kern_lock.c revision 1.160 1 1.160 ozaki /* $NetBSD: kern_lock.c,v 1.160 2017/11/21 08:49:14 ozaki-r Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.148 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * Redistribution and use in source and binary forms, with or without
12 1.19 thorpej * modification, are permitted provided that the following conditions
13 1.19 thorpej * are met:
14 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.19 thorpej * notice, this list of conditions and the following disclaimer.
16 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.19 thorpej * documentation and/or other materials provided with the distribution.
19 1.19 thorpej *
20 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.19 thorpej */
32 1.2 fvdl
33 1.60 lukem #include <sys/cdefs.h>
34 1.160 ozaki __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.160 2017/11/21 08:49:14 ozaki-r Exp $");
35 1.105 ad
36 1.1 fvdl #include <sys/param.h>
37 1.1 fvdl #include <sys/proc.h>
38 1.1 fvdl #include <sys/lock.h>
39 1.2 fvdl #include <sys/systm.h>
40 1.125 ad #include <sys/kernel.h>
41 1.105 ad #include <sys/lockdebug.h>
42 1.122 ad #include <sys/cpu.h>
43 1.122 ad #include <sys/syslog.h>
44 1.128 ad #include <sys/atomic.h>
45 1.148 ad #include <sys/lwp.h>
46 1.160 ozaki #include <sys/pserialize.h>
47 1.105 ad
48 1.131 ad #include <machine/lock.h>
49 1.1 fvdl
50 1.98 ad #include <dev/lockstat.h>
51 1.98 ad
52 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
53 1.25 thorpej
54 1.127 yamt bool kernel_lock_dodebug;
55 1.132 ad
56 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
57 1.153 matt __cacheline_aligned;
58 1.1 fvdl
59 1.96 yamt void
60 1.135 yamt assert_sleepable(void)
61 1.96 yamt {
62 1.135 yamt const char *reason;
63 1.148 ad uint64_t pctr;
64 1.148 ad bool idle;
65 1.96 yamt
66 1.135 yamt if (panicstr != NULL) {
67 1.117 ad return;
68 1.135 yamt }
69 1.135 yamt
70 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
71 1.135 yamt
72 1.148 ad /*
73 1.148 ad * Avoid disabling/re-enabling preemption here since this
74 1.149 dyoung * routine may be called in delicate situations.
75 1.148 ad */
76 1.148 ad do {
77 1.148 ad pctr = lwp_pctr();
78 1.148 ad idle = CURCPU_IDLE_P();
79 1.148 ad } while (pctr != lwp_pctr());
80 1.148 ad
81 1.135 yamt reason = NULL;
82 1.156 skrll if (idle && !cold &&
83 1.156 skrll kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
84 1.135 yamt reason = "idle";
85 1.135 yamt }
86 1.135 yamt if (cpu_intr_p()) {
87 1.135 yamt reason = "interrupt";
88 1.97 yamt }
89 1.148 ad if (cpu_softintr_p()) {
90 1.135 yamt reason = "softint";
91 1.135 yamt }
92 1.160 ozaki if (!pserialize_not_in_read_section()) {
93 1.160 ozaki reason = "pserialize";
94 1.160 ozaki }
95 1.135 yamt
96 1.135 yamt if (reason) {
97 1.135 yamt panic("%s: %s caller=%p", __func__, reason,
98 1.135 yamt (void *)RETURN_ADDRESS);
99 1.135 yamt }
100 1.96 yamt }
101 1.105 ad
102 1.62 thorpej /*
103 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
104 1.62 thorpej * so that they show up in profiles.
105 1.62 thorpej */
106 1.62 thorpej
107 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
108 1.158 christos LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
109 1.105 ad
110 1.105 ad #ifdef LOCKDEBUG
111 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
112 1.105 ad do { \
113 1.105 ad if (!(cond)) \
114 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
115 1.105 ad } while (/* CONSTCOND */ 0)
116 1.105 ad #else
117 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
118 1.105 ad #endif
119 1.105 ad
120 1.159 christos void _kernel_lock_dump(const volatile void *);
121 1.105 ad
122 1.105 ad lockops_t _kernel_lock_ops = {
123 1.105 ad "Kernel lock",
124 1.144 ad LOCKOPS_SPIN,
125 1.105 ad _kernel_lock_dump
126 1.105 ad };
127 1.105 ad
128 1.85 yamt /*
129 1.105 ad * Initialize the kernel lock.
