kern_lock.c revision 1.102 1 /* $NetBSD: kern_lock.c,v 1.102 2006/11/01 10:17:58 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Ross Harvey.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Copyright (c) 1995
45 * The Regents of the University of California. All rights reserved.
46 *
47 * This code contains ideas from software contributed to Berkeley by
48 * Avadis Tevanian, Jr., Michael Wayne Young, and the Mach Operating
49 * System project at Carnegie-Mellon University.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_lock.c 8.18 (Berkeley) 5/21/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_lock.c,v 1.102 2006/11/01 10:17:58 yamt Exp $");
80
81 #include "opt_multiprocessor.h"
82 #include "opt_lockdebug.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/lock.h>
88 #include <sys/systm.h>
89 #include <machine/cpu.h>
90
91 #include <dev/lockstat.h>
92
93 #if defined(LOCKDEBUG)
94 #include <sys/syslog.h>
95 /*
96 * note that stdarg.h and the ansi style va_start macro is used for both
97 * ansi and traditional c compiles.
98 * XXX: this requires that stdarg.h define: va_alist and va_dcl
99 */
100 #include <machine/stdarg.h>
101
102 void lock_printf(const char *fmt, ...)
103 __attribute__((__format__(__printf__,1,2)));
104
105 static int acquire(volatile struct lock **, int *, int, int, int, uintptr_t ra);
106
107 int lock_debug_syslog = 0; /* defaults to printf, but can be patched */
108
109 #ifdef DDB
110 #include <ddb/ddbvar.h>
111 #include <machine/db_machdep.h>
112 #include <ddb/db_command.h>
113 #include <ddb/db_interface.h>
114 #endif
115 #endif /* defined(LOCKDEBUG) */
116
117 #if defined(MULTIPROCESSOR)
118 struct simplelock kernel_lock;
119 #endif
120
121 /*
122 * Locking primitives implementation.
123 * Locks provide shared/exclusive synchronization.
124 */
125
126 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC) /* { */
127 #if defined(MULTIPROCESSOR) /* { */
128 #define COUNT_CPU(cpu_id, x) \
129 curcpu()->ci_spin_locks += (x)
130 #else
131 u_long spin_locks;
132 #define COUNT_CPU(cpu_id, x) spin_locks += (x)
133 #endif /* MULTIPROCESSOR */ /* } */
134
135 #define COUNT(lkp, l, cpu_id, x) \
136 do { \
137 if ((lkp)->lk_flags & LK_SPIN) \
138 COUNT_CPU((cpu_id), (x)); \
139 else \
140 (l)->l_locks += (x); \
141 } while (/*CONSTCOND*/0)
142 #else
143 #define COUNT(lkp, p, cpu_id, x)
144 #define COUNT_CPU(cpu_id, x)
145 #endif /* LOCKDEBUG || DIAGNOSTIC */ /* } */
146
147 #define INTERLOCK_ACQUIRE(lkp, flags, s) \
148 do { \
149 if ((flags) & LK_SPIN) \
150 s = spllock(); \
151 simple_lock(&(lkp)->lk_interlock); \
152 } while (/*CONSTCOND*/ 0)
153
154 #define INTERLOCK_RELEASE(lkp, flags, s) \
155 do { \
156 simple_unlock(&(lkp)->lk_interlock); \
157 if ((flags) & LK_SPIN) \
158 splx(s); \
159 } while (/*CONSTCOND*/ 0)
160
161 #ifdef DDB /* { */
162 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
