
164 flags |= FORK_SHARECWD;
165 if (SCARG(uap, flags) & CLONE_FILES)
166 flags |= FORK_SHAREFILES;
167 if (SCARG(uap, flags) & CLONE_SIGHAND)
168 flags |= FORK_SHARESIGS;
169 if (SCARG(uap, flags) & CLONE_VFORK)
170 flags |= FORK_PPWAIT;
171
172 sig = SCARG(uap, flags) & CLONE_CSIGNAL;
173 if (sig < 0 || sig >= _NSIG)
174 return (EINVAL);
175
176 /*
177 * Note that the Linux API does not provide a portable way of
178 * specifying the stack area; the caller must know if the stack
179 * grows up or down. So, we pass a stack size of 0, so that the
180 * code that makes this adjustment is a noop.
181 */
182 return (fork1(p, flags, sig, SCARG(uap, stack), 0,
183 NULL, NULL, retval, NULL));
184 }
185
186 int
187 fork1(struct proc *p1, int flags, int exitsig, void *stack, size_t stacksize,
188 void (*func)(void *), void *arg, register_t *retval,
189 struct proc **rnewprocp)
190 {
191 struct proc *p2, *tp;
192 uid_t uid;
193 int count, s;
194 vaddr_t uaddr;
195 static int nextpid, pidchecked;
196
197 /*
198 * Although process entries are dynamically created, we still keep
199 * a global limit on the maximum number we will create. Don't allow
200 * a nonprivileged user to use the last process; don't let root
201 * exceed the limit. The variable nprocs is the current number of
202 * processes, maxproc is the limit.
203 */
204 uid = p1->p_cred->p_ruid;
205 if (__predict_false((nprocs >= maxproc - 1 && uid != 0) ||
206 nprocs >= maxproc)) {
207 tablefull("proc", "increase kern.maxproc or NPROC");
208 return (EAGAIN);
209 }
210 nprocs++;
211
212 /*
213 * Increment the count of procs running with this uid. Don't allow
214 * a nonprivileged user to exceed their current limit.
215 */
216 count = chgproccnt(uid, 1);
217 if (__predict_false(uid != 0 && count >
218 p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
219 (void)chgproccnt(uid, -1);
220 nprocs--;
221 return (EAGAIN);
222 }
223
224 /*
225 * Allocate virtual address space for the U-area now, while it
226 * is still easy to abort the fork operation if we're out of
227 * kernel virtual address space. The actual U-area pages will
228 * be allocated and wired in vm_fork().
229 */
230
231 #ifndef USPACE_ALIGN
232 #define USPACE_ALIGN 0
233 #endif
234
235 uaddr = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
236 if (__predict_false(uaddr == 0)) {
237 (void)chgproccnt(uid, -1);
238 nprocs--;
239 return (ENOMEM);
240 }
241
242 /*
243 * We are now committed to the fork. From here on, we may
244 * block on resources, but resource allocation may NOT fail.
245 */
246
247 /* Allocate new proc. */
248 p2 = pool_get(&proc_pool, PR_WAITOK);
249
250 /*
251 * Make a proc table entry for the new process.
252 * Start by zeroing the section of proc that is zero-initialized,
253 * then copy the section that is copied directly from the parent.
254 */
255 memset(&p2->p_startzero, 0,
256 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
257 memcpy(&p2->p_startcopy, &p1->p_startcopy,
258 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
259
260 #if !defined(MULTIPROCESSOR)
261 /*
262 * In the single-processor case, all processes will always run
263 * on the same CPU. So, initialize the child's CPU to the parent's
264 * now. In the multiprocessor case, the child's CPU will be
265 * initialized in the low-level context switch code when the
266 * process runs.
267 */
268 p2->p_cpu = p1->p_cpu;
269 #else
270 /*
271 * zero child's cpu pointer so we don't get trash.
272 */
273 p2->p_cpu = NULL;
274 #endif /* ! MULTIPROCESSOR */
275
276 /*
277 * Duplicate sub-structures as needed.
278 * Increase reference counts on shared objects.
