Home | History | Annotate | Line # | Download | only in kern
kern_lock.c revision 1.154
      1  1.154   mlelstv /*	$NetBSD: kern_lock.c,v 1.154 2013/04/27 08:12:34 mlelstv Exp $	*/
      2   1.19   thorpej 
      3   1.19   thorpej /*-
      4  1.148        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5   1.19   thorpej  * All rights reserved.
      6   1.19   thorpej  *
      7   1.19   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.19   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.105        ad  * NASA Ames Research Center, and by Andrew Doran.
     10   1.19   thorpej  *
     11   1.19   thorpej  * Redistribution and use in source and binary forms, with or without
     12   1.19   thorpej  * modification, are permitted provided that the following conditions
     13   1.19   thorpej  * are met:
     14   1.19   thorpej  * 1. Redistributions of source code must retain the above copyright
     15   1.19   thorpej  *    notice, this list of conditions and the following disclaimer.
     16   1.19   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.19   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18   1.19   thorpej  *    documentation and/or other materials provided with the distribution.
     19   1.19   thorpej  *
     20   1.19   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21   1.19   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22   1.19   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23   1.19   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24   1.19   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.19   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.19   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.19   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.19   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.19   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.19   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31   1.19   thorpej  */
     32    1.2      fvdl 
     33   1.60     lukem #include <sys/cdefs.h>
     34  1.154   mlelstv __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.154 2013/04/27 08:12:34 mlelstv Exp $");
     35  1.105        ad 
     36    1.1      fvdl #include <sys/param.h>
     37    1.1      fvdl #include <sys/proc.h>
     38    1.1      fvdl #include <sys/lock.h>
     39    1.2      fvdl #include <sys/systm.h>
     40  1.125        ad #include <sys/kernel.h>
     41  1.105        ad #include <sys/lockdebug.h>
     42  1.122        ad #include <sys/cpu.h>
     43  1.122        ad #include <sys/syslog.h>
     44  1.128        ad #include <sys/atomic.h>
     45  1.148        ad #include <sys/lwp.h>
     46  1.105        ad 
     47  1.131        ad #include <machine/lock.h>
     48    1.1      fvdl 
     49   1.98        ad #include <dev/lockstat.h>
     50   1.98        ad 
     51  1.134        ad #define	RETURN_ADDRESS	(uintptr_t)__builtin_return_address(0)
     52   1.25   thorpej 
     53  1.127      yamt bool	kernel_lock_dodebug;
     54  1.132        ad 
     55  1.132        ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
     56  1.153      matt     __cacheline_aligned;
     57    1.1      fvdl 
     58   1.96      yamt void
     59  1.135      yamt assert_sleepable(void)
     60   1.96      yamt {
     61  1.135      yamt 	const char *reason;
     62  1.148        ad 	uint64_t pctr;
     63  1.148        ad 	bool idle;
     64   1.96      yamt 
     65  1.135      yamt 	if (panicstr != NULL) {
     66  1.117        ad 		return;
     67  1.135      yamt 	}
     68  1.135      yamt 
     69  1.132        ad 	LOCKDEBUG_BARRIER(kernel_lock, 1);
     70  1.135      yamt 
     71  1.148        ad 	/*
     72  1.148        ad 	 * Avoid disabling/re-enabling preemption here since this
     73  1.149    dyoung 	 * routine may be called in delicate situations.
