kern_lock.c revision 1.132 1 1.132 ad /* $NetBSD: kern_lock.c,v 1.132 2008/01/10 20:14:12 ad Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.114 ad * Copyright (c) 1999, 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
12 1.19 thorpej * by Ross Harvey.
13 1.19 thorpej *
14 1.19 thorpej * Redistribution and use in source and binary forms, with or without
15 1.19 thorpej * modification, are permitted provided that the following conditions
16 1.19 thorpej * are met:
17 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
18 1.19 thorpej * notice, this list of conditions and the following disclaimer.
19 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
20 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
21 1.19 thorpej * documentation and/or other materials provided with the distribution.
22 1.19 thorpej * 3. All advertising materials mentioning features or use of this software
23 1.19 thorpej * must display the following acknowledgement:
24 1.19 thorpej * This product includes software developed by the NetBSD
25 1.19 thorpej * Foundation, Inc. and its contributors.
26 1.19 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
27 1.19 thorpej * contributors may be used to endorse or promote products derived
28 1.19 thorpej * from this software without specific prior written permission.
29 1.19 thorpej *
30 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
41 1.19 thorpej */
42 1.2 fvdl
43 1.86 perry /*
44 1.1 fvdl * Copyright (c) 1995
45 1.1 fvdl * The Regents of the University of California. All rights reserved.
46 1.1 fvdl *
47 1.1 fvdl * This code contains ideas from software contributed to Berkeley by
48 1.1 fvdl * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 1.1 fvdl * System project at Carnegie-Mellon University.
50 1.1 fvdl *
51 1.1 fvdl * Redistribution and use in source and binary forms, with or without
52 1.1 fvdl * modification, are permitted provided that the following conditions
53 1.1 fvdl * are met:
54 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
55 1.1 fvdl * notice, this list of conditions and the following disclaimer.
56 1.1 fvdl * 2. Redistributions in binary form must reproduce the above copyright
57 1.1 fvdl * notice, this list of conditions and the following disclaimer in the
58 1.1 fvdl * documentation and/or other materials provided with the distribution.
59 1.72 agc * 3. Neither the name of the University nor the names of its contributors
60 1.1 fvdl * may be used to endorse or promote products derived from this software
61 1.1 fvdl * without specific prior written permission.
62 1.1 fvdl *
63 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 fvdl * SUCH DAMAGE.
74 1.1 fvdl *
75 1.1 fvdl * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 1.1 fvdl */
77 1.60 lukem
78 1.60 lukem #include <sys/cdefs.h>
79 1.132 ad __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.132 2008/01/10 20:14:12 ad Exp $");
80 1.7 thorpej
81 1.21 thorpej #include "opt_multiprocessor.h"
82 1.105 ad
83 1.1 fvdl #include <sys/param.h>
84 1.1 fvdl #include <sys/proc.h>
85 1.1 fvdl #include <sys/lock.h>
86 1.2 fvdl #include <sys/systm.h>
87 1.125 ad #include <sys/kernel.h>
88 1.105 ad #include <sys/lockdebug.h>
89 1.122 ad #include <sys/cpu.h>
90 1.122 ad #include <sys/syslog.h>
91 1.128 ad #include <sys/atomic.h>
92 1.105 ad
93 1.110 christos #include <machine/stdarg.h>
94 1.131 ad #include <machine/lock.h>
95 1.1 fvdl
96 1.98 ad #include <dev/lockstat.h>
97 1.98 ad
98 1.25 thorpej /*
99 1.25 thorpej * note that stdarg.h and the ansi style va_start macro is used for both
100 1.25 thorpej * ansi and traditional c compiles.
101 1.25 thorpej * XXX: this requires that stdarg.h define: va_alist and va_dcl
102 1.25 thorpej */
103 1.36 thorpej void lock_printf(const char *fmt, ...)
104 1.37 eeh __attribute__((__format__(__printf__,1,2)));
105 1.25 thorpej
106 1.122 ad static int acquire(struct lock **, int *, int, int, int, uintptr_t);
107 1.73 yamt
108 1.57 sommerfe int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
109 1.127 yamt bool kernel_lock_dodebug;
110 1.132 ad
111 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
112 1.132 ad __aligned(CACHE_LINE_SIZE);
113 1.1 fvdl
114 1.130 ad #ifdef LOCKDEBUG
115 1.130 ad static lockops_t lockmgr_lockops = {
116 1.130 ad "lockmgr",
117 1.130 ad 1,
118 1.130 ad (void *)nullop
119 1.130 ad };
120 1.130 ad #endif
121 1.130 ad
122 1.21 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
123 1.122 ad #define COUNT(lkp, l, cpu_id, x) (l)->l_locks += (x)
124 1.1 fvdl #else
125 1.22 mellon #define COUNT(lkp, p, cpu_id, x)
126 1.21 thorpej #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
127 1.1 fvdl
128 1.98 ad #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
129 1.98 ad
130 1.1 fvdl /*
131 1.1 fvdl * Acquire a resource.
