Home | History | Annotate | Line # | Download | only in kern
kern_heartbeat.c revision 1.5
      1 /*	$NetBSD: kern_heartbeat.c,v 1.5 2023/07/16 10:18:19 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * heartbeat(9) -- periodic checks to ensure CPUs are making progress
     31  *
     32  * Manual tests to run when changing this file.  Magic numbers are for
     33  * evbarm; adjust for other platforms.  Tests involving cpuctl
     34  * online/offline assume a 2-CPU system -- for full testing on a >2-CPU
     35  * system, offline all but one CPU.
     36  *
     37  * 1.	cpuctl offline 0
     38  *	sleep 20
     39  *	cpuctl online 0
     40  *
     41  * 2.	cpuctl offline 1
     42  *	sleep 20
     43  *	cpuctl online 1
     44  *
     45  * 3.	cpuctl offline 0
     46  *	sysctl -w kern.heartbeat.max_period=5
     47  *	sleep 10
     48  *	sysctl -w kern.heartbeat.max_period=0
     49  *	sleep 10
     50  *	sysctl -w kern.heartbeat.max_period=5
     51  *	sleep 10
     52  *	cpuctl online 0
     53  *
     54  * 4.	sysctl -w debug.crashme_enable=1
     55  *	sysctl -w debug.crashme.spl_spinout=1   # IPL_SOFTCLOCK
     56  *	# verify system panics after 15sec
     57  *
     58  * 5.	sysctl -w debug.crashme_enable=1
     59  *	sysctl -w debug.crashme.spl_spinout=6   # IPL_SCHED
     60  *	# verify system panics after 15sec
     61  *
     62  * 6.	cpuctl offline 0
     63  *	sysctl -w debug.crashme_enable=1
     64  *	sysctl -w debug.crashme.spl_spinout=1   # IPL_SOFTCLOCK
     65  *	# verify system panics after 15sec
     66  *
     67  * 7.	cpuctl offline 0
     68  *	sysctl -w debug.crashme_enable=1
     69  *	sysctl -w debug.crashme.spl_spinout=5   # IPL_VM
     70  *	# verify system panics after 15sec
     71  *
     72  *	# Not this -- IPL_SCHED and IPL_HIGH spinout on a single CPU
     73  *	# require a hardware watchdog timer.
     74  *	#cpuctl offline 0
     75  *	#sysctl -w debug.crashme_enable
     76  *	#sysctl -w debug.crashme.spl_spinout=6   # IPL_SCHED
     77  *	# hope watchdog timer kicks in
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_heartbeat.c,v 1.5 2023/07/16 10:18:19 riastradh Exp $");
     82 
     83 #ifdef _KERNEL_OPT
     84 #include "opt_ddb.h"
     85 #include "opt_heartbeat.h"
     86 #endif
     87 
     88 #include "heartbeat.h"
     89 
     90 #include <sys/param.h>
     91 #include <sys/types.h>
     92 
     93 #include <sys/atomic.h>
     94 #include <sys/cpu.h>
     95 #include <sys/errno.h>
     96 #include <sys/heartbeat.h>
     97 #include <sys/ipi.h>
     98 #include <sys/kernel.h>
     99 #include <sys/mutex.h>
    100 #include <sys/sysctl.h>
    101 #include <sys/systm.h>
    102 #include <sys/xcall.h>
    103 
    104 #ifdef DDB
    105 #include <ddb/ddb.h>
    106 #endif
    107 
    108 /*
    109  * Global state.
    110  *
    111  *	heartbeat_lock serializes access to heartbeat_max_period_secs
    112  *	and heartbeat_max_period_ticks.  Two separate variables so we
    113  *	can avoid multiplication or division in the heartbeat routine.
    114  *
    115  *	heartbeat_sih is stable after initialization in
    116  *	heartbeat_start.
    117  */
    118 kmutex_t heartbeat_lock			__cacheline_aligned;
    119 unsigned heartbeat_max_period_secs	__read_mostly;
    120 unsigned heartbeat_max_period_ticks	__read_mostly;
    121 
    122 void *heartbeat_sih			__read_mostly;
    123 
    124 /*
    125  * heartbeat_suspend()
    126  *
    127  *	Suspend heartbeat monitoring of the current CPU.
