kern_lock.c revision 1.188 1 1.188 andvar /* $NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $ */
2 1.19 thorpej
3 1.19 thorpej /*-
4 1.187 ad * Copyright (c) 2002, 2006, 2007, 2008, 2009, 2020, 2023
5 1.187 ad * The NetBSD Foundation, Inc.
6 1.19 thorpej * All rights reserved.
7 1.19 thorpej *
8 1.19 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.19 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.105 ad * NASA Ames Research Center, and by Andrew Doran.
11 1.19 thorpej *
12 1.19 thorpej * Redistribution and use in source and binary forms, with or without
13 1.19 thorpej * modification, are permitted provided that the following conditions
14 1.19 thorpej * are met:
15 1.19 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.19 thorpej * notice, this list of conditions and the following disclaimer.
17 1.19 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.19 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.19 thorpej * documentation and/or other materials provided with the distribution.
20 1.19 thorpej *
21 1.19 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.19 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.19 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.19 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.19 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.19 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.19 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.19 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.19 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.19 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.19 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.19 thorpej */
33 1.2 fvdl
34 1.60 lukem #include <sys/cdefs.h>
35 1.188 andvar __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.188 2024/01/14 11:46:05 andvar Exp $");
36 1.168 ad
37 1.168 ad #ifdef _KERNEL_OPT
38 1.168 ad #include "opt_lockdebug.h"
39 1.168 ad #endif
40 1.105 ad
41 1.1 fvdl #include <sys/param.h>
42 1.1 fvdl #include <sys/proc.h>
43 1.1 fvdl #include <sys/lock.h>
44 1.2 fvdl #include <sys/systm.h>
45 1.125 ad #include <sys/kernel.h>
46 1.105 ad #include <sys/lockdebug.h>
47 1.122 ad #include <sys/cpu.h>
48 1.122 ad #include <sys/syslog.h>
49 1.128 ad #include <sys/atomic.h>
50 1.148 ad #include <sys/lwp.h>
51 1.160 ozaki #include <sys/pserialize.h>
52 1.105 ad
53 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
54 1.168 ad #include <sys/ksyms.h>
55 1.168 ad #endif
56 1.168 ad
57 1.131 ad #include <machine/lock.h>
58 1.1 fvdl
59 1.98 ad #include <dev/lockstat.h>
60 1.98 ad
61 1.134 ad #define RETURN_ADDRESS (uintptr_t)__builtin_return_address(0)
62 1.25 thorpej
63 1.127 yamt bool kernel_lock_dodebug;
64 1.132 ad
65 1.132 ad __cpu_simple_lock_t kernel_lock[CACHE_LINE_SIZE / sizeof(__cpu_simple_lock_t)]
66 1.153 matt __cacheline_aligned;
67 1.1 fvdl
68 1.96 yamt void
69 1.135 yamt assert_sleepable(void)
70 1.96 yamt {
71 1.135 yamt const char *reason;
72 1.187 ad long pctr;
73 1.148 ad bool idle;
74 1.96 yamt
75 1.182 ozaki if (__predict_false(panicstr != NULL)) {
76 1.117 ad return;
77 1.135 yamt }
78 1.135 yamt
79 1.132 ad LOCKDEBUG_BARRIER(kernel_lock, 1);
80 1.135 yamt
81 1.148 ad /*
82 1.148 ad * Avoid disabling/re-enabling preemption here since this
83 1.149 dyoung * routine may be called in delicate situations.
84 1.148 ad */
85 1.148 ad do {
86 1.187 ad pctr = lwp_pctr();
87 1.148 ad idle = CURCPU_IDLE_P();
88 1.187 ad } while (__predict_false(pctr != lwp_pctr()));
89 1.148 ad
90 1.135 yamt reason = NULL;
91 1.184 riastrad if (__predict_false(idle) && !cold) {
92 1.135 yamt reason = "idle";
93 1.184 riastrad goto panic;
94 1.135 yamt }
95 1.184 riastrad if (__predict_false(cpu_intr_p())) {
96 1.135 yamt reason = "interrupt";
97 1.184 riastrad goto panic;
98 1.97 yamt }
99 1.184 riastrad if (__predict_false(cpu_softintr_p())) {
100 1.135 yamt reason = "softint";
101 1.184 riastrad goto panic;
102 1.135 yamt }
103 1.184 riastrad if (__predict_false(!pserialize_not_in_read_section())) {
104 1.160 ozaki reason = "pserialize";
105 1.184 riastrad goto panic;
106 1.160 ozaki }
107 1.184 riastrad return;
108 1.135 yamt
109 1.184 riastrad panic: panic("%s: %s caller=%p", __func__, reason, (void *)RETURN_ADDRESS);
110 1.96 yamt }
111 1.105 ad
112 1.62 thorpej /*
113 1.62 thorpej * Functions for manipulating the kernel_lock. We put them here
114 1.62 thorpej * so that they show up in profiles.