132 1.1 fvdl */
133 1.73 yamt static int
134 1.122 ad acquire(struct lock **lkpp, int *s, int extflags,
135 1.122 ad int drain, int wanted, uintptr_t ra)
136 1.73 yamt {
137 1.73 yamt int error;
138 1.122 ad struct lock *lkp = *lkpp;
139 1.98 ad LOCKSTAT_TIMER(slptime);
140 1.105 ad LOCKSTAT_FLAG(lsflag);
141 1.73 yamt
142 1.73 yamt KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
143 1.73 yamt
144 1.122 ad LOCKSTAT_ENTER(lsflag);
145 1.73 yamt
146 1.122 ad for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
147 1.122 ad if (drain)
148 1.122 ad lkp->lk_flags |= LK_WAITDRAIN;
149 1.122 ad else {
150 1.73 yamt lkp->lk_waitcount++;
151 1.73 yamt lkp->lk_flags |= LK_WAIT_NONZERO;
152 1.73 yamt }
153 1.122 ad LOCKSTAT_START_TIMER(lsflag, slptime);
154 1.130 ad error = mtsleep(drain ? (void *)&lkp->lk_flags : (void *)lkp,
155 1.122 ad lkp->lk_prio, lkp->lk_wmesg, lkp->lk_timo,
156 1.130 ad __UNVOLATILE(&lkp->lk_interlock));
157 1.122 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
158 1.122 ad LOCKSTAT_EVENT_RA(lsflag, (void *)(uintptr_t)lkp,
159 1.122 ad LB_LOCKMGR | LB_SLEEP1, 1, slptime, ra);
160 1.73 yamt if (!drain) {
161 1.73 yamt lkp->lk_waitcount--;
162 1.73 yamt if (lkp->lk_waitcount == 0)
163 1.73 yamt lkp->lk_flags &= ~LK_WAIT_NONZERO;
164 1.73 yamt }
165 1.122 ad if (error)
166 1.122 ad break;
167 1.122 ad if (extflags & LK_SLEEPFAIL) {
168 1.122 ad error = ENOLCK;
169 1.122 ad break;
170 1.73 yamt }
171 1.122 ad }
172 1.105 ad
173 1.122 ad LOCKSTAT_EXIT(lsflag);
174 1.1 fvdl
175 1.73 yamt return error;
176 1.73 yamt }
177 1.73 yamt
178 1.69 thorpej #define SETHOLDER(lkp, pid, lid, cpu_id) \
179 1.19 thorpej do { \
180 1.122 ad (lkp)->lk_lockholder = pid; \
181 1.122 ad (lkp)->lk_locklwp = lid; \
182 1.30 thorpej } while (/*CONSTCOND*/0)
183 1.19 thorpej
184 1.69 thorpej #define WEHOLDIT(lkp, pid, lid, cpu_id) \
185 1.122 ad ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid))
186 1.19 thorpej
187 1.23 thorpej #define WAKEUP_WAITER(lkp) \
188 1.23 thorpej do { \
189 1.122 ad if (((lkp)->lk_flags & LK_WAIT_NONZERO) != 0) { \
190 1.87 christos wakeup((lkp)); \
191 1.23 thorpej } \
192 1.30 thorpej } while (/*CONSTCOND*/0)
193 1.23 thorpej
194 1.25 thorpej #if defined(LOCKDEBUG)
195 1.25 thorpej /*
196 1.25 thorpej * Lock debug printing routine; can be configured to print to console
197 1.25 thorpej * or log to syslog.
198 1.25 thorpej */
199 1.25 thorpej void
200 1.25 thorpej lock_printf(const char *fmt, ...)
201 1.25 thorpej {
202 1.68 pk char b[150];
203 1.25 thorpej va_list ap;
204 1.25 thorpej
205 1.25 thorpej va_start(ap, fmt);
206 1.25 thorpej if (lock_debug_syslog)
207 1.25 thorpej vlog(LOG_DEBUG, fmt, ap);
208 1.68 pk else {
209 1.68 pk vsnprintf(b, sizeof(b), fmt, ap);
210 1.68 pk printf_nolog("%s", b);
211 1.68 pk }
212 1.25 thorpej va_end(ap);
213 1.25 thorpej }
214 1.25 thorpej #endif /* LOCKDEBUG */
215 1.25 thorpej
216 1.110 christos static void
217 1.122 ad lockpanic(struct lock *lkp, const char *fmt, ...)
