kern_lock.c revision 1.152 1 1.152 jmcneill /* $NetBSD: kern_lock.c,v 1.152 2011/11/27 03:24:00 jmcneill Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.148 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * Redistribution and use in source and binary forms, with or without
12 1.19 thorpej * modification, are permitted provided that the following conditions
13 1.19 thorpej * are met:
14 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.19 thorpej * notice, this list of conditions and the following disclaimer.
16 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.19 thorpej * documentation and/or other materials provided with the distribution.
19 1.19 thorpej *
20 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.19 thorpej */
32 1.2 fvdl
33 1.60 lukem #include <sys/cdefs.h>
34 1.152 jmcneill __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.152 2011/11/27 03:24:00 jmcneill Exp $");
35 1.105 ad
36 1.1 fvdl #include <sys/param.h>
37 1.1 fvdl #include <sys/proc.h>
38 1.1 fvdl #include <sys/lock.h>
39 1.2 fvdl #include <sys/systm.h>
40 1.125 ad #include <sys/kernel.h>
41 1.105 ad #include <sys/lockdebug.h>
42 1.122 ad #include <sys/cpu.h>
43 1.122 ad #include <sys/syslog.h>
44 1.128 ad #include <sys/atomic.h>
45 1.148 ad #include <sys/lwp.h>
46 1.105 ad
47 1.131 ad #include <machine/lock.h>
48 1.1 fvdl
49 1.98 ad #include <dev/lockstat.h>
50 1.98 ad
51 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
52 1.25 thorpej
53 1.127 yamt bool kernel_lock_dodebug;
54 1.132 ad
55 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
56 1.132 ad __aligned(CACHE_LINE_SIZE);
57 1.1 fvdl
58 1.96 yamt void
59 1.135 yamt assert_sleepable(void)
60 1.96 yamt {
61 1.135 yamt const char *reason;
62 1.148 ad uint64_t pctr;
63 1.148 ad bool idle;
64 1.96 yamt
65 1.135 yamt if (panicstr != NULL) {
66 1.117 ad return;
67 1.135 yamt }
68 1.135 yamt
69 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
70 1.135 yamt
71 1.148 ad /*
72 1.148 ad * Avoid disabling/re-enabling preemption here since this
73 1.149 dyoung * routine may be called in delicate situations.
74 1.148 ad */
75 1.148 ad do {
76 1.148 ad pctr = lwp_pctr();
77 1.148 ad idle = CURCPU_IDLE_P();
78 1.148 ad } while (pctr != lwp_pctr());
79 1.148 ad
80 1.135 yamt reason = NULL;
81 1.148 ad if (idle && !cold) {
82 1.135 yamt reason = "idle";
83 1.135 yamt }
84 1.135 yamt if (cpu_intr_p()) {
85 1.135 yamt reason = "interrupt";
86 1.97 yamt }
87 1.148 ad if (cpu_softintr_p()) {
88 1.135 yamt reason = "softint";
89 1.135 yamt }
90 1.135 yamt
91 1.135 yamt if (reason) {
92 1.135 yamt panic("%s: %s caller=%p", __func__, reason,
93 1.135 yamt (void *)RETURN_ADDRESS);
94 1.135 yamt }
95 1.96 yamt }
96 1.105 ad
97 1.62 thorpej /*
98 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
99 1.62 thorpej * so that they show up in profiles.
100 1.62 thorpej */
101 1.62 thorpej
102 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
103 1.132 ad LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
104 1.105 ad
105 1.105 ad #ifdef LOCKDEBUG
106 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
107 1.105 ad do { \
108 1.105 ad if (!(cond)) \
109 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
110 1.105 ad } while (/* CONSTCOND */ 0)
111 1.105 ad #else
112 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
113 1.105 ad #endif
114 1.105 ad
115 1.105 ad void _kernel_lock_dump(volatile void *);
116 1.105 ad
117 1.105 ad lockops_t _kernel_lock_ops = {
118 1.105 ad "Kernel lock",
119 1.144 ad LOCKOPS_SPIN,
120 1.105 ad _kernel_lock_dump
121 1.105 ad };
122 1.105 ad
123 1.85 yamt /*
124 1.105 ad * Initialize the kernel lock.