    128  *
    129  *	Called after the current CPU has been marked offline but before
    130  *	it has stopped running.  Caller must have preemption disabled.
    131  */
    132 void
    133 heartbeat_suspend(void)
    134 {
    135 
    136 	KASSERT(curcpu_stable());
    137 
    138 	/*
    139 	 * Nothing to do -- we just check the SPCF_OFFLINE flag.
    140 	 */
    141 }
    142 
    143 /*
    144  * heartbeat_resume_cpu(ci)
    145  *
    146  *	Resume heartbeat monitoring of ci.
    147  *
    148  *	Called at startup while cold, and whenever heartbeat monitoring
    149  *	is re-enabled after being disabled or the period is changed.
    150  *	When not cold, ci must be the current CPU.
    151  */
    152 static void
    153 heartbeat_resume_cpu(struct cpu_info *ci)
    154 {
    155 
    156 	KASSERT(__predict_false(cold) || curcpu_stable());
    157 	KASSERT(__predict_false(cold) || ci == curcpu());
    158 
    159 	ci->ci_heartbeat_count = 0;
    160 	ci->ci_heartbeat_uptime_cache = time_uptime;
    161 	ci->ci_heartbeat_uptime_stamp = 0;
    162 }
    163 
    164 /*
    165  * heartbeat_resume()
    166  *
    167  *	Resume heartbeat monitoring of the current CPU.
    168  *
    169  *	Called after the current CPU has started running but before it
    170  *	has been marked online.  Also used internally when starting up
    171  *	heartbeat monitoring at boot or when the maximum period is set
    172  *	from zero to nonzero.  Caller must have preemption disabled.
    173  */
    174 void
    175 heartbeat_resume(void)
    176 {
    177 	struct cpu_info *ci = curcpu();
    178 	int s;
    179 
    180 	KASSERT(curcpu_stable());
    181 
    182 	/*
    183 	 * Block heartbeats while we reset the state so we don't
    184 	 * spuriously think we had a heart attack in the middle of
    185 	 * resetting the count and the uptime stamp.
    186 	 */
    187 	s = splsched();
    188 	heartbeat_resume_cpu(ci);
    189 	splx(s);
    190 }
    191 
    192 /*
    193  * heartbeat_reset_xc(a, b)
    194  *
    195  *	Cross-call handler to reset heartbeat state just prior to
    196  *	enabling heartbeat checks.
    197  */
    198 static void
    199 heartbeat_reset_xc(void *a, void *b)
    200 {
    201 
    202 	heartbeat_resume();
    203 }
    204 
    205 /*
    206  * set_max_period(max_period)
    207  *
    208  *	Set the maximum period, in seconds, for heartbeat checks.
    209  *
    210  *	- If max_period is zero, disable them.
    211  *
    212  *	- If the max period was zero and max_period is nonzero, ensure
    213  *	  all CPUs' heartbeat uptime caches are up-to-date before
    214  *	  re-enabling them.
    215  *
    216  *	max_period must be below UINT_MAX/4/hz to avoid arithmetic
    217  *	overflow and give room for slop.
    218  *
    219  *	Caller must hold heartbeat_lock.
    220  */
    221 static void
    222 set_max_period(unsigned max_period)
    223 {
    224 
    225 	KASSERTMSG(max_period <= UINT_MAX/4/hz,
    226 	    "max_period=%u must not exceed UINT_MAX/4/hz=%u (hz=%u)",
    227 	    max_period, UINT_MAX/4/hz, hz);
    228 	KASSERT(mutex_owned(&heartbeat_lock));
    229 
    230 	/*
    231 	 * If we're enabling heartbeat checks, make sure we have a
    232 	 * reasonably up-to-date time_uptime cache on all CPUs so we
    233 	 * don't think we had an instant heart attack.
    234 	 */
    235 	if (heartbeat_max_period_secs == 0 && max_period != 0) {
    236 		if (cold) {
    237 			CPU_INFO_ITERATOR cii;
    238 			struct cpu_info *ci;
    239 
    240 			for (CPU_INFO_FOREACH(cii, ci))
    241 				heartbeat_resume_cpu(ci);
    242 		} else {
    243 			const uint64_t ticket =
    244 			    xc_broadcast(0, &heartbeat_reset_xc, NULL, NULL);
    245 			xc_wait(ticket);
    246 		}
    247 	}
    248 
    249 	/*
    250 	 * Once the heartbeat state has been updated on all (online)
    251 	 * CPUs, set the period.  At this point, heartbeat checks can
    252 	 * begin.