218 1.110 christos {
219 1.110 christos char s[150], b[150];
220 1.110 christos static const char *locktype[] = {
221 1.129 ad "*0*", "shared", "exclusive", "*3*", "*4*", "downgrade",
222 1.129 ad "*release*", "drain", "exclother", "*9*", "*10*",
223 1.129 ad "*11*", "*12*", "*13*", "*14*", "*15*"
224 1.110 christos };
225 1.110 christos va_list ap;
226 1.110 christos va_start(ap, fmt);
227 1.110 christos vsnprintf(s, sizeof(s), fmt, ap);
228 1.110 christos va_end(ap);
229 1.110 christos bitmask_snprintf(lkp->lk_flags, __LK_FLAG_BITS, b, sizeof(b));
230 1.110 christos panic("%s ("
231 1.122 ad "type %s flags %s, sharecount %d, exclusivecount %d, "
232 1.110 christos "recurselevel %d, waitcount %d, wmesg %s"
233 1.122 ad ", lock_addr %p, unlock_addr %p"
234 1.110 christos ")\n",
235 1.122 ad s, locktype[lkp->lk_flags & LK_TYPE_MASK],
236 1.110 christos b, lkp->lk_sharecount, lkp->lk_exclusivecount,
237 1.122 ad lkp->lk_recurselevel, lkp->lk_waitcount, lkp->lk_wmesg,
238 1.122 ad (void *)lkp->lk_lock_addr, (void *)lkp->lk_unlock_addr
239 1.110 christos );
240 1.110 christos }
241 1.110 christos
242 1.1 fvdl /*
243 1.1 fvdl * Initialize a lock; required before use.
244 1.1 fvdl */
245 1.1 fvdl void
246 1.109 yamt lockinit(struct lock *lkp, pri_t prio, const char *wmesg, int timo, int flags)
247 1.1 fvdl {
248 1.1 fvdl
249 1.8 perry memset(lkp, 0, sizeof(struct lock));
250 1.122 ad lkp->lk_flags = flags & LK_EXTFLG_MASK;
251 1.130 ad mutex_init(&lkp->lk_interlock, MUTEX_DEFAULT, IPL_NONE);
252 1.122 ad lkp->lk_lockholder = LK_NOPROC;
253 1.122 ad lkp->lk_prio = prio;
254 1.122 ad lkp->lk_timo = timo;
255 1.122 ad lkp->lk_wmesg = wmesg;
256 1.122 ad lkp->lk_lock_addr = 0;
257 1.122 ad lkp->lk_unlock_addr = 0;
258 1.130 ad
259 1.130 ad if (LOCKDEBUG_ALLOC(lkp, &lockmgr_lockops,
260 1.130 ad (uintptr_t)__builtin_return_address(0))) {
261 1.130 ad lkp->lk_flags |= LK_DODEBUG;
262 1.130 ad }
263 1.122 ad }
264 1.122 ad
265 1.122 ad void
266 1.122 ad lockdestroy(struct lock *lkp)
267 1.122 ad {
268 1.122 ad
269 1.130 ad LOCKDEBUG_FREE(((lkp->lk_flags & LK_DODEBUG) != 0), lkp);
270 1.130 ad mutex_destroy(&lkp->lk_interlock);
271 1.1 fvdl }
272 1.1 fvdl
273 1.1 fvdl /*
274 1.1 fvdl * Determine the status of a lock.
275 1.1 fvdl */
276 1.1 fvdl int
277 1.33 thorpej lockstatus(struct lock *lkp)
278 1.1 fvdl {
279 1.76 yamt int lock_type = 0;
280 1.76 yamt struct lwp *l = curlwp; /* XXX */
281 1.76 yamt pid_t pid;
282 1.76 yamt lwpid_t lid;
283 1.88 blymn cpuid_t cpu_num;
284 1.76 yamt
285 1.122 ad if (l == NULL) {
286 1.88 blymn cpu_num = cpu_number();
287 1.76 yamt pid = LK_KERNPROC;
288 1.76 yamt lid = 0;
289 1.76 yamt } else {
290 1.88 blymn cpu_num = LK_NOCPU;
291 1.76 yamt pid = l->l_proc->p_pid;
292 1.76 yamt lid = l->l_lid;
293 1.76 yamt }
294 1.1 fvdl
295 1.130 ad mutex_enter(&lkp->lk_interlock);
296 1.76 yamt if (lkp->lk_exclusivecount != 0) {
297 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num))
298 1.76 yamt lock_type = LK_EXCLUSIVE;
299 1.76 yamt else
300 1.76 yamt lock_type = LK_EXCLOTHER;
301 1.76 yamt } else if (lkp->lk_sharecount != 0)
302 1.1 fvdl lock_type = LK_SHARED;
303 1.129 ad else if (lkp->lk_flags & LK_WANT_EXCL)
304 1.103 chs lock_type = LK_EXCLOTHER;
305 1.130 ad mutex_exit(&lkp->lk_interlock);
306 1.1 fvdl return (lock_type);
307 1.1 fvdl }
308 1.35 thorpej
309 1.44 thorpej /*
310 1.32 sommerfe * XXX XXX kludge around another kludge..
311 1.32 sommerfe *
312 1.32 sommerfe * vfs_shutdown() may be called from interrupt context, either as a result
313 1.32 sommerfe * of a panic, or from the debugger. It proceeds to call
314 1.32 sommerfe * sys_sync(&proc0, ...), pretending its running on behalf of proc0
315 1.32 sommerfe *
316 1.32 sommerfe * We would like to make an attempt to sync the filesystems in this case, so
317 1.32 sommerfe * if this happens, we treat attempts to acquire locks specially.
318 1.32 sommerfe * All locks are acquired on behalf of proc0.