163 int simple_lock_debugger = 1; /* more serious on MP */
164 #else
165 int simple_lock_debugger = 0;
166 #endif
167 #define SLOCK_DEBUGGER() if (simple_lock_debugger && db_onpanic) Debugger()
168 #define SLOCK_TRACE() \
169 db_stack_trace_print((db_expr_t)__builtin_frame_address(0), \
170 TRUE, 65535, "", lock_printf);
171 #else
172 #define SLOCK_DEBUGGER() /* nothing */
173 #define SLOCK_TRACE() /* nothing */
174 #endif /* } */
175
176 #if defined(LOCKDEBUG)
177 #if defined(DDB)
178 #define SPINLOCK_SPINCHECK_DEBUGGER if (db_onpanic) Debugger()
179 #else
180 #define SPINLOCK_SPINCHECK_DEBUGGER /* nothing */
181 #endif
182
183 #define SPINLOCK_SPINCHECK_DECL \
184 /* 32-bits of count -- wrap constitutes a "spinout" */ \
185 uint32_t __spinc = 0
186
187 #define SPINLOCK_SPINCHECK \
188 do { \
189 if (++__spinc == 0) { \
190 lock_printf("LK_SPIN spinout, excl %d, share %d\n", \
191 lkp->lk_exclusivecount, lkp->lk_sharecount); \
192 if (lkp->lk_exclusivecount) \
193 lock_printf("held by CPU %lu\n", \
194 (u_long) lkp->lk_cpu); \
195 if (lkp->lk_lock_file) \
196 lock_printf("last locked at %s:%d\n", \
197 lkp->lk_lock_file, lkp->lk_lock_line); \
198 if (lkp->lk_unlock_file) \
199 lock_printf("last unlocked at %s:%d\n", \
200 lkp->lk_unlock_file, lkp->lk_unlock_line); \
201 SLOCK_TRACE(); \
202 SPINLOCK_SPINCHECK_DEBUGGER; \
203 } \
204 } while (/*CONSTCOND*/ 0)
205 #else
206 #define SPINLOCK_SPINCHECK_DECL /* nothing */
207 #define SPINLOCK_SPINCHECK /* nothing */
208 #endif /* LOCKDEBUG && DDB */
209
210 #define RETURN_ADDRESS ((uintptr_t)__builtin_return_address(0))
211
212 /*
213 * Acquire a resource.
214 */
215 static int
216 acquire(volatile struct lock **lkpp, int *s, int extflags,
217 int drain, int wanted, uintptr_t ra)
218 {
219 int error;
220 volatile struct lock *lkp = *lkpp;
221 LOCKSTAT_TIMER(slptime);
222
223 KASSERT(drain || (wanted & LK_WAIT_NONZERO) == 0);
224
225 if (extflags & LK_SPIN) {
226 int interlocked;
227
228 SPINLOCK_SPINCHECK_DECL;
229
230 if (!drain) {
231 lkp->lk_waitcount++;
232 lkp->lk_flags |= LK_WAIT_NONZERO;
233 }
234 for (interlocked = 1;;) {
235 SPINLOCK_SPINCHECK;
236 if ((lkp->lk_flags & wanted) != 0) {
237 if (interlocked) {
238 INTERLOCK_RELEASE(lkp, LK_SPIN, *s);
239 interlocked = 0;
240 }
241 SPINLOCK_SPIN_HOOK;
242 } else if (interlocked) {
243 break;
244 } else {
245 INTERLOCK_ACQUIRE(lkp, LK_SPIN, *s);
246 interlocked = 1;
247 }
248 }
249 if (!drain) {
250 lkp->lk_waitcount--;
251 if (lkp->lk_waitcount == 0)
252 lkp->lk_flags &= ~LK_WAIT_NONZERO;
253 }
254 KASSERT((lkp->lk_flags & wanted) == 0);
255 error = 0; /* sanity */
256 } else {
257 for (error = 0; (lkp->lk_flags & wanted) != 0; ) {
258 if (drain)
259 lkp->lk_flags |= LK_WAITDRAIN;
260 else {
261 lkp->lk_waitcount++;
262 lkp->lk_flags |= LK_WAIT_NONZERO;
263 }
264 /* XXX Cast away volatile. */
265 LOCKSTAT_START_TIMER(slptime);
266 error = ltsleep(drain ?
