kern_lock.c revision 1.182 1 1.182 ozaki /* $NetBSD: kern_lock.c,v 1.182 2023/01/27 09:28:41 ozaki-r Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.165 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 1.19 thorpej * All rights reserved.
6 1.19 thorpej *
7 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
10 1.19 thorpej *
11 1.19 thorpej * Redistribution and use in source and binary forms, with or without
12 1.19 thorpej * modification, are permitted provided that the following conditions
13 1.19 thorpej * are met:
14 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.19 thorpej * notice, this list of conditions and the following disclaimer.
16 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.19 thorpej * documentation and/or other materials provided with the distribution.
19 1.19 thorpej *
20 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.19 thorpej */
32 1.2 fvdl
33 1.60 lukem #include <sys/cdefs.h>
34 1.182 ozaki __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.182 2023/01/27 09:28:41 ozaki-r Exp $");
35 1.168 ad
36 1.168 ad #ifdef _KERNEL_OPT
37 1.168 ad #include "opt_lockdebug.h"
38 1.168 ad #endif
39 1.105 ad
40 1.1 fvdl #include <sys/param.h>
41 1.1 fvdl #include <sys/proc.h>
42 1.1 fvdl #include <sys/lock.h>
43 1.2 fvdl #include <sys/systm.h>
44 1.125 ad #include <sys/kernel.h>
45 1.105 ad #include <sys/lockdebug.h>
46 1.122 ad #include <sys/cpu.h>
47 1.122 ad #include <sys/syslog.h>
48 1.128 ad #include <sys/atomic.h>
49 1.148 ad #include <sys/lwp.h>
50 1.160 ozaki #include <sys/pserialize.h>
51 1.105 ad
52 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
53 1.168 ad #include <sys/ksyms.h>
54 1.168 ad #endif
55 1.168 ad
56 1.131 ad #include <machine/lock.h>
57 1.1 fvdl
58 1.98 ad #include <dev/lockstat.h>
59 1.98 ad
60 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
61 1.25 thorpej
62 1.127 yamt bool kernel_lock_dodebug;
63 1.132 ad
64 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
65 1.153 matt __cacheline_aligned;
66 1.1 fvdl
67 1.96 yamt void
68 1.135 yamt assert_sleepable(void)
69 1.96 yamt {
70 1.135 yamt const char *reason;
71 1.148 ad uint64_t pctr;
72 1.148 ad bool idle;
73 1.96 yamt
74 1.182 ozaki if (__predict_false(panicstr != NULL)) {
75 1.117 ad return;
76 1.135 yamt }
77 1.135 yamt
78 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
79 1.135 yamt
80 1.148 ad /*
81 1.148 ad * Avoid disabling/re-enabling preemption here since this
82 1.149 dyoung * routine may be called in delicate situations.
83 1.148 ad */
84 1.148 ad do {
85 1.148 ad pctr = lwp_pctr();
86 1.164 riastrad __insn_barrier();
87 1.148 ad idle = CURCPU_IDLE_P();
88 1.164 riastrad __insn_barrier();
89 1.148 ad } while (pctr != lwp_pctr());
90 1.148 ad
91 1.135 yamt reason = NULL;
92 1.173 skrll if (idle && !cold) {
93 1.135 yamt reason = "idle";
94 1.135 yamt }
95 1.135 yamt if (cpu_intr_p()) {
96 1.135 yamt reason = "interrupt";
97 1.97 yamt }
98 1.148 ad if (cpu_softintr_p()) {
99 1.135 yamt reason = "softint";
100 1.135 yamt }
101 1.160 ozaki if (!pserialize_not_in_read_section()) {
102 1.160 ozaki reason = "pserialize";
103 1.160 ozaki }
104 1.135 yamt
105 1.135 yamt if (reason) {
106 1.135 yamt panic("%s: %s caller=%p", __func__, reason,
107 1.135 yamt (void *)RETURN_ADDRESS);
108 1.135 yamt }
109 1.96 yamt }
110 1.105 ad
111 1.62 thorpej /*
112 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
113 1.62 thorpej * so that they show up in profiles.
114 1.62 thorpej */
115 1.62 thorpej
116 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
117 1.158 christos LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
118 1.105 ad
119 1.105 ad #ifdef LOCKDEBUG
120 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
121 1.105 ad do { \
122 1.105 ad if (!(cond)) \
123 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
124 1.105 ad } while (/* CONSTCOND */ 0)
125 1.105 ad #else
126 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
127 1.105 ad #endif
128 1.105 ad
129 1.163 ozaki static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
130 1.105 ad
131 1.105 ad lockops_t _kernel_lock_ops = {
132 1.161 ozaki .lo_name = "Kernel lock",
133 1.161 ozaki .lo_type = LOCKOPS_SPIN,
134 1.161 ozaki .lo_dump = _kernel_lock_dump,
135 1.105 ad };
136 1.105 ad
137 1.174 riastrad #ifdef LOCKDEBUG
138 1.174 riastrad
139 1.174 riastrad #include <ddb/ddb.h>
140 1.174 riastrad
141 1.174 riastrad static void
142 1.174 riastrad kernel_lock_trace_ipi(void *cookie)
143 1.174 riastrad {
144 1.174 riastrad
145 1.174 riastrad printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
146 1.174 riastrad curlwp->l_lid,
147 1.174 riastrad curlwp->l_name ? curlwp->l_name : curproc->p_comm);
148 1.174 riastrad db_stacktrace();
149 1.174 riastrad }
150 1.174 riastrad
151 1.174 riastrad #endif
152 1.174 riastrad
153 1.85 yamt /*
154 1.105 ad * Initialize the kernel lock.