319 1.32 sommerfe *
320 1.32 sommerfe * If we've already paniced, we don't block waiting for locks, but
321 1.32 sommerfe * just barge right ahead since we're already going down in flames.
322 1.32 sommerfe */
323 1.32 sommerfe
324 1.32 sommerfe /*
325 1.1 fvdl * Set, change, or release a lock.
326 1.1 fvdl *
327 1.1 fvdl * Shared requests increment the shared count. Exclusive requests set the
328 1.1 fvdl * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
329 1.129 ad * accepted shared locks to go away.
330 1.1 fvdl */
331 1.1 fvdl int
332 1.130 ad lockmgr(struct lock *lkp, u_int flags, kmutex_t *interlkp)
333 1.1 fvdl {
334 1.1 fvdl int error;
335 1.1 fvdl pid_t pid;
336 1.69 thorpej lwpid_t lid;
337 1.1 fvdl int extflags;
338 1.88 blymn cpuid_t cpu_num;
339 1.69 thorpej struct lwp *l = curlwp;
340 1.32 sommerfe int lock_shutdown_noblock = 0;
341 1.67 scw int s = 0;
342 1.1 fvdl
343 1.1 fvdl error = 0;
344 1.19 thorpej
345 1.80 yamt /* LK_RETRY is for vn_lock, not for lockmgr. */
346 1.79 yamt KASSERT((flags & LK_RETRY) == 0);
347 1.125 ad KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
348 1.79 yamt
349 1.130 ad mutex_enter(&lkp->lk_interlock);
350 1.1 fvdl if (flags & LK_INTERLOCK)
351 1.130 ad mutex_exit(interlkp);
352 1.1 fvdl extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
353 1.19 thorpej
354 1.122 ad if (l == NULL) {
355 1.122 ad if (!doing_shutdown) {
356 1.122 ad panic("lockmgr: no context");
357 1.122 ad } else {
358 1.122 ad l = &lwp0;
359 1.122 ad if (panicstr && (!(flags & LK_NOWAIT))) {
360 1.122 ad flags |= LK_NOWAIT;
361 1.122 ad lock_shutdown_noblock = 1;
362 1.32 sommerfe }
363 1.32 sommerfe }
364 1.19 thorpej }
365 1.122 ad lid = l->l_lid;
366 1.122 ad pid = l->l_proc->p_pid;
367 1.88 blymn cpu_num = cpu_number();
368 1.19 thorpej
369 1.1 fvdl /*
370 1.1 fvdl * Once a lock has drained, the LK_DRAINING flag is set and an
371 1.1 fvdl * exclusive lock is returned. The only valid operation thereafter
372 1.1 fvdl * is a single release of that exclusive lock. This final release
373 1.1 fvdl * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
374 1.1 fvdl * further requests of any sort will result in a panic. The bits
375 1.1 fvdl * selected for these two flags are chosen so that they will be set
376 1.1 fvdl * in memory that is freed (freed memory is filled with 0xdeadbeef).
377 1.1 fvdl * The final release is permitted to give a new lease on life to
378 1.1 fvdl * the lock by specifying LK_REENABLE.
379 1.1 fvdl */
380 1.1 fvdl if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
381 1.28 thorpej #ifdef DIAGNOSTIC /* { */
382 1.1 fvdl if (lkp->lk_flags & LK_DRAINED)
383 1.110 christos lockpanic(lkp, "lockmgr: using decommissioned lock");
384 1.1 fvdl if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
385 1.88 blymn WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
386 1.110 christos lockpanic(lkp, "lockmgr: non-release on draining lock: %d",
387 1.1 fvdl flags & LK_TYPE_MASK);
388 1.28 thorpej #endif /* DIAGNOSTIC */ /* } */
389 1.1 fvdl lkp->lk_flags &= ~LK_DRAINING;
390 1.1 fvdl if ((flags & LK_REENABLE) == 0)
391 1.1 fvdl lkp->lk_flags |= LK_DRAINED;
392 1.1 fvdl }
393 1.1 fvdl
394 1.1 fvdl switch (flags & LK_TYPE_MASK) {
395 1.1 fvdl
396 1.1 fvdl case LK_SHARED:
397 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
398 1.1 fvdl /*
399 1.1 fvdl * If just polling, check to see if we will block.
400 1.1 fvdl */
401 1.1 fvdl if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
402 1.129 ad (LK_HAVE_EXCL | LK_WANT_EXCL))) {
403 1.1 fvdl error = EBUSY;
404 1.1 fvdl break;
405 1.1 fvdl }
406 1.1 fvdl /*
407 1.129 ad * Wait for exclusive locks to clear.
408 1.1 fvdl */
409 1.78 hannken error = acquire(&lkp, &s, extflags, 0,
410 1.129 ad LK_HAVE_EXCL | LK_WANT_EXCL,
411 1.98 ad RETURN_ADDRESS);
412 1.1 fvdl if (error)
413 1.1 fvdl break;
414 1.1 fvdl lkp->lk_sharecount++;
415 1.73 yamt lkp->lk_flags |= LK_SHARE_NONZERO;
416 1.88 blymn COUNT(lkp, l, cpu_num, 1);
417 1.1 fvdl break;
418 1.1 fvdl }
419 1.1 fvdl /*
420 1.1 fvdl * We hold an exclusive lock, so downgrade it to shared.