125 1.85 yamt */
126 1.62 thorpej void
127 1.122 ad kernel_lock_init(void)
128 1.62 thorpej {
129 1.62 thorpej
130 1.146 matt CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
131 1.132 ad __cpu_simple_lock_init(kernel_lock);
132 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
133 1.122 ad RETURN_ADDRESS);
134 1.62 thorpej }
135 1.62 thorpej
136 1.62 thorpej /*
137 1.105 ad * Print debugging information about the kernel lock.
138 1.62 thorpej */
139 1.62 thorpej void
140 1.105 ad _kernel_lock_dump(volatile void *junk)
141 1.62 thorpej {
142 1.85 yamt struct cpu_info *ci = curcpu();
143 1.62 thorpej
144 1.105 ad (void)junk;
145 1.85 yamt
146 1.105 ad printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
147 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
148 1.62 thorpej }
149 1.62 thorpej
150 1.105 ad /*
151 1.150 mrg * Acquire 'nlocks' holds on the kernel lock.
152 1.105 ad */
153 1.62 thorpej void
154 1.137 drochner _kernel_lock(int nlocks)
155 1.62 thorpej {
156 1.138 ad struct cpu_info *ci;
157 1.105 ad LOCKSTAT_TIMER(spintime);
158 1.105 ad LOCKSTAT_FLAG(lsflag);
159 1.105 ad struct lwp *owant;
160 1.105 ad u_int spins;
161 1.85 yamt int s;
162 1.137 drochner struct lwp *l = curlwp;
163 1.85 yamt
164 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
165 1.62 thorpej
166 1.138 ad s = splvm();
167 1.138 ad ci = curcpu();
168 1.105 ad if (ci->ci_biglock_count != 0) {
169 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
170 1.105 ad ci->ci_biglock_count += nlocks;
171 1.122 ad l->l_blcnt += nlocks;
172 1.138 ad splx(s);
173 1.105 ad return;
174 1.105 ad }
175 1.105 ad
176 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
177 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
178 1.141 ad false, false);
179 1.107 ad
180 1.132 ad if (__cpu_simple_lock_try(kernel_lock)) {
181 1.105 ad ci->ci_biglock_count = nlocks;
182 1.122 ad l->l_blcnt = nlocks;
183 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
184 1.127 yamt RETURN_ADDRESS, 0);
185 1.105 ad splx(s);
186 1.105 ad return;
187 1.105 ad }
188 1.105 ad
189 1.132 ad /*
190 1.132 ad * To remove the ordering constraint between adaptive mutexes
191 1.132 ad * and kernel_lock we must make it appear as if this thread is
192 1.132 ad * blocking. For non-interlocked mutex release, a store fence
193 1.132 ad * is required to ensure that the result of any mutex_exit()
194 1.132 ad * by the current LWP becomes visible on the bus before the set
195 1.132 ad * of ci->ci_biglock_wanted becomes visible.
196 1.132 ad */
197 1.132 ad membar_producer();
198 1.132 ad owant = ci->ci_biglock_wanted;
199 1.132 ad ci->ci_biglock_wanted = l;
200 1.105 ad
201 1.105 ad /*
202 1.132 ad * Spin until we acquire the lock. Once we have it, record the
203 1.132 ad * time spent with lockstat.