    253 	 */
    254 	atomic_store_relaxed(&heartbeat_max_period_secs, max_period);
    255 	atomic_store_relaxed(&heartbeat_max_period_ticks, max_period*hz);
    256 }
    257 
    258 /*
    259  * heartbeat_max_period_ticks(SYSCTLFN_ARGS)
    260  *
    261  *	Sysctl handler for sysctl kern.heartbeat.max_period.  Verifies
    262  *	it lies within a reasonable interval and sets it.
    263  */
    264 static int
    265 heartbeat_max_period_sysctl(SYSCTLFN_ARGS)
    266 {
    267 	struct sysctlnode node;
    268 	unsigned max_period;
    269 	int error;
    270 
    271 	mutex_enter(&heartbeat_lock);
    272 
    273 	max_period = heartbeat_max_period_secs;
    274 	node = *rnode;
    275 	node.sysctl_data = &max_period;
    276 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    277 	if (error || newp == NULL)
    278 		goto out;
    279 
    280 	/*
    281 	 * Ensure there's plenty of slop between heartbeats.
    282 	 */
    283 	if (max_period > UINT_MAX/4/hz) {
    284 		error = EOVERFLOW;
    285 		goto out;
    286 	}
    287 
    288 	/*
    289 	 * Success!  Set the period.  This enables heartbeat checks if
    290 	 * we went from zero period to nonzero period, or disables them
    291 	 * if the other way around.
    292 	 */
    293 	set_max_period(max_period);
    294 	error = 0;
    295 
    296 out:	mutex_exit(&heartbeat_lock);
    297 	return error;
    298 }
    299 
    300 /*
    301  * sysctl_heartbeat_setup()
    302  *
    303  *	Set up the kern.heartbeat.* sysctl subtree.
    304  */
    305 SYSCTL_SETUP(sysctl_heartbeat_setup, "sysctl kern.heartbeat setup")
    306 {
    307 	const struct sysctlnode *rnode;
    308 	int error;
    309 
    310 	mutex_init(&heartbeat_lock, MUTEX_DEFAULT, IPL_NONE);
    311 
    312 	/* kern.heartbeat */
    313 	error = sysctl_createv(NULL, 0, NULL, &rnode,
    314 	    CTLFLAG_PERMANENT,
    315 	    CTLTYPE_NODE, "heartbeat",
    316 	    SYSCTL_DESCR("Kernel heartbeat parameters"),
    317 	    NULL, 0, NULL, 0,
    318 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    319 	if (error) {
    320 		printf("%s: failed to create kern.heartbeat: %d\n",
    321 		    __func__, error);
    322 		return;
    323 	}
    324 
    325 	/* kern.heartbeat.max_period */
    326 	error = sysctl_createv(NULL, 0, &rnode, NULL,
    327 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    328 	    CTLTYPE_INT, "max_period",
    329 	    SYSCTL_DESCR("Max seconds between heartbeats before panic"),
    330 	    &heartbeat_max_period_sysctl, 0, NULL, 0,
    331 	    CTL_CREATE, CTL_EOL);
    332 	if (error) {
    333 		printf("%s: failed to create kern.heartbeat.max_period: %d\n",
    334 		    __func__, error);
    335 		return;
    336 	}
    337 }
    338 
    339 /*
    340  * heartbeat_intr(cookie)
    341  *
    342  *	Soft interrupt handler to update the local CPU's view of the
    343  *	system uptime.  This runs at the same priority level as
    344  *	callouts, so if callouts are stuck on this CPU, it won't run,
    345  *	and eventually another CPU will notice that this one is stuck.
    346  *
    347  *	Don't do spl* here -- keep it to a minimum so if anything goes
    348  *	wrong we don't end up with hard interrupts blocked and unable
    349  *	to detect a missed heartbeat.