421 1.1 fvdl * An alternative would be to fail with EDEADLK.
422 1.1 fvdl */
423 1.1 fvdl lkp->lk_sharecount++;
424 1.73 yamt lkp->lk_flags |= LK_SHARE_NONZERO;
425 1.88 blymn COUNT(lkp, l, cpu_num, 1);
426 1.1 fvdl /* fall into downgrade */
427 1.1 fvdl
428 1.1 fvdl case LK_DOWNGRADE:
429 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
430 1.19 thorpej lkp->lk_exclusivecount == 0)
431 1.110 christos lockpanic(lkp, "lockmgr: not holding exclusive lock");
432 1.1 fvdl lkp->lk_sharecount += lkp->lk_exclusivecount;
433 1.73 yamt lkp->lk_flags |= LK_SHARE_NONZERO;
434 1.1 fvdl lkp->lk_exclusivecount = 0;
435 1.15 fvdl lkp->lk_recurselevel = 0;
436 1.1 fvdl lkp->lk_flags &= ~LK_HAVE_EXCL;
437 1.69 thorpej SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
438 1.50 thorpej #if defined(LOCKDEBUG)
439 1.122 ad lkp->lk_unlock_addr = RETURN_ADDRESS;
440 1.50 thorpej #endif
441 1.23 thorpej WAKEUP_WAITER(lkp);
442 1.1 fvdl break;
443 1.1 fvdl
444 1.1 fvdl case LK_EXCLUSIVE:
445 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
446 1.1 fvdl /*
447 1.19 thorpej * Recursive lock.
448 1.1 fvdl */
449 1.15 fvdl if ((extflags & LK_CANRECURSE) == 0 &&
450 1.16 sommerfe lkp->lk_recurselevel == 0) {
451 1.16 sommerfe if (extflags & LK_RECURSEFAIL) {
452 1.16 sommerfe error = EDEADLK;
453 1.16 sommerfe break;
454 1.16 sommerfe } else
455 1.110 christos lockpanic(lkp, "lockmgr: locking against myself");
456 1.16 sommerfe }
457 1.1 fvdl lkp->lk_exclusivecount++;
458 1.88 blymn COUNT(lkp, l, cpu_num, 1);
459 1.1 fvdl break;
460 1.1 fvdl }
461 1.1 fvdl /*
462 1.1 fvdl * If we are just polling, check to see if we will sleep.
463 1.1 fvdl */
464 1.73 yamt if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
465 1.129 ad (LK_HAVE_EXCL | LK_WANT_EXCL | LK_SHARE_NONZERO))) {
466 1.1 fvdl error = EBUSY;
467 1.1 fvdl break;
468 1.1 fvdl }
469 1.1 fvdl /*
470 1.1 fvdl * Try to acquire the want_exclusive flag.
471 1.1 fvdl */
472 1.82 yamt error = acquire(&lkp, &s, extflags, 0,
473 1.98 ad LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
474 1.1 fvdl if (error)
475 1.1 fvdl break;
476 1.1 fvdl lkp->lk_flags |= LK_WANT_EXCL;
477 1.1 fvdl /*
478 1.129 ad * Wait for shared locks to finish.
479 1.1 fvdl */
480 1.78 hannken error = acquire(&lkp, &s, extflags, 0,
481 1.129 ad LK_HAVE_EXCL | LK_SHARE_NONZERO,
482 1.98 ad RETURN_ADDRESS);
483 1.1 fvdl lkp->lk_flags &= ~LK_WANT_EXCL;
484 1.83 yamt if (error) {
485 1.83 yamt WAKEUP_WAITER(lkp);
486 1.1 fvdl break;
487 1.83 yamt }
488 1.1 fvdl lkp->lk_flags |= LK_HAVE_EXCL;
489 1.88 blymn SETHOLDER(lkp, pid, lid, cpu_num);
490 1.50 thorpej #if defined(LOCKDEBUG)
491 1.122 ad lkp->lk_lock_addr = RETURN_ADDRESS;
492 1.50 thorpej #endif
493 1.1 fvdl if (lkp->lk_exclusivecount != 0)
494 1.110 christos lockpanic(lkp, "lockmgr: non-zero exclusive count");
495 1.1 fvdl lkp->lk_exclusivecount = 1;
496 1.88 blymn COUNT(lkp, l, cpu_num, 1);
497 1.1 fvdl break;
498 1.1 fvdl
499 1.1 fvdl case LK_RELEASE:
500 1.1 fvdl if (lkp->lk_exclusivecount != 0) {
501 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
502 1.122 ad lockpanic(lkp, "lockmgr: pid %d.%d, not "
503 1.122 ad "exclusive lock holder %d.%d "
504 1.122 ad "unlocking", pid, lid,
505 1.122 ad lkp->lk_lockholder,
506 1.122 ad lkp->lk_locklwp);
507 1.19 thorpej }
508 1.15 fvdl if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
509 1.15 fvdl lkp->lk_recurselevel = 0;
