kern_lock.c revision 1.146.2.1 1 1.146.2.1 haad /* $NetBSD: kern_lock.c,v 1.146.2.1 2008/12/13 01:15:08 haad Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.134 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * Redistribution and use in source and binary forms, with or without
12 1.19 thorpej * modification, are permitted provided that the following conditions
13 1.19 thorpej * are met:
14 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.19 thorpej * notice, this list of conditions and the following disclaimer.
16 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.19 thorpej * documentation and/or other materials provided with the distribution.
19 1.19 thorpej *
20 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.19 thorpej */
32 1.2 fvdl
33 1.60 lukem #include <sys/cdefs.h>
34 1.146.2.1 haad __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.146.2.1 2008/12/13 01:15:08 haad Exp $");
35 1.105 ad
36 1.1 fvdl #include <sys/param.h>
37 1.1 fvdl #include <sys/proc.h>
38 1.1 fvdl #include <sys/lock.h>
39 1.2 fvdl #include <sys/systm.h>
40 1.125 ad #include <sys/kernel.h>
41 1.105 ad #include <sys/lockdebug.h>
42 1.122 ad #include <sys/cpu.h>
43 1.122 ad #include <sys/syslog.h>
44 1.128 ad #include <sys/atomic.h>
45 1.105 ad
46 1.110 christos #include <machine/stdarg.h>
47 1.131 ad #include <machine/lock.h>
48 1.1 fvdl
49 1.98 ad #include <dev/lockstat.h>
50 1.98 ad
51 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
52 1.25 thorpej
53 1.127 yamt bool kernel_lock_dodebug;
54 1.132 ad
55 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
56 1.132 ad __aligned(CACHE_LINE_SIZE);
57 1.1 fvdl
58 1.96 yamt void
59 1.135 yamt assert_sleepable(void)
60 1.96 yamt {
61 1.135 yamt const char *reason;
62 1.96 yamt
63 1.135 yamt if (panicstr != NULL) {
64 1.117 ad return;
65 1.135 yamt }
66 1.135 yamt
67 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
68 1.135 yamt
69 1.135 yamt reason = NULL;
70 1.125 ad if (CURCPU_IDLE_P() && !cold) {
71 1.135 yamt reason = "idle";
72 1.135 yamt }
73 1.135 yamt if (cpu_intr_p()) {
74 1.135 yamt reason = "interrupt";
75 1.97 yamt }
76 1.135 yamt if ((curlwp->l_pflag & LP_INTR) != 0) {
77 1.135 yamt reason = "softint";
78 1.135 yamt }
79 1.135 yamt
80 1.135 yamt if (reason) {
81 1.135 yamt panic("%s: %s caller=%p", __func__, reason,
82 1.135 yamt (void *)RETURN_ADDRESS);
83 1.135 yamt }
84 1.96 yamt }
85 1.105 ad
86 1.62 thorpej /*
87 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
88 1.62 thorpej * so that they show up in profiles.
89 1.62 thorpej */
90 1.62 thorpej
91 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
92 1.132 ad LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
93 1.105 ad
94 1.105 ad #ifdef LOCKDEBUG
95 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
96 1.105 ad do { \
97 1.105 ad if (!(cond)) \
98 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
99 1.105 ad } while (/* CONSTCOND */ 0)
100 1.105 ad #else
101 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
102 1.105 ad #endif
103 1.105 ad
104 1.105 ad void _kernel_lock_dump(volatile void *);
105 1.105 ad
106 1.105 ad lockops_t _kernel_lock_ops = {
107 1.105 ad "Kernel lock",
108 1.144 ad LOCKOPS_SPIN,
109 1.105 ad _kernel_lock_dump
110 1.105 ad };
111 1.105 ad
112 1.85 yamt /*
113 1.105 ad * Initialize the kernel lock.
114 1.85 yamt */
115 1.62 thorpej void
116 1.122 ad kernel_lock_init(void)
117 1.62 thorpej {
118 1.62 thorpej
119 1.146 matt CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
120 1.132 ad __cpu_simple_lock_init(kernel_lock);
121 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
122 1.122 ad RETURN_ADDRESS);
123 1.62 thorpej }
124 1.62 thorpej
125 1.62 thorpej /*
126 1.105 ad * Print debugging information about the kernel lock.
127 1.62 thorpej */
128 1.62 thorpej void
129 1.105 ad _kernel_lock_dump(volatile void *junk)
130 1.62 thorpej {
131 1.85 yamt struct cpu_info *ci = curcpu();
132 1.62 thorpej
133 1.105 ad (void)junk;
134 1.85 yamt
135 1.105 ad printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
136 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
137 1.62 thorpej }
138 1.62 thorpej
139 1.105 ad /*
140 1.105 ad * Acquire 'nlocks' holds on the kernel lock. If 'l' is non-null, the
141 1.105 ad * acquisition is from process context.
