kern_lock.c revision 1.168 1 1.168 ad /* $NetBSD: kern_lock.c,v 1.168 2020/01/27 21:05:43 ad Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.165 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * Redistribution and use in source and binary forms, with or without
12 1.19 thorpej * modification, are permitted provided that the following conditions
13 1.19 thorpej * are met:
14 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.19 thorpej * notice, this list of conditions and the following disclaimer.
16 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.19 thorpej * documentation and/or other materials provided with the distribution.
19 1.19 thorpej *
20 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.19 thorpej */
32 1.2 fvdl
33 1.60 lukem #include <sys/cdefs.h>
34 1.168 ad __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.168 2020/01/27 21:05:43 ad Exp $");
35 1.168 ad
36 1.168 ad #ifdef _KERNEL_OPT
37 1.168 ad #include "opt_lockdebug.h"
38 1.168 ad #endif
39 1.105 ad
40 1.1 fvdl #include <sys/param.h>
41 1.1 fvdl #include <sys/proc.h>
42 1.1 fvdl #include <sys/lock.h>
43 1.2 fvdl #include <sys/systm.h>
44 1.125 ad #include <sys/kernel.h>
45 1.105 ad #include <sys/lockdebug.h>
46 1.122 ad #include <sys/cpu.h>
47 1.122 ad #include <sys/syslog.h>
48 1.128 ad #include <sys/atomic.h>
49 1.148 ad #include <sys/lwp.h>
50 1.160 ozaki #include <sys/pserialize.h>
51 1.105 ad
52 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
53 1.168 ad #include <sys/ksyms.h>
54 1.168 ad #endif
55 1.168 ad
56 1.131 ad #include <machine/lock.h>
57 1.1 fvdl
58 1.98 ad #include <dev/lockstat.h>
59 1.98 ad
60 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
61 1.25 thorpej
62 1.127 yamt bool kernel_lock_dodebug;
63 1.132 ad
64 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
65 1.153 matt __cacheline_aligned;
66 1.1 fvdl
67 1.96 yamt void
68 1.135 yamt assert_sleepable(void)
69 1.96 yamt {
70 1.135 yamt const char *reason;
71 1.148 ad uint64_t pctr;
72 1.148 ad bool idle;
73 1.96 yamt
74 1.135 yamt if (panicstr != NULL) {
75 1.117 ad return;
76 1.135 yamt }
77 1.135 yamt
78 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
79 1.135 yamt
80 1.148 ad /*
81 1.148 ad * Avoid disabling/re-enabling preemption here since this
82 1.149 dyoung * routine may be called in delicate situations.
83 1.148 ad */
84 1.148 ad do {
85 1.148 ad pctr = lwp_pctr();
86 1.164 riastrad __insn_barrier();
87 1.148 ad idle = CURCPU_IDLE_P();
88 1.164 riastrad __insn_barrier();
89 1.148 ad } while (pctr != lwp_pctr());
90 1.148 ad
91 1.135 yamt reason = NULL;
92 1.156 skrll if (idle && !cold &&
93 1.156 skrll kcpuset_isset(kcpuset_running, cpu_index(curcpu()))) {
94 1.135 yamt reason = "idle";
95 1.135 yamt }
96 1.135 yamt if (cpu_intr_p()) {
97 1.135 yamt reason = "interrupt";
98 1.97 yamt }
99 1.148 ad if (cpu_softintr_p()) {
100 1.135 yamt reason = "softint";
101 1.135 yamt }
102 1.160 ozaki if (!pserialize_not_in_read_section()) {
103 1.160 ozaki reason = "pserialize";
104 1.160 ozaki }
105 1.135 yamt
106 1.135 yamt if (reason) {
107 1.135 yamt panic("%s: %s caller=%p", __func__, reason,
108 1.135 yamt (void *)RETURN_ADDRESS);
109 1.135 yamt }
110 1.96 yamt }
111 1.105 ad
112 1.62 thorpej /*
113 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
114 1.62 thorpej * so that they show up in profiles.
115 1.62 thorpej */
116 1.62 thorpej
117 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
118 1.158 christos LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
119 1.105 ad
120 1.105 ad #ifdef LOCKDEBUG
121 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
122 1.105 ad do { \
123 1.105 ad if (!(cond)) \
124 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
125 1.105 ad } while (/* CONSTCOND */ 0)
126 1.105 ad #else
127 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
128 1.105 ad #endif
129 1.105 ad
130 1.163 ozaki static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
131 1.105 ad
132 1.105 ad lockops_t _kernel_lock_ops = {
133 1.161 ozaki .lo_name = "Kernel lock",
134 1.161 ozaki .lo_type = LOCKOPS_SPIN,
135 1.161 ozaki .lo_dump = _kernel_lock_dump,
136 1.105 ad };
137 1.105 ad
138 1.85 yamt /*
139 1.105 ad * Initialize the kernel lock.