510 1.1 fvdl lkp->lk_exclusivecount--;
511 1.88 blymn COUNT(lkp, l, cpu_num, -1);
512 1.1 fvdl if (lkp->lk_exclusivecount == 0) {
513 1.1 fvdl lkp->lk_flags &= ~LK_HAVE_EXCL;
514 1.69 thorpej SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
515 1.50 thorpej #if defined(LOCKDEBUG)
516 1.122 ad lkp->lk_unlock_addr = RETURN_ADDRESS;
517 1.50 thorpej #endif
518 1.1 fvdl }
519 1.1 fvdl } else if (lkp->lk_sharecount != 0) {
520 1.1 fvdl lkp->lk_sharecount--;
521 1.73 yamt if (lkp->lk_sharecount == 0)
522 1.73 yamt lkp->lk_flags &= ~LK_SHARE_NONZERO;
523 1.88 blymn COUNT(lkp, l, cpu_num, -1);
524 1.1 fvdl }
525 1.39 thorpej #ifdef DIAGNOSTIC
526 1.39 thorpej else
527 1.110 christos lockpanic(lkp, "lockmgr: release of unlocked lock!");
528 1.39 thorpej #endif
529 1.23 thorpej WAKEUP_WAITER(lkp);
530 1.1 fvdl break;
531 1.1 fvdl
532 1.1 fvdl case LK_DRAIN:
533 1.1 fvdl /*
534 1.86 perry * Check that we do not already hold the lock, as it can
535 1.1 fvdl * never drain if we do. Unfortunately, we have no way to
536 1.1 fvdl * check for holding a shared lock, but at least we can
537 1.1 fvdl * check for an exclusive one.
538 1.1 fvdl */
539 1.88 blymn if (WEHOLDIT(lkp, pid, lid, cpu_num))
540 1.110 christos lockpanic(lkp, "lockmgr: draining against myself");
541 1.1 fvdl /*
542 1.1 fvdl * If we are just polling, check to see if we will sleep.
543 1.1 fvdl */
544 1.73 yamt if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
545 1.129 ad (LK_HAVE_EXCL | LK_WANT_EXCL |
546 1.73 yamt LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
547 1.1 fvdl error = EBUSY;
548 1.1 fvdl break;
549 1.1 fvdl }
550 1.78 hannken error = acquire(&lkp, &s, extflags, 1,
551 1.129 ad LK_HAVE_EXCL | LK_WANT_EXCL |
552 1.98 ad LK_SHARE_NONZERO | LK_WAIT_NONZERO,
553 1.98 ad RETURN_ADDRESS);
554 1.23 thorpej if (error)
555 1.23 thorpej break;
556 1.118 pooka lkp->lk_flags |= LK_HAVE_EXCL;
557 1.118 pooka if ((extflags & LK_RESURRECT) == 0)
558 1.118 pooka lkp->lk_flags |= LK_DRAINING;
559 1.88 blymn SETHOLDER(lkp, pid, lid, cpu_num);
560 1.50 thorpej #if defined(LOCKDEBUG)
561 1.122 ad lkp->lk_lock_addr = RETURN_ADDRESS;
562 1.50 thorpej #endif
563 1.1 fvdl lkp->lk_exclusivecount = 1;
564 1.88 blymn COUNT(lkp, l, cpu_num, 1);
565 1.1 fvdl break;
566 1.1 fvdl
567 1.1 fvdl default:
568 1.130 ad mutex_exit(&lkp->lk_interlock);
569 1.110 christos lockpanic(lkp, "lockmgr: unknown locktype request %d",
570 1.1 fvdl flags & LK_TYPE_MASK);
571 1.1 fvdl /* NOTREACHED */
572 1.1 fvdl }
573 1.122 ad if ((lkp->lk_flags & LK_WAITDRAIN) != 0 &&
574 1.23 thorpej ((lkp->lk_flags &
575 1.129 ad (LK_HAVE_EXCL | LK_WANT_EXCL |
576 1.73 yamt LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
577 1.1 fvdl lkp->lk_flags &= ~LK_WAITDRAIN;
578 1.87 christos wakeup(&lkp->lk_flags);
579 1.1 fvdl }
580 1.32 sommerfe /*
581 1.32 sommerfe * Note that this panic will be a recursive panic, since
582 1.32 sommerfe * we only set lock_shutdown_noblock above if panicstr != NULL.
583 1.32 sommerfe */
584 1.32 sommerfe if (error && lock_shutdown_noblock)
585 1.110 christos lockpanic(lkp, "lockmgr: deadlock (see previous panic)");
586 1.86 perry
587 1.130 ad mutex_exit(&lkp->lk_interlock);
588 1.1 fvdl return (error);
589 1.1 fvdl }
590 1.1 fvdl
591 1.1 fvdl /*
592 1.1 fvdl * Print out information about state of a lock. Used by VOP_PRINT
593 1.1 fvdl * routines to display ststus about contained locks.