267 (volatile const void *)&lkp->lk_flags :
268 (volatile const void *)lkp, lkp->lk_prio,
269 lkp->lk_wmesg, lkp->lk_timo, &lkp->lk_interlock);
270 LOCKSTAT_STOP_TIMER(slptime);
271 LOCKSTAT_EVENT_RA((void *)(uintptr_t)lkp,
272 LB_LOCKMGR | LB_SLEEP, 1, slptime, ra);
273 if (!drain) {
274 lkp->lk_waitcount--;
275 if (lkp->lk_waitcount == 0)
276 lkp->lk_flags &= ~LK_WAIT_NONZERO;
277 }
278 if (error)
279 break;
280 if (extflags & LK_SLEEPFAIL) {
281 error = ENOLCK;
282 break;
283 }
284 if (lkp->lk_newlock != NULL) {
285 simple_lock(&lkp->lk_newlock->lk_interlock);
286 simple_unlock(&lkp->lk_interlock);
287 if (lkp->lk_waitcount == 0)
288 wakeup(&lkp->lk_newlock);
289 *lkpp = lkp = lkp->lk_newlock;
290 }
291 }
292 }
293
294 return error;
295 }
296
297 #define SETHOLDER(lkp, pid, lid, cpu_id) \
298 do { \
299 if ((lkp)->lk_flags & LK_SPIN) \
300 (lkp)->lk_cpu = cpu_id; \
301 else { \
302 (lkp)->lk_lockholder = pid; \
303 (lkp)->lk_locklwp = lid; \
304 } \
305 } while (/*CONSTCOND*/0)
306
307 #define WEHOLDIT(lkp, pid, lid, cpu_id) \
308 (((lkp)->lk_flags & LK_SPIN) != 0 ? \
309 ((lkp)->lk_cpu == (cpu_id)) : \
310 ((lkp)->lk_lockholder == (pid) && (lkp)->lk_locklwp == (lid)))
311
312 #define WAKEUP_WAITER(lkp) \
313 do { \
314 if (((lkp)->lk_flags & (LK_SPIN | LK_WAIT_NONZERO)) == \
315 LK_WAIT_NONZERO) { \
316 wakeup((lkp)); \
317 } \
318 } while (/*CONSTCOND*/0)
319
320 #if defined(LOCKDEBUG) /* { */
321 #if defined(MULTIPROCESSOR) /* { */
322 struct simplelock spinlock_list_slock = SIMPLELOCK_INITIALIZER;
323
324 #define SPINLOCK_LIST_LOCK() \
325 __cpu_simple_lock(&spinlock_list_slock.lock_data)
326
327 #define SPINLOCK_LIST_UNLOCK() \
328 __cpu_simple_unlock(&spinlock_list_slock.lock_data)
329 #else
330 #define SPINLOCK_LIST_LOCK() /* nothing */
331
332 #define SPINLOCK_LIST_UNLOCK() /* nothing */
333 #endif /* MULTIPROCESSOR */ /* } */
334
335 _TAILQ_HEAD(, struct lock, volatile) spinlock_list =
336 TAILQ_HEAD_INITIALIZER(spinlock_list);
337
338 #define HAVEIT(lkp) \
339 do { \
340 if ((lkp)->lk_flags & LK_SPIN) { \
341 int sp = spllock(); \
342 SPINLOCK_LIST_LOCK(); \
343 TAILQ_INSERT_TAIL(&spinlock_list, (lkp), lk_list); \
344 SPINLOCK_LIST_UNLOCK(); \
345 splx(sp); \
346 } \
347 } while (/*CONSTCOND*/0)
348
349 #define DONTHAVEIT(lkp) \
350 do { \
351 if ((lkp)->lk_flags & LK_SPIN) { \
352 int sp = spllock(); \
353 SPINLOCK_LIST_LOCK(); \
354 TAILQ_REMOVE(&spinlock_list, (lkp), lk_list); \
355 SPINLOCK_LIST_UNLOCK(); \
356 splx(sp); \
357 } \
358 } while (/*CONSTCOND*/0)
359 #else
360 #define HAVEIT(lkp) /* nothing */
361
362 #define DONTHAVEIT(lkp) /* nothing */
363 #endif /* LOCKDEBUG */ /* } */
364
365 #if defined(LOCKDEBUG)
366 /*
367 * Lock debug printing routine; can be configured to print to console
368 * or log to syslog.