130 1.85 yamt */
131 1.62 thorpej void
132 1.122 ad kernel_lock_init(void)
133 1.62 thorpej {
134 1.62 thorpej
135 1.132 ad __cpu_simple_lock_init(kernel_lock);
136 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
137 1.122 ad RETURN_ADDRESS);
138 1.62 thorpej }
139 1.155 martin CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
140 1.62 thorpej
141 1.62 thorpej /*
142 1.105 ad * Print debugging information about the kernel lock.
143 1.62 thorpej */
144 1.62 thorpej void
145 1.159 christos _kernel_lock_dump(const volatile void *junk)
146 1.62 thorpej {
147 1.85 yamt struct cpu_info *ci = curcpu();
148 1.62 thorpej
149 1.105 ad (void)junk;
150 1.85 yamt
151 1.105 ad printf_nolog("curcpu holds : %18d wanted by: %#018lx\n",
152 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
153 1.62 thorpej }
154 1.62 thorpej
155 1.105 ad /*
156 1.150 mrg * Acquire 'nlocks' holds on the kernel lock.
157 1.105 ad */
158 1.62 thorpej void
159 1.137 drochner _kernel_lock(int nlocks)
160 1.62 thorpej {
161 1.138 ad struct cpu_info *ci;
162 1.105 ad LOCKSTAT_TIMER(spintime);
163 1.105 ad LOCKSTAT_FLAG(lsflag);
164 1.105 ad struct lwp *owant;
165 1.105 ad u_int spins;
166 1.85 yamt int s;
167 1.137 drochner struct lwp *l = curlwp;
168 1.85 yamt
169 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
170 1.62 thorpej
171 1.138 ad s = splvm();
172 1.138 ad ci = curcpu();
173 1.105 ad if (ci->ci_biglock_count != 0) {
174 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
175 1.105 ad ci->ci_biglock_count += nlocks;
176 1.122 ad l->l_blcnt += nlocks;
177 1.138 ad splx(s);
178 1.105 ad return;
179 1.105 ad }
180 1.105 ad
181 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
182 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
183 1.154 mlelstv 0);
184 1.107 ad
185 1.132 ad if (__cpu_simple_lock_try(kernel_lock)) {
186 1.105 ad ci->ci_biglock_count = nlocks;
187 1.122 ad l->l_blcnt = nlocks;
188 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
189 1.127 yamt RETURN_ADDRESS, 0);
190 1.105 ad splx(s);
191 1.105 ad return;
192 1.105 ad }
193 1.105 ad
194 1.132 ad /*
195 1.132 ad * To remove the ordering constraint between adaptive mutexes
196 1.132 ad * and kernel_lock we must make it appear as if this thread is
197 1.132 ad * blocking. For non-interlocked mutex release, a store fence
198 1.132 ad * is required to ensure that the result of any mutex_exit()
199 1.132 ad * by the current LWP becomes visible on the bus before the set
200 1.132 ad * of ci->ci_biglock_wanted becomes visible.
201 1.132 ad */
202 1.132 ad membar_producer();
203 1.132 ad owant = ci->ci_biglock_wanted;
204 1.132 ad ci->ci_biglock_wanted = l;
205 1.105 ad
206 1.105 ad /*
207 1.132 ad * Spin until we acquire the lock. Once we have it, record the
208 1.132 ad * time spent with lockstat.