594 1.1 fvdl */
595 1.2 fvdl void
596 1.122 ad lockmgr_printinfo(struct lock *lkp)
597 1.1 fvdl {
598 1.1 fvdl
599 1.1 fvdl if (lkp->lk_sharecount)
600 1.1 fvdl printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
601 1.1 fvdl lkp->lk_sharecount);
602 1.19 thorpej else if (lkp->lk_flags & LK_HAVE_EXCL) {
603 1.19 thorpej printf(" lock type %s: EXCL (count %d) by ",
604 1.19 thorpej lkp->lk_wmesg, lkp->lk_exclusivecount);
605 1.122 ad printf("pid %d.%d", lkp->lk_lockholder,
606 1.122 ad lkp->lk_locklwp);
607 1.19 thorpej } else
608 1.19 thorpej printf(" not locked");
609 1.122 ad if (lkp->lk_waitcount > 0)
610 1.1 fvdl printf(" with %d pending", lkp->lk_waitcount);
611 1.1 fvdl }
612 1.1 fvdl
613 1.122 ad #if defined(LOCKDEBUG)
614 1.96 yamt void
615 1.96 yamt assert_sleepable(struct simplelock *interlock, const char *msg)
616 1.96 yamt {
617 1.96 yamt
618 1.117 ad if (panicstr != NULL)
619 1.117 ad return;
620 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
621 1.125 ad if (CURCPU_IDLE_P() && !cold) {
622 1.113 yamt panic("assert_sleepable: idle");
623 1.97 yamt }
624 1.96 yamt }
625 1.122 ad #endif
626 1.105 ad
627 1.62 thorpej /*
628 1.124 pooka * rump doesn't need the kernel lock so force it out. We cannot
629 1.124 pooka * currently easily include it for compilation because of
630 1.128 ad * a) SPINLOCK_* b) membar_producer(). They are defined in different
631 1.124 pooka * places / way for each arch, so just simply do not bother to
632 1.124 pooka * fight a lot for no gain (i.e. pain but still no gain).
633 1.124 pooka */
634 1.124 pooka #ifndef _RUMPKERNEL
635 1.124 pooka /*
636 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
637 1.62 thorpej * so that they show up in profiles.
638 1.62 thorpej */
639 1.62 thorpej
640 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
641 1.132 ad LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
642 1.105 ad
643 1.105 ad #ifdef LOCKDEBUG
644 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
645 1.105 ad do { \
646 1.105 ad if (!(cond)) \
647 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
648 1.105 ad } while (/* CONSTCOND */ 0)
649 1.105 ad #else
650 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
651 1.105 ad #endif
652 1.105 ad
653 1.105 ad void _kernel_lock_dump(volatile void *);
654 1.105 ad
655 1.105 ad lockops_t _kernel_lock_ops = {
656 1.105 ad "Kernel lock",
657 1.105 ad 0,
658 1.105 ad _kernel_lock_dump
659 1.105 ad };
660 1.105 ad
661 1.85 yamt /*
662 1.105 ad * Initialize the kernel lock.
663 1.85 yamt */
664 1.62 thorpej void
665 1.122 ad kernel_lock_init(void)
666 1.62 thorpej {
667 1.62 thorpej
668 1.132 ad KASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
669 1.132 ad __cpu_simple_lock_init(kernel_lock);
670 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
671 1.122 ad RETURN_ADDRESS);
672 1.62 thorpej }
673 1.62 thorpej
674 1.62 thorpej /*
675 1.105 ad * Print debugging information about the kernel lock.
676 1.62 thorpej */
677 1.62 thorpej void
678 1.105 ad _kernel_lock_dump(volatile void *junk)
679 1.62 thorpej {
680 1.85 yamt struct cpu_info *ci = curcpu();
681 1.62 thorpej
682 1.105 ad (void)junk;
683 1.85 yamt
684 1.105 ad printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
685 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
686 1.62 thorpej }
687 1.62 thorpej
688 1.105 ad /*
689 1.105 ad * Acquire 'nlocks' holds on the kernel lock. If 'l' is non-null, the
690 1.105 ad * acquisition is from process context.
691 1.105 ad */
692 1.62 thorpej void
693 1.105 ad _kernel_lock(int nlocks, struct lwp *l)
694 1.62 thorpej {
695 1.85 yamt struct cpu_info *ci = curcpu();
696 1.105 ad LOCKSTAT_TIMER(spintime);
697 1.105 ad LOCKSTAT_FLAG(lsflag);
698 1.105 ad struct lwp *owant;
699 1.105 ad u_int spins;
700 1.85 yamt int s;
701 1.85 yamt
702 1.105 ad if (nlocks == 0)
703 1.105 ad return;
704 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
705 1.62 thorpej
706 1.122 ad l = curlwp;
707 1.105 ad
708 1.105 ad if (ci->ci_biglock_count != 0) {
709 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
710 1.105 ad ci->ci_biglock_count += nlocks;
711 1.122 ad l->l_blcnt += nlocks;
712 1.105 ad return;
713 1.105 ad }
714 1.105 ad
715 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
716 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
717 1.127 yamt 0);
718 1.107 ad
719 1.122 ad s = splvm();
720 1.132 ad if (__cpu_simple_lock_try(kernel_lock)) {
721 1.105 ad ci->ci_biglock_count = nlocks;
722 1.122 ad l->l_blcnt = nlocks;
723 1.132 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock,
724 1.127 yamt RETURN_ADDRESS, 0);
725 1.105 ad splx(s);
726 1.105 ad return;
727 1.105 ad }
728 1.105 ad
729 1.132 ad /*
730 1.132 ad * To remove the ordering constraint between adaptive mutexes
731 1.132 ad * and kernel_lock we must make it appear as if this thread is
732 1.132 ad * blocking. For non-interlocked mutex release, a store fence
733 1.132 ad * is required to ensure that the result of any mutex_exit()
734 1.132 ad * by the current LWP becomes visible on the bus before the set
735 1.132 ad * of ci->ci_biglock_wanted becomes visible.