115 1.62 thorpej */
116 1.62 thorpej
117 1.105 ad #define _KERNEL_LOCK_ABORT(msg) \
118 1.158 christos LOCKDEBUG_ABORT(__func__, __LINE__, kernel_lock, &_kernel_lock_ops, msg)
119 1.186 riastrad
120 1.186 riastrad #ifdef LOCKDEBUG
121 1.105 ad #define _KERNEL_LOCK_ASSERT(cond) \
122 1.105 ad do { \
123 1.105 ad if (!(cond)) \
124 1.105 ad _KERNEL_LOCK_ABORT("assertion failed: " #cond); \
125 1.105 ad } while (/* CONSTCOND */ 0)
126 1.105 ad #else
127 1.186 riastrad #define _KERNEL_LOCK_ASSERT(cond) /* nothing */
128 1.105 ad #endif
129 1.105 ad
130 1.163 ozaki static void _kernel_lock_dump(const volatile void *, lockop_printer_t);
131 1.105 ad
132 1.105 ad lockops_t _kernel_lock_ops = {
133 1.161 ozaki .lo_name = "Kernel lock",
134 1.161 ozaki .lo_type = LOCKOPS_SPIN,
135 1.161 ozaki .lo_dump = _kernel_lock_dump,
136 1.105 ad };
137 1.105 ad
138 1.186 riastrad #ifdef LOCKDEBUG
139 1.186 riastrad
140 1.188 andvar #ifdef DDB
141 1.186 riastrad #include <ddb/ddb.h>
142 1.188 andvar #endif
143 1.186 riastrad
144 1.174 riastrad static void
145 1.174 riastrad kernel_lock_trace_ipi(void *cookie)
146 1.174 riastrad {
147 1.174 riastrad
148 1.174 riastrad printf("%s[%d %s]: hogging kernel lock\n", cpu_name(curcpu()),
149 1.174 riastrad curlwp->l_lid,
150 1.174 riastrad curlwp->l_name ? curlwp->l_name : curproc->p_comm);
151 1.188 andvar #ifdef DDB
152 1.174 riastrad db_stacktrace();
153 1.188 andvar #endif
154 1.186 riastrad }
155 1.186 riastrad
156 1.185 riastrad #endif
157 1.174 riastrad
158 1.85 yamt /*
159 1.105 ad * Initialize the kernel lock.
160 1.85 yamt */
161 1.62 thorpej void
162 1.122 ad kernel_lock_init(void)
163 1.62 thorpej {
164 1.62 thorpej
165 1.132 ad __cpu_simple_lock_init(kernel_lock);
166 1.132 ad kernel_lock_dodebug = LOCKDEBUG_ALLOC(kernel_lock, &_kernel_lock_ops,
167 1.122 ad RETURN_ADDRESS);
168 1.62 thorpej }
169 1.155 martin CTASSERT(CACHE_LINE_SIZE >= sizeof(__cpu_simple_lock_t));
170 1.62 thorpej
171 1.62 thorpej /*
172 1.105 ad * Print debugging information about the kernel lock.
173 1.62 thorpej */
174 1.162 ozaki static void
175 1.163 ozaki _kernel_lock_dump(const volatile void *junk, lockop_printer_t pr)
176 1.62 thorpej {
177 1.85 yamt struct cpu_info *ci = curcpu();
178 1.62 thorpej
179 1.105 ad (void)junk;
180 1.85 yamt
181 1.163 ozaki pr("curcpu holds : %18d wanted by: %#018lx\n",
182 1.105 ad ci->ci_biglock_count, (long)ci->ci_biglock_wanted);
183 1.62 thorpej }
184 1.62 thorpej
185 1.105 ad /*
186 1.150 mrg * Acquire 'nlocks' holds on the kernel lock.
187 1.167 ad *
188 1.167 ad * Although it may not look it, this is one of the most central, intricate
189 1.167 ad * routines in the kernel, and tons of code elsewhere depends on its exact
190 1.167 ad * behaviour. If you change something in here, expect it to bite you in the
191 1.167 ad * rear.