209 1.105 ad */
210 1.132 ad LOCKSTAT_ENTER(lsflag);
211 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
212 1.105 ad
213 1.105 ad spins = 0;
214 1.105 ad do {
215 1.122 ad splx(s);
216 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
217 1.132 ad if (SPINLOCK_SPINOUT(spins)) {
218 1.143 ad extern int start_init_exec;
219 1.136 ad if (!start_init_exec)
220 1.136 ad _KERNEL_LOCK_ABORT("spinout");
221 1.132 ad }
222 1.122 ad SPINLOCK_BACKOFF_HOOK;
223 1.105 ad SPINLOCK_SPIN_HOOK;
224 1.105 ad }
225 1.132 ad s = splvm();
226 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
227 1.105 ad
228 1.122 ad ci->ci_biglock_count = nlocks;
229 1.122 ad l->l_blcnt = nlocks;
230 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
231 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
232 1.144 ad RETURN_ADDRESS, 0);
233 1.132 ad if (owant == NULL) {
234 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
235 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
236 1.132 ad }
237 1.132 ad LOCKSTAT_EXIT(lsflag);
238 1.85 yamt splx(s);
239 1.105 ad
240 1.105 ad /*
241 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
242 1.132 ad * store must be unbuffered (immediately visible on the bus) in
243 1.157 skrll * order for non-interlocked mutex release to work correctly.
244 1.132 ad * It must be visible before a mutex_exit() can execute on this
245 1.132 ad * processor.
246 1.132 ad *
247 1.132 ad * Note: only where CAS is available in hardware will this be
248 1.132 ad * an unbuffered write, but non-interlocked release cannot be
249 1.132 ad * done on CPUs without CAS in hardware.
250 1.105 ad */
251 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
252 1.132 ad
253 1.132 ad /*
254 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
255 1.132 ad * prevents stores from a following mutex_exit() being reordered
256 1.132 ad * to occur before our store to ci_biglock_wanted above.
257 1.132 ad */
258 1.132 ad membar_enter();
259 1.62 thorpej }
260 1.62 thorpej
261 1.62 thorpej /*
262 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
263 1.150 mrg * all holds.
264 1.62 thorpej */
265 1.62 thorpej void
266 1.137 drochner _kernel_unlock(int nlocks, int *countp)
267 1.62 thorpej {
268 1.138 ad struct cpu_info *ci;
269 1.105 ad u_int olocks;
270 1.105 ad int s;
271 1.137 drochner struct lwp *l = curlwp;
272 1.62 thorpej
273 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
274 1.62 thorpej
275 1.122 ad olocks = l->l_blcnt;
276 1.77 yamt
277 1.105 ad if (olocks == 0) {
278 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
279 1.105 ad if (countp != NULL)
280 1.105 ad *countp = 0;
281 1.105 ad return;
282 1.105 ad }
283 1.77 yamt
284 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
285 1.85 yamt
286 1.105 ad if (nlocks == 0)
287 1.105 ad nlocks = olocks;
288 1.105 ad else if (nlocks == -1) {
289 1.105 ad nlocks = 1;
290 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
291 1.105 ad }
292 1.138 ad s = splvm();
293 1.138 ad ci = curcpu();
294 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
295 1.122 ad if (ci->ci_biglock_count == nlocks) {
296 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
297 1.127 yamt RETURN_ADDRESS, 0);
298 1.122 ad ci->ci_biglock_count = 0;
299 1.132 ad __cpu_simple_unlock(kernel_lock);
300 1.138 ad l->l_blcnt -= nlocks;
301 1.122 ad splx(s);
302 1.139 ad if (l->l_dopreempt)
303 1.139 ad kpreempt(0);
304 1.138 ad } else {
305 1.122 ad ci->ci_biglock_count -= nlocks;
306 1.138 ad l->l_blcnt -= nlocks;
307 1.138 ad splx(s);
308 1.138 ad }
309 1.77 yamt
310 1.105 ad if (countp != NULL)
311 1.105 ad *countp = olocks;
312 1.77 yamt }
313 1.152 jmcneill
314 1.152 jmcneill bool
315 1.152 jmcneill _kernel_locked_p(void)
316 1.152 jmcneill {
317 1.152 jmcneill return __SIMPLELOCK_LOCKED_P(kernel_lock);
318 1.152 jmcneill }
319