736 1.132 ad */
737 1.132 ad membar_producer();
738 1.132 ad owant = ci->ci_biglock_wanted;
739 1.132 ad ci->ci_biglock_wanted = l;
740 1.105 ad
741 1.105 ad /*
742 1.132 ad * Spin until we acquire the lock. Once we have it, record the
743 1.132 ad * time spent with lockstat.
744 1.105 ad */
745 1.132 ad LOCKSTAT_ENTER(lsflag);
746 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
747 1.105 ad
748 1.105 ad spins = 0;
749 1.105 ad do {
750 1.122 ad splx(s);
751 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
752 1.132 ad if (SPINLOCK_SPINOUT(spins)) {
753 1.105 ad _KERNEL_LOCK_ABORT("spinout");
754 1.132 ad }
755 1.122 ad SPINLOCK_BACKOFF_HOOK;
756 1.105 ad SPINLOCK_SPIN_HOOK;
757 1.105 ad }
758 1.132 ad s = splvm();
759 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
760 1.105 ad
761 1.122 ad ci->ci_biglock_count = nlocks;
762 1.122 ad l->l_blcnt = nlocks;
763 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
764 1.132 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS, 0);
765 1.132 ad if (owant == NULL) {
766 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
767 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
768 1.132 ad }
769 1.132 ad LOCKSTAT_EXIT(lsflag);
770 1.85 yamt splx(s);
771 1.105 ad
772 1.105 ad /*
773 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
774 1.132 ad * store must be unbuffered (immediately visible on the bus) in
775 1.132 ad * order for non-interlocked mutex release to work correctly.
776 1.132 ad * It must be visible before a mutex_exit() can execute on this
777 1.132 ad * processor.
778 1.132 ad *
779 1.132 ad * Note: only where CAS is available in hardware will this be
780 1.132 ad * an unbuffered write, but non-interlocked release cannot be
781 1.132 ad * done on CPUs without CAS in hardware.
782 1.105 ad */
783 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
784 1.132 ad
785 1.132 ad /*
786 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
787 1.132 ad * prevents stores from a following mutex_exit() being reordered
788 1.132 ad * to occur before our store to ci_biglock_wanted above.
789 1.132 ad */
790 1.132 ad membar_enter();
791 1.62 thorpej }
792 1.62 thorpej
793 1.62 thorpej /*
794 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
795 1.105 ad * all holds. If 'l' is non-null, the release is from process context.
796 1.62 thorpej */
797 1.62 thorpej void
798 1.105 ad _kernel_unlock(int nlocks, struct lwp *l, int *countp)
799 1.62 thorpej {
800 1.105 ad struct cpu_info *ci = curcpu();
801 1.105 ad u_int olocks;
802 1.105 ad int s;
803 1.62 thorpej
804 1.122 ad l = curlwp;
805 1.62 thorpej
806 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
807 1.62 thorpej
808 1.122 ad olocks = l->l_blcnt;
809 1.77 yamt
810 1.105 ad if (olocks == 0) {
811 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
812 1.105 ad if (countp != NULL)
813 1.105 ad *countp = 0;
814 1.105 ad return;
815 1.105 ad }
816 1.77 yamt
817 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
818 1.85 yamt
819 1.105 ad if (nlocks == 0)
820 1.105 ad nlocks = olocks;
821 1.105 ad else if (nlocks == -1) {
822 1.105 ad nlocks = 1;
823 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
824 1.105 ad }
825 1.85 yamt
826 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
827 1.122 ad
828 1.122 ad l->l_blcnt -= nlocks;
829 1.122 ad if (ci->ci_biglock_count == nlocks) {
830 1.122 ad s = splvm();
831 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
832 1.127 yamt RETURN_ADDRESS, 0);
833 1.122 ad ci->ci_biglock_count = 0;
834 1.132 ad __cpu_simple_unlock(kernel_lock);
835 1.122 ad splx(s);
836 1.122 ad } else
837 1.122 ad ci->ci_biglock_count -= nlocks;
838 1.77 yamt
839 1.105 ad if (countp != NULL)
840 1.105 ad *countp = olocks;
841 1.77 yamt }
842 1.124 pooka #endif /* !_RUMPKERNEL */
843