204 1.105 ad */
205 1.132 ad LOCKSTAT_ENTER(lsflag);
206 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
207 1.105 ad
208 1.105 ad spins = 0;
209 1.105 ad do {
210 1.122 ad splx(s);
211 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
212 1.132 ad if (SPINLOCK_SPINOUT(spins)) {
213 1.143 ad extern int start_init_exec;
214 1.136 ad if (!start_init_exec)
215 1.136 ad _KERNEL_LOCK_ABORT("spinout");
216 1.132 ad }
217 1.122 ad SPINLOCK_BACKOFF_HOOK;
218 1.105 ad SPINLOCK_SPIN_HOOK;
219 1.105 ad }
220 1.132 ad s = splvm();
221 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
222 1.105 ad
223 1.122 ad ci->ci_biglock_count = nlocks;
224 1.122 ad l->l_blcnt = nlocks;
225 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
226 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
227 1.144 ad RETURN_ADDRESS, 0);
228 1.132 ad if (owant == NULL) {
229 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
230 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
231 1.132 ad }
232 1.132 ad LOCKSTAT_EXIT(lsflag);
233 1.85 yamt splx(s);
234 1.105 ad
235 1.105 ad /*
236 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
237 1.132 ad * store must be unbuffered (immediately visible on the bus) in
238 1.132 ad * order for non-interlocked mutex release to work correctly.
239 1.132 ad * It must be visible before a mutex_exit() can execute on this
240 1.132 ad * processor.
241 1.132 ad *
242 1.132 ad * Note: only where CAS is available in hardware will this be
243 1.132 ad * an unbuffered write, but non-interlocked release cannot be
244 1.132 ad * done on CPUs without CAS in hardware.
245 1.105 ad */
246 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
247 1.132 ad
248 1.132 ad /*
249 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
250 1.132 ad * prevents stores from a following mutex_exit() being reordered
251 1.132 ad * to occur before our store to ci_biglock_wanted above.
252 1.132 ad */
253 1.132 ad membar_enter();
254 1.62 thorpej }
255 1.62 thorpej
256 1.62 thorpej /*
257 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
258 1.150 mrg * all holds.
259 1.62 thorpej */
260 1.62 thorpej void
261 1.137 drochner _kernel_unlock(int nlocks, int *countp)
262 1.62 thorpej {
263 1.138 ad struct cpu_info *ci;
264 1.105 ad u_int olocks;
265 1.105 ad int s;
266 1.137 drochner struct lwp *l = curlwp;
267 1.62 thorpej
268 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
269 1.62 thorpej
270 1.122 ad olocks = l->l_blcnt;
271 1.77 yamt
272 1.105 ad if (olocks == 0) {
273 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
274 1.105 ad if (countp != NULL)
275 1.105 ad *countp = 0;
276 1.105 ad return;
277 1.105 ad }
278 1.77 yamt
279 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
280 1.85 yamt
281 1.105 ad if (nlocks == 0)
282 1.105 ad nlocks = olocks;
283 1.105 ad else if (nlocks == -1) {
284 1.105 ad nlocks = 1;
285 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
286 1.105 ad }
287 1.138 ad s = splvm();
288 1.138 ad ci = curcpu();
289 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
290 1.122 ad if (ci->ci_biglock_count == nlocks) {
291 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
292 1.127 yamt RETURN_ADDRESS, 0);
293 1.122 ad ci->ci_biglock_count = 0;
294 1.132 ad __cpu_simple_unlock(kernel_lock);
295 1.138 ad l->l_blcnt -= nlocks;
296 1.122 ad splx(s);
297 1.139 ad if (l->l_dopreempt)
298 1.139 ad kpreempt(0);
299 1.138 ad } else {
300 1.122 ad ci->ci_biglock_count -= nlocks;
301 1.138 ad l->l_blcnt -= nlocks;
302 1.138 ad splx(s);
303 1.138 ad }
304 1.77 yamt
305 1.105 ad if (countp != NULL)
306 1.105 ad *countp = olocks;
307 1.77 yamt }
308 1.152 jmcneill
309 1.152 jmcneill bool
310 1.152 jmcneill _kernel_locked_p(void)
311 1.152 jmcneill {
312 1.152 jmcneill return __SIMPLELOCK_LOCKED_P(kernel_lock);
313 1.152 jmcneill }
314