369 */
370 void
371 lock_printf(const char *fmt, ...)
372 {
373 char b[150];
374 va_list ap;
375
376 va_start(ap, fmt);
377 if (lock_debug_syslog)
378 vlog(LOG_DEBUG, fmt, ap);
379 else {
380 vsnprintf(b, sizeof(b), fmt, ap);
381 printf_nolog("%s", b);
382 }
383 va_end(ap);
384 }
385 #endif /* LOCKDEBUG */
386
387 /*
388 * Transfer any waiting processes from one lock to another.
389 */
390 void
391 transferlockers(struct lock *from, struct lock *to)
392 {
393
394 KASSERT(from != to);
395 KASSERT((from->lk_flags & LK_WAITDRAIN) == 0);
396 if (from->lk_waitcount == 0)
397 return;
398 from->lk_newlock = to;
399 wakeup((void *)from);
400 tsleep((void *)&from->lk_newlock, from->lk_prio, "lkxfer", 0);
401 from->lk_newlock = NULL;
402 from->lk_flags &= ~(LK_WANT_EXCL | LK_WANT_UPGRADE);
403 KASSERT(from->lk_waitcount == 0);
404 }
405
406
407 /*
408 * Initialize a lock; required before use.
409 */
410 void
411 lockinit(struct lock *lkp, int prio, const char *wmesg, int timo, int flags)
412 {
413
414 memset(lkp, 0, sizeof(struct lock));
415 simple_lock_init(&lkp->lk_interlock);
416 lkp->lk_flags = flags & LK_EXTFLG_MASK;
417 if (flags & LK_SPIN)
418 lkp->lk_cpu = LK_NOCPU;
419 else {
420 lkp->lk_lockholder = LK_NOPROC;
421 lkp->lk_newlock = NULL;
422 lkp->lk_prio = prio;
423 lkp->lk_timo = timo;
424 }
425 lkp->lk_wmesg = wmesg; /* just a name for spin locks */
426 #if defined(LOCKDEBUG)
427 lkp->lk_lock_file = NULL;
428 lkp->lk_unlock_file = NULL;
429 #endif
430 }
431
432 /*
433 * Determine the status of a lock.
434 */
435 int
436 lockstatus(struct lock *lkp)
437 {
438 int s = 0; /* XXX: gcc */
439 int lock_type = 0;
440 struct lwp *l = curlwp; /* XXX */
441 pid_t pid;
442 lwpid_t lid;
443 cpuid_t cpu_num;
444
445 if ((lkp->lk_flags & LK_SPIN) || l == NULL) {
446 cpu_num = cpu_number();
447 pid = LK_KERNPROC;
448 lid = 0;
449 } else {
450 cpu_num = LK_NOCPU;
451 pid = l->l_proc->p_pid;
452 lid = l->l_lid;
453 }
454
455 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
456 if (lkp->lk_exclusivecount != 0) {
457 if (WEHOLDIT(lkp, pid, lid, cpu_num))
458 lock_type = LK_EXCLUSIVE;
459 else
460 lock_type = LK_EXCLOTHER;
461 } else if (lkp->lk_sharecount != 0)
462 lock_type = LK_SHARED;
463 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
464 return (lock_type);
465 }
466
467 #if defined(LOCKDEBUG)
468 /*
469 * Make sure no spin locks are held by a CPU that is about
470 * to context switch.
471 */
472 void
473 spinlock_switchcheck(void)
474 {
475 u_long cnt;
476 int s;
477
478 s = spllock();
479 #if defined(MULTIPROCESSOR)
480 cnt = curcpu()->ci_spin_locks;
481 #else
482 cnt = spin_locks;
483 #endif
484 splx(s);
485
486 if (cnt != 0)
487 panic("spinlock_switchcheck: CPU %lu has %lu spin locks",
488 (u_long) cpu_number(), cnt);
489 }
490 #endif /* LOCKDEBUG */
491
492 /*
493 * Locks and IPLs (interrupt priority levels):
494 *
495 * Locks which may be taken from interrupt context must be handled
496 * very carefully; you must spl to the highest IPL where the lock
497 * is needed before acquiring the lock.