142 1.105 ad */
143 1.62 thorpej void
144 1.137 drochner _kernel_lock(int nlocks)
145 1.62 thorpej {
146 1.138 ad struct cpu_info *ci;
147 1.105 ad LOCKSTAT_TIMER(spintime);
148 1.105 ad LOCKSTAT_FLAG(lsflag);
149 1.105 ad struct lwp *owant;
150 1.105 ad u_int spins;
151 1.85 yamt int s;
152 1.137 drochner struct lwp *l = curlwp;
153 1.85 yamt
154 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
155 1.62 thorpej
156 1.138 ad s = splvm();
157 1.138 ad ci = curcpu();
158 1.105 ad if (ci->ci_biglock_count != 0) {
159 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
160 1.105 ad ci->ci_biglock_count += nlocks;
161 1.122 ad l->l_blcnt += nlocks;
162 1.138 ad splx(s);
163 1.105 ad return;
164 1.105 ad }
165 1.105 ad
166 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
167 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
168 1.141 ad false, false);
169 1.107 ad
170 1.132 ad if (__cpu_simple_lock_try(kernel_lock)) {
171 1.105 ad ci->ci_biglock_count = nlocks;
172 1.122 ad l->l_blcnt = nlocks;
173 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
174 1.127 yamt RETURN_ADDRESS, 0);
175 1.105 ad splx(s);
176 1.105 ad return;
177 1.105 ad }
178 1.105 ad
179 1.132 ad /*
180 1.132 ad * To remove the ordering constraint between adaptive mutexes
181 1.132 ad * and kernel_lock we must make it appear as if this thread is
182 1.132 ad * blocking. For non-interlocked mutex release, a store fence
183 1.132 ad * is required to ensure that the result of any mutex_exit()
184 1.132 ad * by the current LWP becomes visible on the bus before the set
185 1.132 ad * of ci->ci_biglock_wanted becomes visible.
186 1.132 ad */
187 1.132 ad membar_producer();
188 1.132 ad owant = ci->ci_biglock_wanted;
189 1.132 ad ci->ci_biglock_wanted = l;
190 1.105 ad
191 1.105 ad /*
192 1.132 ad * Spin until we acquire the lock. Once we have it, record the
193 1.132 ad * time spent with lockstat.
194 1.105 ad */
195 1.132 ad LOCKSTAT_ENTER(lsflag);
196 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
197 1.105 ad
198 1.105 ad spins = 0;
199 1.105 ad do {
200 1.122 ad splx(s);
201 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
202 1.132 ad if (SPINLOCK_SPINOUT(spins)) {
203 1.143 ad extern int start_init_exec;
204 1.136 ad if (!start_init_exec)
205 1.136 ad _KERNEL_LOCK_ABORT("spinout");
206 1.132 ad }
207 1.122 ad SPINLOCK_BACKOFF_HOOK;
208 1.105 ad SPINLOCK_SPIN_HOOK;
209 1.105 ad }
210 1.132 ad s = splvm();
211 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
212 1.105 ad
213 1.122 ad ci->ci_biglock_count = nlocks;
214 1.122 ad l->l_blcnt = nlocks;
215 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
216 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
217 1.144 ad RETURN_ADDRESS, 0);
218 1.132 ad if (owant == NULL) {
219 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
220 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
221 1.132 ad }
222 1.132 ad LOCKSTAT_EXIT(lsflag);
223 1.85 yamt splx(s);
224 1.105 ad
225 1.105 ad /*
226 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
227 1.132 ad * store must be unbuffered (immediately visible on the bus) in
228 1.132 ad * order for non-interlocked mutex release to work correctly.
229 1.132 ad * It must be visible before a mutex_exit() can execute on this
230 1.132 ad * processor.
231 1.132 ad *
232 1.132 ad * Note: only where CAS is available in hardware will this be
233 1.132 ad * an unbuffered write, but non-interlocked release cannot be
234 1.132 ad * done on CPUs without CAS in hardware.
235 1.105 ad */
236 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
237 1.132 ad
238 1.132 ad /*
239 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
240 1.132 ad * prevents stores from a following mutex_exit() being reordered
241 1.132 ad * to occur before our store to ci_biglock_wanted above.
242 1.132 ad */
243 1.132 ad membar_enter();
244 1.62 thorpej }
245 1.62 thorpej
246 1.62 thorpej /*
247 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
248 1.105 ad * all holds. If 'l' is non-null, the release is from process context.
249 1.62 thorpej */
250 1.62 thorpej void
251 1.137 drochner _kernel_unlock(int nlocks, int *countp)
252 1.62 thorpej {
253 1.138 ad struct cpu_info *ci;
254 1.105 ad u_int olocks;
255 1.105 ad int s;
256 1.137 drochner struct lwp *l = curlwp;
257 1.62 thorpej
258 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
259 1.62 thorpej
260 1.122 ad olocks = l->l_blcnt;
261 1.77 yamt
262 1.105 ad if (olocks == 0) {
263 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
264 1.105 ad if (countp != NULL)
265 1.105 ad *countp = 0;
266 1.105 ad return;
267 1.105 ad }
268 1.77 yamt
269 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
270 1.85 yamt
271 1.105 ad if (nlocks == 0)
272 1.105 ad nlocks = olocks;
273 1.105 ad else if (nlocks == -1) {
274 1.105 ad nlocks = 1;
275 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
276 1.105 ad }
277 1.138 ad s = splvm();
278 1.138 ad ci = curcpu();
279 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
280 1.122 ad if (ci->ci_biglock_count == nlocks) {
281 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
282 1.127 yamt RETURN_ADDRESS, 0);
283 1.122 ad ci->ci_biglock_count = 0;
284 1.132 ad __cpu_simple_unlock(kernel_lock);
285 1.138 ad l->l_blcnt -= nlocks;
286 1.122 ad splx(s);
287 1.139 ad if (l->l_dopreempt)
288 1.139 ad kpreempt(0);
289 1.138 ad } else {
290 1.122 ad ci->ci_biglock_count -= nlocks;
291 1.138 ad l->l_blcnt -= nlocks;
292 1.138 ad splx(s);
293 1.138 ad }
294 1.77 yamt
295 1.105 ad if (countp != NULL)
296 1.105 ad *countp = olocks;
297 1.77 yamt }
298