155 1.85 yamt */
156 1.62 thorpej void
157 1.122 ad kernel_lock_init(void)
158 1.62 thorpej {
159 1.62 thorpej
160 1.132 ad __cpu_simple_lock_init(kernel_lock);
161 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
162 1.122 ad RETURN_ADDRESS);
163 1.62 thorpej }
164 1.155 martin CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
165 1.62 thorpej
166 1.62 thorpej /*
167 1.105 ad * Print debugging information about the kernel lock.
168 1.62 thorpej */
169 1.162 ozaki static void
170 1.163 ozaki _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
171 1.62 thorpej {
172 1.85 yamt struct cpu_info *ci = curcpu();
173 1.62 thorpej
174 1.105 ad (void)junk;
175 1.85 yamt
176 1.163 ozaki pr("curcpu holds : %18d wanted by: %#018lx\n",
177 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
178 1.62 thorpej }
179 1.62 thorpej
180 1.105 ad /*
181 1.150 mrg * Acquire 'nlocks' holds on the kernel lock.
182 1.167 ad *
183 1.167 ad * Although it may not look it, this is one of the most central, intricate
184 1.167 ad * routines in the kernel, and tons of code elsewhere depends on its exact
185 1.167 ad * behaviour. If you change something in here, expect it to bite you in the
186 1.167 ad * rear.
187 1.105 ad */
188 1.62 thorpej void
189 1.137 drochner _kernel_lock(int nlocks)
190 1.62 thorpej {
191 1.138 ad struct cpu_info *ci;
192 1.105 ad LOCKSTAT_TIMER(spintime);
193 1.105 ad LOCKSTAT_FLAG(lsflag);
194 1.105 ad struct lwp *owant;
195 1.165 ad #ifdef LOCKDEBUG
196 1.174 riastrad static struct cpu_info *kernel_lock_holder;
197 1.165 ad u_int spins = 0;
198 1.180 riastrad u_int starttime = getticks();
199 1.165 ad #endif
200 1.85 yamt int s;
201 1.137 drochner struct lwp *l = curlwp;
202 1.85 yamt
203 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
204 1.62 thorpej
205 1.138 ad s = splvm();
206 1.138 ad ci = curcpu();
207 1.105 ad if (ci->ci_biglock_count != 0) {
208 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
209 1.105 ad ci->ci_biglock_count += nlocks;
210 1.122 ad l->l_blcnt += nlocks;
211 1.138 ad splx(s);
212 1.105 ad return;
213 1.105 ad }
214 1.105 ad
215 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
216 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
217 1.154 mlelstv 0);
218 1.107 ad
219 1.165 ad if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
220 1.177 riastrad #ifdef LOCKDEBUG
221 1.176 riastrad kernel_lock_holder = curcpu();
222 1.177 riastrad #endif
223 1.105 ad ci->ci_biglock_count = nlocks;
224 1.122 ad l->l_blcnt = nlocks;
225 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
226 1.127 yamt RETURN_ADDRESS, 0);
227 1.105 ad splx(s);
228 1.105 ad return;
229 1.105 ad }
230 1.105 ad
231 1.132 ad /*
232 1.132 ad * To remove the ordering constraint between adaptive mutexes
233 1.132 ad * and kernel_lock we must make it appear as if this thread is
234 1.132 ad * blocking. For non-interlocked mutex release, a store fence
235 1.132 ad * is required to ensure that the result of any mutex_exit()
236 1.132 ad * by the current LWP becomes visible on the bus before the set
237 1.132 ad * of ci->ci_biglock_wanted becomes visible.
238 1.132 ad */
239 1.132 ad membar_producer();
240 1.132 ad owant = ci->ci_biglock_wanted;
241 1.167 ad ci->ci_biglock_wanted = l;
242 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
243 1.168 ad l->l_ld_wanted = __builtin_return_address(0);
244 1.168 ad #endif
245 1.105 ad
246 1.105 ad /*
247 1.167 ad * Spin until we acquire the lock. Once we have it, record the
248 1.167 ad * time spent with lockstat.