192 1.105 ad */
193 1.62 thorpej void
194 1.137 drochner _kernel_lock(int nlocks)
195 1.62 thorpej {
196 1.138 ad struct cpu_info *ci;
197 1.105 ad LOCKSTAT_TIMER(spintime);
198 1.105 ad LOCKSTAT_FLAG(lsflag);
199 1.105 ad struct lwp *owant;
200 1.186 riastrad #ifdef LOCKDEBUG
201 1.174 riastrad static struct cpu_info *kernel_lock_holder;
202 1.165 ad u_int spins = 0;
203 1.180 riastrad u_int starttime = getticks();
204 1.186 riastrad #endif
205 1.85 yamt int s;
206 1.137 drochner struct lwp *l = curlwp;
207 1.85 yamt
208 1.105 ad _KERNEL_LOCK_ASSERT(nlocks > 0);
209 1.62 thorpej
210 1.138 ad s = splvm();
211 1.138 ad ci = curcpu();
212 1.105 ad if (ci->ci_biglock_count != 0) {
213 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
214 1.105 ad ci->ci_biglock_count += nlocks;
215 1.122 ad l->l_blcnt += nlocks;
216 1.138 ad splx(s);
217 1.105 ad return;
218 1.105 ad }
219 1.105 ad
220 1.122 ad _KERNEL_LOCK_ASSERT(l->l_blcnt == 0);
221 1.132 ad LOCKDEBUG_WANTLOCK(kernel_lock_dodebug, kernel_lock, RETURN_ADDRESS,
222 1.154 mlelstv 0);
223 1.107 ad
224 1.165 ad if (__predict_true(__cpu_simple_lock_try(kernel_lock))) {
225 1.177 riastrad #ifdef LOCKDEBUG
226 1.176 riastrad kernel_lock_holder = curcpu();
227 1.177 riastrad #endif
228 1.105 ad ci->ci_biglock_count = nlocks;
229 1.122 ad l->l_blcnt = nlocks;
230 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
231 1.127 yamt RETURN_ADDRESS, 0);
232 1.105 ad splx(s);
233 1.105 ad return;
234 1.105 ad }
235 1.105 ad
236 1.132 ad /*
237 1.132 ad * To remove the ordering constraint between adaptive mutexes
238 1.132 ad * and kernel_lock we must make it appear as if this thread is
239 1.132 ad * blocking. For non-interlocked mutex release, a store fence
240 1.132 ad * is required to ensure that the result of any mutex_exit()
241 1.132 ad * by the current LWP becomes visible on the bus before the set
242 1.132 ad * of ci->ci_biglock_wanted becomes visible.
243 1.183 riastrad *
244 1.183 riastrad * This membar_producer matches the membar_consumer in
245 1.183 riastrad * mutex_vector_enter.
246 1.183 riastrad *
247 1.183 riastrad * That way, if l has just released a mutex, mutex_vector_enter
248 1.183 riastrad * can't see this store ci->ci_biglock_wanted := l until it
249 1.183 riastrad * will also see the mutex_exit store mtx->mtx_owner := 0 which
250 1.183 riastrad * clears the has-waiters bit.
251 1.132 ad */
252 1.132 ad membar_producer();
253 1.132 ad owant = ci->ci_biglock_wanted;
254 1.183 riastrad atomic_store_relaxed(&ci->ci_biglock_wanted, l);
255 1.168 ad #if defined(DIAGNOSTIC) && !defined(LOCKDEBUG)
256 1.168 ad l->l_ld_wanted = __builtin_return_address(0);
257 1.168 ad #endif
258 1.105 ad
259 1.105 ad /*
260 1.167 ad * Spin until we acquire the lock. Once we have it, record the
261 1.167 ad * time spent with lockstat.
262 1.105 ad */
263 1.132 ad LOCKSTAT_ENTER(lsflag);
264 1.132 ad LOCKSTAT_START_TIMER(lsflag, spintime);
265 1.105 ad
266 1.105 ad do {
267 1.122 ad splx(s);
268 1.132 ad while (__SIMPLELOCK_LOCKED_P(kernel_lock)) {
269 1.165 ad #ifdef LOCKDEBUG
270 1.180 riastrad if (SPINLOCK_SPINOUT(spins) && start_init_exec &&
271 1.180 riastrad (getticks() - starttime) > 10*hz) {
272 1.174 riastrad ipi_msg_t msg = {
273 1.174 riastrad .func = kernel_lock_trace_ipi,
274 1.174 riastrad };
275 1.175 riastrad kpreempt_disable();
276 1.174 riastrad ipi_unicast(&msg, kernel_lock_holder);
277 1.174 riastrad ipi_wait(&msg);
278 1.175 riastrad kpreempt_enable();
279 1.178 riastrad _KERNEL_LOCK_ABORT("spinout");
280 1.132 ad }
281 1.179 riastrad #endif
282 1.169 christos SPINLOCK_BACKOFF_HOOK;
283 1.169 christos SPINLOCK_SPIN_HOOK;
284 1.105 ad }
285 1.132 ad s = splvm();
286 1.132 ad } while (!__cpu_simple_lock_try(kernel_lock));
287 1.105 ad
288 1.122 ad ci->ci_biglock_count = nlocks;
289 1.122 ad l->l_blcnt = nlocks;
290 1.107 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
291 1.144 ad LOCKDEBUG_LOCKED(kernel_lock_dodebug, kernel_lock, NULL,
292 1.144 ad RETURN_ADDRESS, 0);
293 1.132 ad if (owant == NULL) {
294 1.132 ad LOCKSTAT_EVENT_RA(lsflag, kernel_lock,
295 1.132 ad LB_KERNEL_LOCK | LB_SPIN, 1, spintime, RETURN_ADDRESS);
296 1.132 ad }
297 1.132 ad LOCKSTAT_EXIT(lsflag);
298 1.167 ad splx(s);
299 1.105 ad
300 1.105 ad /*
301 1.132 ad * Now that we have kernel_lock, reset ci_biglock_wanted. This
302 1.183 riastrad * store must be visible on other CPUs before a mutex_exit() on
303 1.183 riastrad * this CPU can test the has-waiters bit.