279 * The p_stats and p_sigacts substructs are set in uvm_fork().
280 */
281 p2->p_flag = P_INMEM | (p1->p_flag & P_SUGID);
282 p2->p_emul = p1->p_emul;
283
284 if (p1->p_flag & P_PROFIL)
285 startprofclock(p2);
286 p2->p_cred = pool_get(&pcred_pool, PR_WAITOK);
287 memcpy(p2->p_cred, p1->p_cred, sizeof(*p2->p_cred));
288 p2->p_cred->p_refcnt = 1;
289 crhold(p1->p_ucred);
290
291 /* bump references to the text vnode (for procfs) */
292 p2->p_textvp = p1->p_textvp;
293 if (p2->p_textvp)
294 VREF(p2->p_textvp);
295
296 if (flags & FORK_SHAREFILES)
297 fdshare(p1, p2);
298 else
299 p2->p_fd = fdcopy(p1);
300
301 if (flags & FORK_SHARECWD)
302 cwdshare(p1, p2);
303 else
304 p2->p_cwdi = cwdinit(p1);
305
306 /*
307 * If p_limit is still copy-on-write, bump refcnt,
308 * otherwise get a copy that won't be modified.
309 * (If PL_SHAREMOD is clear, the structure is shared
310 * copy-on-write.)
311 */
312 if (p1->p_limit->p_lflags & PL_SHAREMOD)
313 p2->p_limit = limcopy(p1->p_limit);
314 else {
315 p2->p_limit = p1->p_limit;
316 p2->p_limit->p_refcnt++;
317 }
318
319 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
320 p2->p_flag |= P_CONTROLT;
321 if (flags & FORK_PPWAIT)
322 p2->p_flag |= P_PPWAIT;
323 LIST_INSERT_AFTER(p1, p2, p_pglist);
324 p2->p_pptr = p1;
325 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
326 LIST_INIT(&p2->p_children);
327
328 callout_init(&p2->p_realit_ch);
329 callout_init(&p2->p_tsleep_ch);
330
331 #ifdef KTRACE
332 /*
333 * Copy traceflag and tracefile if enabled.
334 * If not inherited, these were zeroed above.
335 */
336 if (p1->p_traceflag & KTRFAC_INHERIT) {
337 p2->p_traceflag = p1->p_traceflag;
338 if ((p2->p_tracep = p1->p_tracep) != NULL)
339 ktradref(p2);
340 }
341 #endif
342
343 #ifdef __HAVE_SYSCALL_INTERN
344 (*p2->p_emul->e_syscall_intern)(p2);
345 #endif
346
347 scheduler_fork_hook(p1, p2);
348
349 /*
350 * Create signal actions for the child process.
351 */
352 sigactsinit(p2, p1, flags & FORK_SHARESIGS);
353
354 /*
355 * If emulation has process fork hook, call it now.
356 */
357 if (p2->p_emul->e_proc_fork)
358 (*p2->p_emul->e_proc_fork)(p2, p1);
359
360 /*
361 * This begins the section where we must prevent the parent
362 * from being swapped.
363 */
364 PHOLD(p1);
365
366 /*
367 * Finish creating the child process. It will return through a
368 * different path later.
369 */
370 p2->p_addr = (struct user *)uaddr;
371 uvm_fork(p1, p2, (flags & FORK_SHAREVM) ? TRUE : FALSE,
372 stack, stacksize,
373 (func != NULL) ? func : child_return,
374 (arg != NULL) ? arg : p2);
375
376 /*
377 * BEGIN PID ALLOCATION.
378 */
379 s = proclist_lock_write();
380
381 /*
382 * Find an unused process ID. We remember a range of unused IDs
383 * ready to use (from nextpid+1 through pidchecked-1).
384 */
385 nextpid++;
386 retry:
387 /*
388 * If the process ID prototype has wrapped around,
389 * restart somewhat above 0, as the low-numbered procs
390 * tend to include daemons that don't exit.