249 1.105 ad */
250 1.132 ad LOCKSTAT_ENTER(lsflag);
251 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
252 1.105 ad
253 1.105 ad do {
254 1.122 ad splx(s);
255 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
256 1.165 ad #ifdef LOCKDEBUG
257 1.180 riastrad if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
258 1.180 riastrad (getticks() - starttime) > 10*hz) {
259 1.174 riastrad ipi_msg_t msg = {
260 1.174 riastrad .func = kernel_lock_trace_ipi,
261 1.174 riastrad };
262 1.175 riastrad kpreempt_disable();
263 1.174 riastrad ipi_unicast(&msg, kernel_lock_holder);
264 1.174 riastrad ipi_wait(&msg);
265 1.175 riastrad kpreempt_enable();
266 1.178 riastrad _KERNEL_LOCK_ABORT("spinout");
267 1.132 ad }
268 1.179 riastrad #endif
269 1.169 christos SPINLOCK_BACKOFF_HOOK;
270 1.169 christos SPINLOCK_SPIN_HOOK;
271 1.105 ad }
272 1.132 ad s = splvm();
273 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
274 1.105 ad
275 1.122 ad ci->ci_biglock_count = nlocks;
276 1.122 ad l->l_blcnt = nlocks;
277 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
278 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
279 1.144 ad RETURN_ADDRESS, 0);
280 1.132 ad if (owant == NULL) {
281 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
282 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
283 1.132 ad }
284 1.132 ad LOCKSTAT_EXIT(lsflag);
285 1.167 ad splx(s);
286 1.105 ad
287 1.105 ad /*
288 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
289 1.132 ad * store must be unbuffered (immediately visible on the bus) in
290 1.157 skrll * order for non-interlocked mutex release to work correctly.
291 1.132 ad * It must be visible before a mutex_exit() can execute on this
292 1.132 ad * processor.
293 1.132 ad *
294 1.132 ad * Note: only where CAS is available in hardware will this be
295 1.132 ad * an unbuffered write, but non-interlocked release cannot be
296 1.132 ad * done on CPUs without CAS in hardware.
297 1.105 ad */
298 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
299 1.132 ad
300 1.132 ad /*
301 1.132 ad * Issue a memory barrier as we have acquired a lock. This also
302 1.132 ad * prevents stores from a following mutex_exit() being reordered
303 1.132 ad * to occur before our store to ci_biglock_wanted above.
304 1.132 ad */
305 1.165 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
306 1.132 ad membar_enter();
307 1.165 ad #endif
308 1.174 riastrad
309 1.174 riastrad #ifdef LOCKDEBUG
310 1.174 riastrad kernel_lock_holder = curcpu();
311 1.174 riastrad #endif
312 1.62 thorpej }
313 1.62 thorpej
314 1.62 thorpej /*
315 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
316 1.150 mrg * all holds.
317 1.62 thorpej */
318 1.62 thorpej void
319 1.137 drochner _kernel_unlock(int nlocks, int *countp)
320 1.62 thorpej {
321 1.138 ad struct cpu_info *ci;
322 1.105 ad u_int olocks;
323 1.105 ad int s;
324 1.137 drochner struct lwp *l = curlwp;
325 1.62 thorpej
326 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
327 1.62 thorpej
328 1.122 ad olocks = l->l_blcnt;
329 1.77 yamt
330 1.105 ad if (olocks == 0) {
331 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
332 1.105 ad if (countp != NULL)
333 1.105 ad *countp = 0;
334 1.105 ad return;
335 1.105 ad }
336 1.77 yamt
337 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
338 1.85 yamt
339 1.105 ad if (nlocks == 0)
340 1.105 ad nlocks = olocks;
341 1.105 ad else if (nlocks == -1) {
342 1.105 ad nlocks = 1;
343 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
344 1.105 ad }
345 1.138 ad s = splvm();
346 1.138 ad ci = curcpu();
347 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
348 1.122 ad if (ci->ci_biglock_count == nlocks) {
349 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
350 1.127 yamt RETURN_ADDRESS, 0);
351 1.122 ad ci->ci_biglock_count = 0;
352 1.132 ad __cpu_simple_unlock(kernel_lock);
353 1.138 ad l->l_blcnt -= nlocks;
354 1.122 ad splx(s);
355 1.139 ad if (l->l_dopreempt)
356 1.139 ad kpreempt(0);
357 1.138 ad } else {
358 1.122 ad ci->ci_biglock_count -= nlocks;
359 1.138 ad l->l_blcnt -= nlocks;
360 1.138 ad splx(s);
361 1.138 ad }
362 1.77 yamt
363 1.105 ad if (countp != NULL)
364 1.105 ad *countp = olocks;
365 1.77 yamt }
366 1.152 jmcneill
367 1.152 jmcneill bool
368 1.152 jmcneill _kernel_locked_p(void)
369 1.152 jmcneill {
370 1.152 jmcneill return __SIMPLELOCK_LOCKED_P(kernel_lock);
371 1.152 jmcneill }
372