304 1.183 riastrad *
305 1.183 riastrad * This membar_enter matches the membar_enter in
306 1.183 riastrad * mutex_vector_enter. (Yes, not membar_exit -- the legacy
307 1.183 riastrad * naming is confusing, but store-before-load usually pairs
308 1.183 riastrad * with store-before-load, in the extremely rare cases where it
309 1.183 riastrad * is used at all.)
310 1.132 ad *
311 1.183 riastrad * That way, mutex_vector_enter can't see this store
312 1.183 riastrad * ci->ci_biglock_wanted := owant until it has set the
313 1.183 riastrad * has-waiters bit.
314 1.105 ad */
315 1.132 ad (void)atomic_swap_ptr(&ci->ci_biglock_wanted, owant);
316 1.165 ad #ifndef __HAVE_ATOMIC_AS_MEMBAR
317 1.132 ad membar_enter();
318 1.165 ad #endif
319 1.174 riastrad
320 1.174 riastrad #ifdef LOCKDEBUG
321 1.174 riastrad kernel_lock_holder = curcpu();
322 1.174 riastrad #endif
323 1.62 thorpej }
324 1.62 thorpej
325 1.62 thorpej /*
326 1.105 ad * Release 'nlocks' holds on the kernel lock. If 'nlocks' is zero, release
327 1.150 mrg * all holds.
328 1.62 thorpej */
329 1.62 thorpej void
330 1.137 drochner _kernel_unlock(int nlocks, int *countp)
331 1.62 thorpej {
332 1.138 ad struct cpu_info *ci;
333 1.105 ad u_int olocks;
334 1.105 ad int s;
335 1.137 drochner struct lwp *l = curlwp;
336 1.62 thorpej
337 1.105 ad _KERNEL_LOCK_ASSERT(nlocks < 2);
338 1.62 thorpej
339 1.122 ad olocks = l->l_blcnt;
340 1.77 yamt
341 1.105 ad if (olocks == 0) {
342 1.105 ad _KERNEL_LOCK_ASSERT(nlocks <= 0);
343 1.105 ad if (countp != NULL)
344 1.105 ad *countp = 0;
345 1.105 ad return;
346 1.105 ad }
347 1.77 yamt
348 1.132 ad _KERNEL_LOCK_ASSERT(__SIMPLELOCK_LOCKED_P(kernel_lock));
349 1.85 yamt
350 1.105 ad if (nlocks == 0)
351 1.105 ad nlocks = olocks;
352 1.105 ad else if (nlocks == -1) {
353 1.105 ad nlocks = 1;
354 1.105 ad _KERNEL_LOCK_ASSERT(olocks == 1);
355 1.105 ad }
356 1.138 ad s = splvm();
357 1.138 ad ci = curcpu();
358 1.122 ad _KERNEL_LOCK_ASSERT(ci->ci_biglock_count >= l->l_blcnt);
359 1.122 ad if (ci->ci_biglock_count == nlocks) {
360 1.132 ad LOCKDEBUG_UNLOCKED(kernel_lock_dodebug, kernel_lock,
361 1.127 yamt RETURN_ADDRESS, 0);
362 1.122 ad ci->ci_biglock_count = 0;
363 1.132 ad __cpu_simple_unlock(kernel_lock);
364 1.138 ad l->l_blcnt -= nlocks;
365 1.122 ad splx(s);
366 1.139 ad if (l->l_dopreempt)
367 1.139 ad kpreempt(0);
368 1.138 ad } else {
369 1.122 ad ci->ci_biglock_count -= nlocks;
370 1.138 ad l->l_blcnt -= nlocks;
371 1.138 ad splx(s);
372 1.138 ad }
373 1.77 yamt
374 1.105 ad if (countp != NULL)
375 1.105 ad *countp = olocks;
376 1.77 yamt }
377 1.152 jmcneill
378 1.152 jmcneill bool
379 1.152 jmcneill _kernel_locked_p(void)
380 1.152 jmcneill {
381 1.152 jmcneill return __SIMPLELOCK_LOCKED_P(kernel_lock);
382 1.152 jmcneill }
383