    350  */
    351 static void
    352 heartbeat_intr(void *cookie)
    353 {
    354 	unsigned count = atomic_load_relaxed(&curcpu()->ci_heartbeat_count);
    355 	unsigned uptime = time_uptime;
    356 
    357 	atomic_store_relaxed(&curcpu()->ci_heartbeat_uptime_stamp, count);
    358 	atomic_store_relaxed(&curcpu()->ci_heartbeat_uptime_cache, uptime);
    359 }
    360 
    361 /*
    362  * heartbeat_start()
    363  *
    364  *	Start system heartbeat monitoring.
    365  */
    366 void
    367 heartbeat_start(void)
    368 {
    369 	const unsigned max_period = HEARTBEAT_MAX_PERIOD_DEFAULT;
    370 
    371 	/*
    372 	 * Establish a softint so we can schedule it once ready.  This
    373 	 * should be at the lowest softint priority level so that we
    374 	 * ensure all softint priorities are making progress.
    375 	 */
    376 	heartbeat_sih = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE,
    377 	    &heartbeat_intr, NULL);
    378 
    379 	/*
    380 	 * Now that the softint is established, kick off heartbeat
    381 	 * monitoring with the default period.  This will initialize
    382 	 * the per-CPU state to an up-to-date cache of time_uptime.
    383 	 */
    384 	mutex_enter(&heartbeat_lock);
    385 	set_max_period(max_period);
    386 	mutex_exit(&heartbeat_lock);
    387 }
    388 
    389 /*
    390  * defibrillator(cookie)
    391  *
    392  *	IPI handler for defibrillation.  If the CPU's heart has stopped
    393  *	beating normally, but the CPU can still execute things,
    394  *	acknowledge the IPI to the doctor and then panic so we at least
    395  *	get a stack trace from whatever the current CPU is stuck doing,
    396  *	if not a core dump.
    397  *
    398  *	(This metaphor is a little stretched, since defibrillation is
    399  *	usually administered when the heart is beating errattically but
    400  *	hasn't stopped, and causes the heart to stop temporarily, and
    401  *	one hopes it is not fatal.  But we're (software) engineers, so
    402  *	we can stretch metaphors like silly putty in a blender.)
    403  */
    404 static void
    405 defibrillator(void *cookie)
    406 {
    407 	bool *ack = cookie;
    408 
    409 	atomic_store_relaxed(ack, true);
    410 	panic("%s[%d %s]: heart stopped beating", cpu_name(curcpu()),
    411 	    curlwp->l_lid,
    412 	    curlwp->l_name ? curlwp->l_name : curproc->p_comm);
    413 }
    414 
    415 /*
    416  * defibrillate(ci, unsigned d)
    417  *
    418  *	The patient CPU ci's heart has stopped beating after d seconds.
    419  *	Force the patient CPU ci to panic, or panic on this CPU if the
    420  *	patient CPU doesn't respond within 1sec.
    421  */
    422 static void __noinline
    423 defibrillate(struct cpu_info *ci, unsigned d)
    424 {
    425 	bool ack = false;
    426 	ipi_msg_t msg = {
    427 		.func = &defibrillator,
    428 		.arg = &ack,
    429 	};
    430 	unsigned countdown = 1000; /* 1sec */
    431 
    432 	KASSERT(curcpu_stable());
    433 
    434 	/*
    435 	 * First notify the console that the patient CPU's heart seems
    436 	 * to have stopped beating.
    437 	 */
    438 	printf("%s: found %s heart stopped beating after %u seconds\n",
    439 	    cpu_name(curcpu()), cpu_name(ci), d);
    440 
    441 	/*
    442 	 * Next, give the patient CPU a chance to panic, so we get a
    443 	 * stack trace on that CPU even if we don't get a crash dump.
    444 	 */
    445 	ipi_unicast(&msg, ci);
    446 
    447 	/*
    448 	 * Busy-wait up to 1sec for the patient CPU to print a stack
    449 	 * trace and panic.  If the patient CPU acknowledges the IPI,
    450 	 * or if we're panicking anyway, just give up and stop here --
    451 	 * the system is coming down soon and we should avoid getting
    452 	 * in the way.
    453 	 */
    454 	while (countdown --> 0) {
    455 		if (atomic_load_relaxed(&ack) ||
    456 		    atomic_load_relaxed(&panicstr) != NULL)
    457 			return;
    458 		DELAY(1000);	/* 1ms */
    459 	}
    460 
    461 	/*
    462 	 * The patient CPU failed to acknowledge the panic request.