     74  1.148        ad 	 */
     75  1.148        ad 	do {
     76  1.148        ad 		pctr = lwp_pctr();
     77  1.148        ad 		idle = CURCPU_IDLE_P();
     78  1.148        ad 	} while (pctr != lwp_pctr());
     79  1.148        ad 
     80  1.135      yamt 	reason = NULL;
     81  1.148        ad 	if (idle && !cold) {
     82  1.135      yamt 		reason = "idle";
     83  1.135      yamt 	}
     84  1.135      yamt 	if (cpu_intr_p()) {
     85  1.135      yamt 		reason = "interrupt";
     86   1.97      yamt 	}
     87  1.148        ad 	if (cpu_softintr_p()) {
     88  1.135      yamt 		reason = "softint";
     89  1.135      yamt 	}
     90  1.135      yamt 
     91  1.135      yamt 	if (reason) {
     92  1.135      yamt 		panic("%s: %s caller=%p", __func__, reason,
     93  1.135      yamt 		    (void *)RETURN_ADDRESS);
     94  1.135      yamt 	}
     95   1.96      yamt }
     96  1.105        ad 
     97   1.62   thorpej /*
     98   1.62   thorpej  * Functions for manipulating the kernel_lock.  We put them here
     99   1.62   thorpej  * so that they show up in profiles.
    100   1.62   thorpej  */
    101   1.62   thorpej 
    102  1.105        ad #define	_KERNEL_LOCK_ABORT(msg)						\
    103  1.132        ad     LOCKDEBUG_ABORT(kernel_lock, &_kernel_lock_ops, __func__, msg)
    104  1.105        ad 
    105  1.105        ad #ifdef LOCKDEBUG
    106  1.105        ad #define	_KERNEL_LOCK_ASSERT(cond)					\
    107  1.105        ad do {									\
    108  1.105        ad 	if (!(cond))							\
    109  1.105        ad 		_KERNEL_LOCK_ABORT("assertion failed: " #cond);		\
    110  1.105        ad } while (/* CONSTCOND */ 0)
    111  1.105        ad #else
    112  1.105        ad #define	_KERNEL_LOCK_ASSERT(cond)	/* nothing */
    113  1.105        ad #endif
    114  1.105        ad 
    115  1.105        ad void	_kernel_lock_dump(volatile void *);
    116  1.105        ad 
    117  1.105        ad lockops_t _kernel_lock_ops = {
    118  1.105        ad 	"Kernel lock",
    119  1.144        ad 	LOCKOPS_SPIN,
    120  1.105        ad 	_kernel_lock_dump
    121  1.105        ad };
    122  1.105        ad 
    123   1.85      yamt /*
    124  1.105        ad  * Initialize the kernel lock.
    125   1.85      yamt  */
    126   1.62   thorpej void
    127  1.122        ad kernel_lock_init(void)
    128   1.62   thorpej {
    129   1.62   thorpej 
    130  1.146      matt 	CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
    131  1.132        ad 	__cpu_simple_lock_init(kernel_lock);
    132  1.132        ad 	kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
    133  1.122        ad 	    RETURN_ADDRESS);
    134   1.62   thorpej }
    135   1.62   thorpej 
    136   1.62   thorpej /*
    137  1.105        ad  * Print debugging information about the kernel lock.
    138   1.62   thorpej  */
    139   1.62   thorpej void
    140  1.105        ad _kernel_lock_dump(volatile void *junk)
    141   1.62   thorpej {
    142   1.85      yamt 	struct cpu_info *ci = curcpu();
    143   1.62   thorpej 
    144  1.105        ad 	(void)junk;
    145   1.85      yamt 
    146  1.105        ad 	printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
    147  1.105        ad 	    ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
    148   1.62   thorpej }
    149   1.62   thorpej 
    150  1.105        ad /*
    151  1.150       mrg  * Acquire 'nlocks' holds on the kernel lock.