140 1.85 yamt */
141 1.62 thorpej void
142 1.122 ad kernel_lock_init(void)
143 1.62 thorpej {
144 1.62 thorpej
145 1.132 ad __cpu_simple_lock_init(kernel_lock);
146 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
147 1.122 ad RETURN_ADDRESS);
148 1.62 thorpej }
149 1.155 martin CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
150 1.62 thorpej
151 1.62 thorpej /*
152 1.105 ad * Print debugging information about the kernel lock.
153 1.62 thorpej */
154 1.162 ozaki static void
155 1.163 ozaki _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
156 1.62 thorpej {
157 1.85 yamt struct cpu_info *ci = curcpu();
158 1.62 thorpej
159 1.105 ad (void)junk;
160 1.85 yamt
161 1.163 ozaki pr("curcpu holds : %18d wanted by: %#018lx\n",
162 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
163 1.62 thorpej }
164 1.62 thorpej
165 1.105 ad /*
166 1.150 mrg * Acquire 'nlocks' holds on the kernel lock.
167 1.167 ad *
168 1.167 ad * Although it may not look it, this is one of the most central, intricate
169 1.167 ad * routines in the kernel, and tons of code elsewhere depends on its exact
170 1.167 ad * behaviour. If you change something in here, expect it to bite you in the
171 1.167 ad * rear.
172 1.105 ad */
173 1.62 thorpej void
174 1.137 drochner _kernel_lock(int nlocks)
175 1.62 thorpej {
176 1.138 ad struct cpu_info *ci;
177 1.105 ad LOCKSTAT_TIMER(spintime);
178 1.105 ad LOCKSTAT_FLAG(lsflag);
179 1.105 ad struct lwp *owant;
180 1.165 ad #ifdef LOCKDEBUG
181 1.165 ad u_int spins = 0;
182 1.165 ad #endif
183 1.85 yamt int s;
184 1.137 drochner struct lwp *l = curlwp;
185 1.85 yamt
186 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
187 1.62 thorpej
188 1.138 ad s = splvm();
189 1.138 ad ci = curcpu();
190 1.105 ad if (ci->ci_biglock_count != 0) {
191 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
192 1.105 ad ci->ci_biglock_count += nlocks;
193 1.122 ad l->l_blcnt += nlocks;
194 1.138 ad splx(s);
195 1.105 ad return;
196 1.105 ad }
197 1.105 ad
198 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
199 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
200 1.154 mlelstv 0);
201 1.107 ad
202 1.165 ad if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
203 1.105 ad ci->ci_biglock_count = nlocks;
204 1.122 ad l->l_blcnt = nlocks;
205 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
206 1.127 yamt RETURN_ADDRESS, 0);
207 1.105 ad splx(s);
208 1.105 ad return;
209 1.105 ad }
210 1.105 ad
211 1.132 ad /*
212 1.132 ad * To remove the ordering constraint between adaptive mutexes
213 1.132 ad * and kernel_lock we must make it appear as if this thread is
214 1.132 ad * blocking. For non-interlocked mutex release, a store fence
215 1.132 ad * is required to ensure that the result of any mutex_exit()
216 1.132 ad * by the current LWP becomes visible on the bus before the set
217 1.132 ad * of ci->ci_biglock_wanted becomes visible.
218 1.165 ad *
219 1.165 ad * However, we won't set ci_biglock_wanted until we've spun for
220 1.165 ad * a bit, as we don't want to make any lock waiters in rw_oncpu()
221 1.165 ad * or mutex_oncpu() block prematurely.
222 1.132 ad */
223 1.132 ad membar_producer();
224 1.132 ad owant = ci->ci_biglock_wanted;
225 1.167 ad ci->ci_biglock_wanted = l;
226 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
227 1.168 ad l->l_ld_wanted = __builtin_return_address(0);
228 1.168 ad #endif
229 1.105 ad
230 1.105 ad /*
231 1.167 ad * Spin until we acquire the lock. Once we have it, record the
232 1.167 ad * time spent with lockstat.