    463 	 * Panic now; with any luck, we'll get a crash dump.
    464 	 */
    465 	panic("%s: found %s heart stopped beating and unresponsive",
    466 	    cpu_name(curcpu()), cpu_name(ci));
    467 }
    468 
    469 /*
    470  * select_patient()
    471  *
    472  *	Select another CPU to check the heartbeat of.  Returns NULL if
    473  *	there are no other online CPUs.  Never returns curcpu().
    474  *	Caller must have kpreemption disabled.
    475  */
    476 static struct cpu_info *
    477 select_patient(void)
    478 {
    479 	CPU_INFO_ITERATOR cii;
    480 	struct cpu_info *first = NULL, *patient = NULL, *ci;
    481 	bool passedcur = false;
    482 
    483 	KASSERT(curcpu_stable());
    484 
    485 	/*
    486 	 * In the iteration order of all CPUs, find the next online CPU
    487 	 * after curcpu(), or the first online one if curcpu() is last
    488 	 * in the iteration order.
    489 	 */
    490 	for (CPU_INFO_FOREACH(cii, ci)) {
    491 		if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
    492 			continue;
    493 		if (passedcur) {
    494 			/*
    495 			 * (...|curcpu()|ci|...)
    496 			 *
    497 			 * Found the patient right after curcpu().
    498 			 */
    499 			KASSERT(patient != ci);
    500 			patient = ci;
    501 			break;
    502 		}
    503 		if (ci == curcpu()) {
    504 			/*
    505 			 * (...|prev|ci=curcpu()|next|...)
    506 			 *
    507 			 * Note that we want next (or first, if there's
    508 			 * nothing after curcpu()).
    509 			 */
    510 			passedcur = true;
    511 			continue;
    512 		}
    513 		if (first == NULL) {
    514 			/*
    515 			 * (ci|...|curcpu()|...)
    516 			 *
    517 			 * Record ci as first in case there's nothing
    518 			 * after curcpu().
    519 			 */
    520 			first = ci;
    521 			continue;
    522 		}
    523 	}
    524 
    525 	/*
    526 	 * If we hit the end, wrap around to the beginning.
    527 	 */
    528 	if (patient == NULL) {
    529 		KASSERT(passedcur);
    530 		patient = first;
    531 	}
    532 
    533 	return patient;
    534 }
    535 
    536 /*
    537  * heartbeat()
    538  *
    539  *	1. Count a heartbeat on the local CPU.
    540  *
    541  *	2. Panic if the system uptime doesn't seem to have advanced in
    542  *	   a while.
    543  *
    544  *	3. Panic if the soft interrupt on this CPU hasn't advanced the
    545  *	   local view of the system uptime.
    546  *
    547  *	4. Schedule the soft interrupt to advance the local view of the
    548  *	   system uptime.
    549  *
    550  *	5. Select another CPU to check the heartbeat of.
    551  *
    552  *	6. Panic if the other CPU hasn't advanced its view of the
    553  *	   system uptime in a while.
    554  */
    555 void
    556 heartbeat(void)
    557 {
    558 	unsigned period_ticks, period_secs;
    559 	unsigned count, uptime, cache, stamp, d;
    560 	struct cpu_info *patient;
    561 
    562 	KASSERT(curcpu_stable());
    563 
    564 	period_ticks = atomic_load_relaxed(&heartbeat_max_period_ticks);
    565 	period_secs = atomic_load_relaxed(&heartbeat_max_period_secs);
    566 	if (__predict_false(period_ticks == 0) ||
    567 	    __predict_false(period_secs == 0) ||
    568 	    __predict_false(curcpu()->ci_schedstate.spc_flags & SPCF_OFFLINE))
    569 		return;
    570 
    571 	/*
    572 	 * Count a heartbeat on this CPU.
    573 	 */
    574 	count = curcpu()->ci_heartbeat_count++;
    575 
    576 	/*
    577 	 * If the uptime hasn't changed, make sure that we haven't
    578 	 * counted too many of our own heartbeats since the uptime last
    579 	 * changed, and stop here -- we only do the cross-CPU work once
    580 	 * per second.