    152  1.105        ad  */
    153   1.62   thorpej void
    154  1.137  drochner _kernel_lock(int nlocks)
    155   1.62   thorpej {
    156  1.138        ad 	struct cpu_info *ci;
    157  1.105        ad 	LOCKSTAT_TIMER(spintime);
    158  1.105        ad 	LOCKSTAT_FLAG(lsflag);
    159  1.105        ad 	struct lwp *owant;
    160  1.105        ad 	u_int spins;
    161   1.85      yamt 	int s;
    162  1.137  drochner 	struct lwp *l = curlwp;
    163   1.85      yamt 
    164  1.105        ad 	_KERNEL_LOCK_ASSERT(nlocks > 0);
    165   1.62   thorpej 
    166  1.138        ad 	s = splvm();
    167  1.138        ad 	ci = curcpu();
    168  1.105        ad 	if (ci->ci_biglock_count != 0) {
    169  1.132        ad 		_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    170  1.105        ad 		ci->ci_biglock_count += nlocks;
    171  1.122        ad 		l->l_blcnt += nlocks;
    172  1.138        ad 		splx(s);
    173  1.105        ad 		return;
    174  1.105        ad 	}
    175  1.105        ad 
    176  1.122        ad 	_KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
    177  1.132        ad 	LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
    178  1.154   mlelstv 	    0);
    179  1.107        ad 
    180  1.132        ad 	if (__cpu_simple_lock_try(kernel_lock)) {
    181  1.105        ad 		ci->ci_biglock_count = nlocks;
    182  1.122        ad 		l->l_blcnt = nlocks;
    183  1.144        ad 		LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    184  1.127      yamt 		    RETURN_ADDRESS, 0);
    185  1.105        ad 		splx(s);
    186  1.105        ad 		return;
    187  1.105        ad 	}
    188  1.105        ad 
    189  1.132        ad 	/*
    190  1.132        ad 	 * To remove the ordering constraint between adaptive mutexes
    191  1.132        ad 	 * and kernel_lock we must make it appear as if this thread is
    192  1.132        ad 	 * blocking.  For non-interlocked mutex release, a store fence
    193  1.132        ad 	 * is required to ensure that the result of any mutex_exit()
    194  1.132        ad 	 * by the current LWP becomes visible on the bus before the set
    195  1.132        ad 	 * of ci->ci_biglock_wanted becomes visible.
    196  1.132        ad 	 */
    197  1.132        ad 	membar_producer();
    198  1.132        ad 	owant = ci->ci_biglock_wanted;
    199  1.132        ad 	ci->ci_biglock_wanted = l;
    200  1.105        ad 
    201  1.105        ad 	/*
    202  1.132        ad 	 * Spin until we acquire the lock.  Once we have it, record the
    203  1.132        ad 	 * time spent with lockstat.
    204  1.105        ad 	 */
    205  1.132        ad 	LOCKSTAT_ENTER(lsflag);
    206  1.132        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    207  1.105        ad 
    208  1.105        ad 	spins = 0;
    209  1.105        ad 	do {
    210  1.122        ad 		splx(s);
    211  1.132        ad 		while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
    212  1.132        ad 			if (SPINLOCK_SPINOUT(spins)) {
    213  1.143        ad 				extern int start_init_exec;
    214  1.136        ad 				if (!start_init_exec)
    215  1.136        ad 					_KERNEL_LOCK_ABORT("spinout");
    216  1.132        ad 			}
    217  1.122        ad 			SPINLOCK_BACKOFF_HOOK;
    218  1.105        ad 			SPINLOCK_SPIN_HOOK;
    219  1.105        ad 		}
    220  1.132        ad 		s = splvm();
    221  1.132        ad 	} while (!__cpu_simple_lock_try(kernel_lock));
    222  1.105        ad 
    223  1.122        ad 	ci->ci_biglock_count = nlocks;
    224  1.122        ad 	l->l_blcnt = nlocks;
    225  1.107        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    226  1.144        ad 	LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
    227  1.144        ad 	    RETURN_ADDRESS, 0);
    228  1.132        ad 	if (owant == NULL) {
    229  1.132        ad 		LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
    230  1.132        ad 		    LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
    231  1.132        ad 	}
    232  1.132        ad 	LOCKSTAT_EXIT(lsflag);
    233   1.85      yamt 	splx(s);
    234  1.105        ad 
    235  1.105        ad 	/*
    236  1.132        ad 	 * Now that we have kernel_lock, reset ci_biglock_wanted.  This
    237  1.132        ad 	 * store must be unbuffered (immediately visible on the bus) in
    238  1.132        ad 	 * order for non-interlocked mutex release to work correctly.
