kern_idle.c revision 1.33 1 1.33 ad /* $NetBSD: kern_idle.c,v 1.33 2020/03/26 19:42:39 ad Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.2 yamt * Copyright (c)2002, 2006, 2007 YAMAMOTO Takashi,
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * Redistribution and use in source and binary forms, with or without
8 1.2 yamt * modification, are permitted provided that the following conditions
9 1.2 yamt * are met:
10 1.2 yamt * 1. Redistributions of source code must retain the above copyright
11 1.2 yamt * notice, this list of conditions and the following disclaimer.
12 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.2 yamt * notice, this list of conditions and the following disclaimer in the
14 1.2 yamt * documentation and/or other materials provided with the distribution.
15 1.2 yamt *
16 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.2 yamt * SUCH DAMAGE.
27 1.2 yamt */
28 1.2 yamt
29 1.2 yamt #include <sys/cdefs.h>
30 1.2 yamt
31 1.33 ad __KERNEL_RCSID(0, "$NetBSD: kern_idle.c,v 1.33 2020/03/26 19:42:39 ad Exp $");
32 1.2 yamt
33 1.2 yamt #include <sys/param.h>
34 1.2 yamt #include <sys/cpu.h>
35 1.2 yamt #include <sys/idle.h>
36 1.7 ad #include <sys/kthread.h>
37 1.2 yamt #include <sys/lockdebug.h>
38 1.2 yamt #include <sys/kmem.h>
39 1.4 ad #include <sys/proc.h>
40 1.13 ad #include <sys/atomic.h>
41 1.2 yamt
42 1.29 ad #include <uvm/uvm.h> /* uvm_idle */
43 1.2 yamt #include <uvm/uvm_extern.h>
44 1.2 yamt
45 1.2 yamt void
46 1.2 yamt idle_loop(void *dummy)
47 1.2 yamt {
48 1.2 yamt struct cpu_info *ci = curcpu();
49 1.19 rmind struct schedstate_percpu *spc;
50 1.2 yamt struct lwp *l = curlwp;
51 1.2 yamt
52 1.31 ad lwp_lock(l);
53 1.31 ad spc = &ci->ci_schedstate;
54 1.31 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
55 1.25 rmind kcpuset_atomic_set(kcpuset_running, cpu_index(ci));
56 1.6 ad /* Update start time for this thread. */
57 1.10 yamt binuptime(&l->l_stime);
58 1.26 ad spc->spc_flags |= SPCF_RUNNING;
59 1.32 ad KASSERT((l->l_pflag & LP_RUNNING) != 0);
60 1.33 ad l->l_stat = LSIDL;
61 1.9 ad lwp_unlock(l);
62 1.6 ad
63 1.22 ad /*
64 1.22 ad * Use spl0() here to ensure that we have the correct interrupt
65 1.22 ad * priority. This may be the first thread running on the CPU,
66 1.26 ad * in which case we took an odd route to get here.
67 1.22 ad */
68 1.22 ad spl0();
69 1.26 ad KERNEL_UNLOCK_ALL(l, NULL);
70 1.14 ad
71 1.19 rmind for (;;) {
72 1.2 yamt LOCKDEBUG_BARRIER(NULL, 0);
73 1.2 yamt KASSERT((l->l_flag & LW_IDLE) != 0);
74 1.2 yamt KASSERT(ci == curcpu());
75 1.2 yamt KASSERT(l == curlwp);
76 1.2 yamt KASSERT(CURCPU_IDLE_P());
77 1.7 ad KASSERT(l->l_priority == PRI_IDLE);
78 1.2 yamt
79 1.19 rmind sched_idle();
80 1.20 ad if (!sched_curcpu_runnable_p()) {
81 1.21 ad if ((spc->spc_flags & SPCF_OFFLINE) == 0) {
82 1.29 ad uvm_idle();
83 1.21 ad }
84 1.20 ad if (!sched_curcpu_runnable_p()) {
85 1.20 ad cpu_idle();
86 1.20 ad if (!sched_curcpu_runnable_p() &&
87 1.20 ad !ci->ci_want_resched) {
88 1.20 ad continue;
89 1.20 ad }
90 1.2 yamt }
91 1.2 yamt }
92 1.11 ad KASSERT(l->l_mutex == l->l_cpu->ci_schedstate.spc_lwplock);
93 1.2 yamt lwp_lock(l);
94 1.28 ad spc_lock(l->l_cpu);
95 1.2 yamt mi_switch(l);
96 1.2 yamt KASSERT(curlwp == l);
97 1.33 ad KASSERT(l->l_stat == LSIDL);
98 1.2 yamt }
99 1.2 yamt }
100 1.2 yamt
101 1.2 yamt int
102 1.2 yamt create_idle_lwp(struct cpu_info *ci)
103 1.2 yamt {
104 1.7 ad lwp_t *l;
105 1.2 yamt int error;
106 1.2 yamt
107 1.2 yamt KASSERT(ci->ci_data.cpu_idlelwp == NULL);
108 1.7 ad error = kthread_create(PRI_IDLE, KTHREAD_MPSAFE | KTHREAD_IDLE,
109 1.12 martin ci, idle_loop, NULL, &l, "idle/%u", ci->ci_index);
110 1.7 ad if (error != 0)
111 1.7 ad panic("create_idle_lwp: error %d", error);
112 1.7 ad lwp_lock(l);
113 1.7 ad l->l_flag |= LW_IDLE;
114 1.31 ad if (ci != lwp0.l_cpu) {
115 1.31 ad /*
116 1.31 ad * For secondary CPUs, the idle LWP is the first to run, and
117 1.31 ad * it's directly entered from MD code without a trip through
118 1.31 ad * mi_switch(). Make the picture look good in case the CPU
119 1.31 ad * takes an interrupt before it calls idle_loop().
120 1.31 ad */
121 1.33 ad l->l_stat = LSIDL;
122 1.32 ad l->l_pflag |= LP_RUNNING;
123 1.31 ad ci->ci_onproc = l;
124 1.31 ad }
125 1.7 ad lwp_unlock(l);
126 1.2 yamt ci->ci_data.cpu_idlelwp = l;
127 1.7 ad
128 1.2 yamt return error;
129 1.2 yamt }
130