391 */
392 if (nextpid >= PID_MAX) {
393 nextpid = 500;
394 pidchecked = 0;
395 }
396 if (nextpid >= pidchecked) {
397 const struct proclist_desc *pd;
398
399 pidchecked = PID_MAX;
400 /*
401 * Scan the process lists to check whether this pid
402 * is in use. Remember the lowest pid that's greater
403 * than nextpid, so we can avoid checking for a while.
404 */
405 pd = proclists;
406 again:
407 LIST_FOREACH(tp, pd->pd_list, p_list) {
408 while (tp->p_pid == nextpid ||
409 tp->p_pgrp->pg_id == nextpid ||
410 tp->p_session->s_sid == nextpid) {
411 nextpid++;
412 if (nextpid >= pidchecked)
413 goto retry;
414 }
415 if (tp->p_pid > nextpid && pidchecked > tp->p_pid)
416 pidchecked = tp->p_pid;
417
418 if (tp->p_pgrp->pg_id > nextpid &&
419 pidchecked > tp->p_pgrp->pg_id)
420 pidchecked = tp->p_pgrp->pg_id;
421
422 if (tp->p_session->s_sid > nextpid &&
423 pidchecked > tp->p_session->s_sid)
424 pidchecked = tp->p_session->s_sid;
425 }
426
427 /*
428 * If there's another list, scan it. If we have checked
429 * them all, we've found one!
430 */
431 pd++;
432 if (pd->pd_list != NULL)
433 goto again;
434 }
435
436 /* Record the pid we've allocated. */
437 p2->p_pid = nextpid;
438
439 /* Record the signal to be delivered to the parent on exit. */
440 p2->p_exitsig = exitsig;
441
442 /*
443 * Put the proc on allproc before unlocking PID allocation
444 * so that waiters won't grab it as soon as we unlock.
445 */
446
447 p2->p_stat = SIDL; /* protect against others */
448 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */
449
450 LIST_INSERT_HEAD(&allproc, p2, p_list);
451
452 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
453
454 /*
455 * END PID ALLOCATION.
456 */
457 proclist_unlock_write(s);
458
459 /*
460 * Make child runnable, set start time, and add to run queue.
461 */
462 SCHED_LOCK(s);
463 p2->p_stats->p_start = time;
464 p2->p_acflag = AFORK;
465 p2->p_stat = SRUN;
466 setrunqueue(p2);
467 SCHED_UNLOCK(s);
468
469 /*
470 * Now can be swapped.
471 */
472 PRELE(p1);
473
474 /*
475 * Update stats now that we know the fork was successful.
476 */
477 uvmexp.forks++;
478 if (flags & FORK_PPWAIT)
479 uvmexp.forks_ppwait++;
480 if (flags & FORK_SHAREVM)
481 uvmexp.forks_sharevm++;
482
483 /*
484 * Pass a pointer to the new process to the caller.
485 */
486 if (rnewprocp != NULL)
487 *rnewprocp = p2;
488
489 #ifdef KTRACE
490 if (KTRPOINT(p2, KTR_EMUL))
491 ktremul(p2);
492 #endif
493
494 /*
495 * Preserve synchronization semantics of vfork. If waiting for
496 * child to exec or exit, set P_PPWAIT on child, and sleep on our
497 * proc (in case of exit).
498 */
499 if (flags & FORK_PPWAIT)
500 while (p2->p_flag & P_PPWAIT)
501 tsleep(p1, PWAIT, "ppwait", 0);
502
503 /*
504 * Return child pid to parent process,
505 * marking us as parent via retval[1].
506 */
507 if (retval != NULL) {
508 retval[0] = p2->p_pid;
509 retval[1] = 0;
510 }
511
512 return (0);
513 }
514
515 #if defined(MULTIPROCESSOR)
516 /*
517 * XXX This is a slight hack to get newly-formed processes to
518 * XXX acquire the kernel lock as soon as they run.
519 */
520 void
521 proc_trampoline_mp(void)
522 {
523 struct proc *p;
524
525 p = curproc;
526
527 SCHED_ASSERT_UNLOCKED();
528 KERNEL_PROC_LOCK(p);
529 }
530 #endif
531