498 *
499 * It is also important to avoid deadlock, since certain (very high
500 * priority) interrupts are often needed to keep the system as a whole
501 * from deadlocking, and must not be blocked while you are spinning
502 * waiting for a lower-priority lock.
503 *
504 * In addition, the lock-debugging hooks themselves need to use locks!
505 *
506 * A raw __cpu_simple_lock may be used from interrupts are long as it
507 * is acquired and held at a single IPL.
508 *
509 * A simple_lock (which is a __cpu_simple_lock wrapped with some
510 * debugging hooks) may be used at or below spllock(), which is
511 * typically at or just below splhigh() (i.e. blocks everything
512 * but certain machine-dependent extremely high priority interrupts).
513 *
514 * spinlockmgr spinlocks should be used at or below splsched().
515 *
516 * Some platforms may have interrupts of higher priority than splsched(),
517 * including hard serial interrupts, inter-processor interrupts, and
518 * kernel debugger traps.
519 */
520
521 /*
522 * XXX XXX kludge around another kludge..
523 *
524 * vfs_shutdown() may be called from interrupt context, either as a result
525 * of a panic, or from the debugger. It proceeds to call
526 * sys_sync(&proc0, ...), pretending its running on behalf of proc0
527 *
528 * We would like to make an attempt to sync the filesystems in this case, so
529 * if this happens, we treat attempts to acquire locks specially.
530 * All locks are acquired on behalf of proc0.
531 *
532 * If we've already paniced, we don't block waiting for locks, but
533 * just barge right ahead since we're already going down in flames.
534 */
535
536 /*
537 * Set, change, or release a lock.
538 *
539 * Shared requests increment the shared count. Exclusive requests set the
540 * LK_WANT_EXCL flag (preventing further shared locks), and wait for already
541 * accepted shared locks and shared-to-exclusive upgrades to go away.
542 */
543 int
544 #if defined(LOCKDEBUG)
545 _lockmgr(volatile struct lock *lkp, u_int flags,
546 struct simplelock *interlkp, const char *file, int line)
547 #else
548 lockmgr(volatile struct lock *lkp, u_int flags,
549 struct simplelock *interlkp)
550 #endif
551 {
552 int error;
553 pid_t pid;
554 lwpid_t lid;
555 int extflags;
556 cpuid_t cpu_num;
557 struct lwp *l = curlwp;
558 int lock_shutdown_noblock = 0;
559 int s = 0;
560
561 error = 0;
562
563 /* LK_RETRY is for vn_lock, not for lockmgr. */
564 KASSERT((flags & LK_RETRY) == 0);
565
566 INTERLOCK_ACQUIRE(lkp, lkp->lk_flags, s);
567 if (flags & LK_INTERLOCK)
568 simple_unlock(interlkp);
569 extflags = (flags | lkp->lk_flags) & LK_EXTFLG_MASK;
570
571 #ifdef DIAGNOSTIC /* { */
572 /*
573 * Don't allow spins on sleep locks and don't allow sleeps
574 * on spin locks.
575 */
576 if ((flags ^ lkp->lk_flags) & LK_SPIN)
577 panic("lockmgr: sleep/spin mismatch");
578 #endif /* } */
579
580 if (extflags & LK_SPIN) {
581 pid = LK_KERNPROC;
582 lid = 0;
583 } else {
584 if (l == NULL) {
585 if (!doing_shutdown) {
586 panic("lockmgr: no context");
587 } else {
588 l = &lwp0;
589 if (panicstr && (!(flags & LK_NOWAIT))) {
590 flags |= LK_NOWAIT;
591 lock_shutdown_noblock = 1;
592 }
593 }
594 }
595 lid = l->l_lid;
596 pid = l->l_proc->p_pid;
597 }
598 cpu_num = cpu_number();
599
600 /*
601 * Once a lock has drained, the LK_DRAINING flag is set and an
602 * exclusive lock is returned. The only valid operation thereafter
603 * is a single release of that exclusive lock. This final release
604 * clears the LK_DRAINING flag and sets the LK_DRAINED flag. Any
605 * further requests of any sort will result in a panic. The bits
606 * selected for these two flags are chosen so that they will be set
607 * in memory that is freed (freed memory is filled with 0xdeadbeef).