    581 	 */
    582 	uptime = time_uptime;
    583 	cache = atomic_load_relaxed(&curcpu()->ci_heartbeat_uptime_cache);
    584 	if (__predict_true(cache == uptime)) {
    585 		/*
    586 		 * Timecounter hasn't advanced by more than a second.
    587 		 * Make sure the timecounter isn't stuck according to
    588 		 * our heartbeats.
    589 		 *
    590 		 * Our own heartbeat count can't roll back, and
    591 		 * time_uptime should be updated before it wraps
    592 		 * around, so d should never go negative; hence no
    593 		 * check for d < UINT_MAX/2.
    594 		 */
    595 		stamp =
    596 		    atomic_load_relaxed(&curcpu()->ci_heartbeat_uptime_stamp);
    597 		d = count - stamp;
    598 		if (__predict_false(d > period_ticks)) {
    599 			panic("%s: time has not advanced in %u heartbeats",
    600 			    cpu_name(curcpu()), d);
    601 		}
    602 		return;
    603 	}
    604 
    605 	/*
    606 	 * If the uptime has changed, make sure that it hasn't changed
    607 	 * so much that softints must be stuck on this CPU.  Since
    608 	 * time_uptime is monotonic, this can't go negative, hence no
    609 	 * check for d < UINT_MAX/2.
    610 	 *
    611 	 * This uses the hard timer interrupt handler on the current
    612 	 * CPU to ensure soft interrupts at all priority levels have
    613 	 * made progress.
    614 	 */
    615 	d = uptime - cache;
    616 	if (__predict_false(d > period_secs)) {
    617 		panic("%s: softints stuck for %u seconds",
    618 		    cpu_name(curcpu()), d);
    619 	}
    620 
    621 	/*
    622 	 * Schedule a softint to update our cache of the system uptime
    623 	 * so the next call to heartbeat, on this or another CPU, can
    624 	 * detect progress on this one.
    625 	 */
    626 	softint_schedule(heartbeat_sih);
    627 
    628 	/*
    629 	 * Select a patient to check the heartbeat of.  If there's no
    630 	 * other online CPU, nothing to do.
    631 	 */
    632 	patient = select_patient();
    633 	if (patient == NULL)
    634 		return;
    635 
    636 	/*
    637 	 * Verify that time is advancing on the patient CPU.  If the
    638 	 * delta exceeds UINT_MAX/2, that means it is already ahead by
    639 	 * a little on the other CPU, and the subtraction went
    640 	 * negative, which is OK.  If the CPU has been
    641 	 * offlined since we selected it, no worries.
    642 	 *
    643 	 * This uses the current CPU to ensure the other CPU has made
    644 	 * progress, even if the other CPU's hard timer interrupt
    645 	 * handler is stuck for some reason.
    646 	 *
    647 	 * XXX Maybe confirm it hasn't gone negative by more than
    648 	 * max_period?
    649 	 */
    650 	d = uptime - atomic_load_relaxed(&patient->ci_heartbeat_uptime_cache);
    651 	if (__predict_false(d > period_secs) &&
    652 	    __predict_false(d < UINT_MAX/2) &&
    653 	    ((patient->ci_schedstate.spc_flags & SPCF_OFFLINE) == 0))
    654 		defibrillate(patient, d);
    655 }
    656 
    657 /*
    658  * heartbeat_dump()
    659  *
    660  *	Print the heartbeat data of all CPUs.  Can be called from ddb.
    661  */
    662 #ifdef DDB
    663 static unsigned
    664 db_read_unsigned(const unsigned *p)
    665 {
    666 	unsigned x;
    667 
    668 	db_read_bytes((db_addr_t)p, sizeof(x), (char *)&x);
    669 
    670 	return x;
    671 }
    672 
    673 void
    674 heartbeat_dump(void)
    675 {
    676 	struct cpu_info *ci;
    677 
    678 	db_printf("Heartbeats:\n");
    679 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    680 		db_printf("cpu%u: count %u uptime %u stamp %u\n",
    681 		    db_read_unsigned(&ci->ci_index),
    682 		    db_read_unsigned(&ci->ci_heartbeat_count),
    683 		    db_read_unsigned(&ci->ci_heartbeat_uptime_cache),
    684 		    db_read_unsigned(&ci->ci_heartbeat_uptime_stamp));
    685 	}
    686 }
    687 #endif
    688