    239  1.132        ad 	 * It must be visible before a mutex_exit() can execute on this
    240  1.132        ad 	 * processor.
    241  1.132        ad 	 *
    242  1.132        ad 	 * Note: only where CAS is available in hardware will this be
    243  1.132        ad 	 * an unbuffered write, but non-interlocked release cannot be
    244  1.132        ad 	 * done on CPUs without CAS in hardware.
    245  1.105        ad 	 */
    246  1.132        ad 	(void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
    247  1.132        ad 
    248  1.132        ad 	/*
    249  1.132        ad 	 * Issue a memory barrier as we have acquired a lock.  This also
    250  1.132        ad 	 * prevents stores from a following mutex_exit() being reordered
    251  1.132        ad 	 * to occur before our store to ci_biglock_wanted above.
    252  1.132        ad 	 */
    253  1.132        ad 	membar_enter();
    254   1.62   thorpej }
    255   1.62   thorpej 
    256   1.62   thorpej /*
    257  1.105        ad  * Release 'nlocks' holds on the kernel lock.  If 'nlocks' is zero, release
    258  1.150       mrg  * all holds.
    259   1.62   thorpej  */
    260   1.62   thorpej void
    261  1.137  drochner _kernel_unlock(int nlocks, int *countp)
    262   1.62   thorpej {
    263  1.138        ad 	struct cpu_info *ci;
    264  1.105        ad 	u_int olocks;
    265  1.105        ad 	int s;
    266  1.137  drochner 	struct lwp *l = curlwp;
    267   1.62   thorpej 
    268  1.105        ad 	_KERNEL_LOCK_ASSERT(nlocks < 2);
    269   1.62   thorpej 
    270  1.122        ad 	olocks = l->l_blcnt;
    271   1.77      yamt 
    272  1.105        ad 	if (olocks == 0) {
    273  1.105        ad 		_KERNEL_LOCK_ASSERT(nlocks <= 0);
    274  1.105        ad 		if (countp != NULL)
    275  1.105        ad 			*countp = 0;
    276  1.105        ad 		return;
    277  1.105        ad 	}
    278   1.77      yamt 
    279  1.132        ad 	_KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
    280   1.85      yamt 
    281  1.105        ad 	if (nlocks == 0)
    282  1.105        ad 		nlocks = olocks;
    283  1.105        ad 	else if (nlocks == -1) {
    284  1.105        ad 		nlocks = 1;
    285  1.105        ad 		_KERNEL_LOCK_ASSERT(olocks == 1);
    286  1.105        ad 	}
    287  1.138        ad 	s = splvm();
    288  1.138        ad 	ci = curcpu();
    289  1.122        ad 	_KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
    290  1.122        ad 	if (ci->ci_biglock_count == nlocks) {
    291  1.132        ad 		LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
    292  1.127      yamt 		    RETURN_ADDRESS, 0);
    293  1.122        ad 		ci->ci_biglock_count = 0;
    294  1.132        ad 		__cpu_simple_unlock(kernel_lock);
    295  1.138        ad 		l->l_blcnt -= nlocks;
    296  1.122        ad 		splx(s);
    297  1.139        ad 		if (l->l_dopreempt)
    298  1.139        ad 			kpreempt(0);
    299  1.138        ad 	} else {
    300  1.122        ad 		ci->ci_biglock_count -= nlocks;
    301  1.138        ad 		l->l_blcnt -= nlocks;
    302  1.138        ad 		splx(s);
    303  1.138        ad 	}
    304   1.77      yamt 
    305  1.105        ad 	if (countp != NULL)
    306  1.105        ad 		*countp = olocks;
    307   1.77      yamt }
    308  1.152  jmcneill 
    309  1.152  jmcneill bool
    310  1.152  jmcneill _kernel_locked_p(void)
    311  1.152  jmcneill {
    312  1.152  jmcneill 	return __SIMPLELOCK_LOCKED_P(kernel_lock);
    313  1.152  jmcneill }
    314