608 * The final release is permitted to give a new lease on life to
609 * the lock by specifying LK_REENABLE.
610 */
611 if (lkp->lk_flags & (LK_DRAINING|LK_DRAINED)) {
612 #ifdef DIAGNOSTIC /* { */
613 if (lkp->lk_flags & LK_DRAINED)
614 panic("lockmgr: using decommissioned lock");
615 if ((flags & LK_TYPE_MASK) != LK_RELEASE ||
616 WEHOLDIT(lkp, pid, lid, cpu_num) == 0)
617 panic("lockmgr: non-release on draining lock: %d",
618 flags & LK_TYPE_MASK);
619 #endif /* DIAGNOSTIC */ /* } */
620 lkp->lk_flags &= ~LK_DRAINING;
621 if ((flags & LK_REENABLE) == 0)
622 lkp->lk_flags |= LK_DRAINED;
623 }
624
625 switch (flags & LK_TYPE_MASK) {
626
627 case LK_SHARED:
628 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
629 /*
630 * If just polling, check to see if we will block.
631 */
632 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
633 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE))) {
634 error = EBUSY;
635 break;
636 }
637 /*
638 * Wait for exclusive locks and upgrades to clear.
639 */
640 error = acquire(&lkp, &s, extflags, 0,
641 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE,
642 RETURN_ADDRESS);
643 if (error)
644 break;
645 lkp->lk_sharecount++;
646 lkp->lk_flags |= LK_SHARE_NONZERO;
647 COUNT(lkp, l, cpu_num, 1);
648 break;
649 }
650 /*
651 * We hold an exclusive lock, so downgrade it to shared.
652 * An alternative would be to fail with EDEADLK.
653 */
654 lkp->lk_sharecount++;
655 lkp->lk_flags |= LK_SHARE_NONZERO;
656 COUNT(lkp, l, cpu_num, 1);
657 /* fall into downgrade */
658
659 case LK_DOWNGRADE:
660 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0 ||
661 lkp->lk_exclusivecount == 0)
662 panic("lockmgr: not holding exclusive lock");
663 lkp->lk_sharecount += lkp->lk_exclusivecount;
664 lkp->lk_flags |= LK_SHARE_NONZERO;
665 lkp->lk_exclusivecount = 0;
666 lkp->lk_recurselevel = 0;
667 lkp->lk_flags &= ~LK_HAVE_EXCL;
668 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
669 #if defined(LOCKDEBUG)
670 lkp->lk_unlock_file = file;
671 lkp->lk_unlock_line = line;
672 #endif
673 DONTHAVEIT(lkp);
674 WAKEUP_WAITER(lkp);
675 break;
676
677 case LK_EXCLUPGRADE:
678 /*
679 * If another process is ahead of us to get an upgrade,
680 * then we want to fail rather than have an intervening
681 * exclusive access.
682 */
683 if (lkp->lk_flags & LK_WANT_UPGRADE) {
684 lkp->lk_sharecount--;
685 if (lkp->lk_sharecount == 0)
686 lkp->lk_flags &= ~LK_SHARE_NONZERO;
687 COUNT(lkp, l, cpu_num, -1);
688 error = EBUSY;
689 break;
690 }
691 /* fall into normal upgrade */
692
693 case LK_UPGRADE:
694 /*
695 * Upgrade a shared lock to an exclusive one. If another
696 * shared lock has already requested an upgrade to an
697 * exclusive lock, our shared lock is released and an
698 * exclusive lock is requested (which will be granted
699 * after the upgrade). If we return an error, the file
700 * will always be unlocked.
701 */
702 if (WEHOLDIT(lkp, pid, lid, cpu_num) || lkp->lk_sharecount <= 0)
703 panic("lockmgr: upgrade exclusive lock");
704 lkp->lk_sharecount--;
705 if (lkp->lk_sharecount == 0)
706 lkp->lk_flags &= ~LK_SHARE_NONZERO;
707 COUNT(lkp, l, cpu_num, -1);
708 /*
709 * If we are just polling, check to see if we will block.