233 1.105 ad */
234 1.132 ad LOCKSTAT_ENTER(lsflag);
235 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
236 1.105 ad
237 1.105 ad do {
238 1.122 ad splx(s);
239 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
240 1.165 ad #ifdef LOCKDEBUG
241 1.132 ad if (SPINLOCK_SPINOUT(spins)) {
242 1.143 ad extern int start_init_exec;
243 1.136 ad if (!start_init_exec)
244 1.136 ad _KERNEL_LOCK_ABORT("spinout");
245 1.132 ad }
246 1.165 ad #endif
247 1.105 ad }
248 1.132 ad s = splvm();
249 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
250 1.105 ad
251 1.122 ad ci->ci_biglock_count = nlocks;
252 1.122 ad l->l_blcnt = nlocks;
253 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
254 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
255 1.144 ad RETURN_ADDRESS, 0);
256 1.132 ad if (owant == NULL) {
257 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
258 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
259 1.132 ad }
260 1.132 ad LOCKSTAT_EXIT(lsflag);
261 1.167 ad splx(s);
262 1.105 ad
263 1.105 ad /*
264 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
265 1.132 ad * store must be unbuffered (immediately visible on the bus) in
266 1.157 skrll * order for non-interlocked mutex release to work correctly.
267 1.132 ad * It must be visible before a mutex_exit() can execute on this
268 1.132 ad * processor.
269 1.132 ad *
270 1.132 ad * Note: only where CAS is available in hardware will this be
271 1.132 ad * an unbuffered write, but non-interlocked release cannot be
272 1.132 ad * done on CPUs without CAS in hardware.
273 1.105 ad */
274 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
275 1.132 ad
276 1.132 ad /*
277 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
278 1.132 ad * prevents stores from a following mutex_exit() being reordered
279 1.132 ad * to occur before our store to ci_biglock_wanted above.
280 1.132 ad */
281 1.165 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
282 1.132 ad membar_enter();
283 1.165 ad #endif
284 1.62 thorpej }
285 1.62 thorpej
286 1.62 thorpej /*
287 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
288 1.150 mrg * all holds.
289 1.62 thorpej */
290 1.62 thorpej void
291 1.137 drochner _kernel_unlock(int nlocks, int *countp)
292 1.62 thorpej {
293 1.138 ad struct cpu_info *ci;
294 1.105 ad u_int olocks;
295 1.105 ad int s;
296 1.137 drochner struct lwp *l = curlwp;
297 1.62 thorpej
298 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
299 1.62 thorpej
300 1.122 ad olocks = l->l_blcnt;
301 1.77 yamt
302 1.105 ad if (olocks == 0) {
303 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
304 1.105 ad if (countp != NULL)
305 1.105 ad *countp = 0;
306 1.105 ad return;
307 1.105 ad }
308 1.77 yamt
309 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
310 1.85 yamt
311 1.105 ad if (nlocks == 0)
312 1.105 ad nlocks = olocks;
313 1.105 ad else if (nlocks == -1) {
314 1.105 ad nlocks = 1;
315 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
316 1.105 ad }
317 1.138 ad s = splvm();
318 1.138 ad ci = curcpu();
319 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
320 1.122 ad if (ci->ci_biglock_count == nlocks) {
321 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
322 1.127 yamt RETURN_ADDRESS, 0);
323 1.122 ad ci->ci_biglock_count = 0;
324 1.132 ad __cpu_simple_unlock(kernel_lock);
325 1.138 ad l->l_blcnt -= nlocks;
326 1.122 ad splx(s);
327 1.139 ad if (l->l_dopreempt)
328 1.139 ad kpreempt(0);
329 1.138 ad } else {
330 1.122 ad ci->ci_biglock_count -= nlocks;
331 1.138 ad l->l_blcnt -= nlocks;
332 1.138 ad splx(s);
333 1.138 ad }
334 1.77 yamt
335 1.105 ad if (countp != NULL)
336 1.105 ad *countp = olocks;
337 1.77 yamt }
338 1.152 jmcneill
339 1.152 jmcneill bool
340 1.152 jmcneill _kernel_locked_p(void)
341 1.152 jmcneill {
342 1.152 jmcneill return __SIMPLELOCK_LOCKED_P(kernel_lock);
343 1.152 jmcneill }
344 1.168 ad
345 1.168 ad void
346 1.168 ad kernel_lock_plug_leak(void)
347 1.168 ad {
348 1.168 ad #ifndef LOCKDEBUG
349 1.168 ad # ifdef DIAGNOSTIC
350 1.168 ad int biglocks = 0;
351 1.168 ad KERNEL_UNLOCK_ALL(curlwp, &biglocks);
352 1.168 ad if (biglocks != 0) {
353 1.168 ad const char *sym = "(unknown)";
354 1.168 ad ksyms_getname(NULL, &sym, (vaddr_t)curlwp->l_ld_wanted,
355 1.168 ad KSYMS_CLOSEST|KSYMS_PROC|KSYMS_ANY);
356 1.168 ad printf("kernel_lock leak detected. last acquired: %s / %p\n",
357 1.168 ad sym, curlwp->l_ld_wanted);
358 1.168 ad }
359 1.168 ad # else
360 1.168 ad KERNEL_UNLOCK_ALL(curlwp, NULL);
361 1.168 ad # endif
362 1.168 ad #endif
363 1.168 ad }
364