710 */
711 if ((extflags & LK_NOWAIT) &&
712 ((lkp->lk_flags & LK_WANT_UPGRADE) ||
713 lkp->lk_sharecount > 1)) {
714 error = EBUSY;
715 break;
716 }
717 if ((lkp->lk_flags & LK_WANT_UPGRADE) == 0) {
718 /*
719 * We are first shared lock to request an upgrade, so
720 * request upgrade and wait for the shared count to
721 * drop to zero, then take exclusive lock.
722 */
723 lkp->lk_flags |= LK_WANT_UPGRADE;
724 error = acquire(&lkp, &s, extflags, 0, LK_SHARE_NONZERO,
725 RETURN_ADDRESS);
726 lkp->lk_flags &= ~LK_WANT_UPGRADE;
727 if (error) {
728 WAKEUP_WAITER(lkp);
729 break;
730 }
731 lkp->lk_flags |= LK_HAVE_EXCL;
732 SETHOLDER(lkp, pid, lid, cpu_num);
733 #if defined(LOCKDEBUG)
734 lkp->lk_lock_file = file;
735 lkp->lk_lock_line = line;
736 #endif
737 HAVEIT(lkp);
738 if (lkp->lk_exclusivecount != 0)
739 panic("lockmgr: non-zero exclusive count");
740 lkp->lk_exclusivecount = 1;
741 if (extflags & LK_SETRECURSE)
742 lkp->lk_recurselevel = 1;
743 COUNT(lkp, l, cpu_num, 1);
744 break;
745 }
746 /*
747 * Someone else has requested upgrade. Release our shared
748 * lock, awaken upgrade requestor if we are the last shared
749 * lock, then request an exclusive lock.
750 */
751 if (lkp->lk_sharecount == 0)
752 WAKEUP_WAITER(lkp);
753 /* fall into exclusive request */
754
755 case LK_EXCLUSIVE:
756 if (WEHOLDIT(lkp, pid, lid, cpu_num)) {
757 /*
758 * Recursive lock.
759 */
760 if ((extflags & LK_CANRECURSE) == 0 &&
761 lkp->lk_recurselevel == 0) {
762 if (extflags & LK_RECURSEFAIL) {
763 error = EDEADLK;
764 break;
765 } else
766 panic("lockmgr: locking against myself");
767 }
768 lkp->lk_exclusivecount++;
769 if (extflags & LK_SETRECURSE &&
770 lkp->lk_recurselevel == 0)
771 lkp->lk_recurselevel = lkp->lk_exclusivecount;
772 COUNT(lkp, l, cpu_num, 1);
773 break;
774 }
775 /*
776 * If we are just polling, check to see if we will sleep.
777 */
778 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
779 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
780 LK_SHARE_NONZERO))) {
781 error = EBUSY;
782 break;
783 }
784 /*
785 * Try to acquire the want_exclusive flag.
786 */
787 error = acquire(&lkp, &s, extflags, 0,
788 LK_HAVE_EXCL | LK_WANT_EXCL, RETURN_ADDRESS);
789 if (error)
790 break;
791 lkp->lk_flags |= LK_WANT_EXCL;
792 /*
793 * Wait for shared locks and upgrades to finish.
794 */
795 error = acquire(&lkp, &s, extflags, 0,
796 LK_HAVE_EXCL | LK_WANT_UPGRADE | LK_SHARE_NONZERO,
797 RETURN_ADDRESS);
798 lkp->lk_flags &= ~LK_WANT_EXCL;
799 if (error) {
800 WAKEUP_WAITER(lkp);
801 break;
802 }
803 lkp->lk_flags |= LK_HAVE_EXCL;
804 SETHOLDER(lkp, pid, lid, cpu_num);
805 #if defined(LOCKDEBUG)
806 lkp->lk_lock_file = file;
807 lkp->lk_lock_line = line;
808 #endif
809 HAVEIT(lkp);
810 if (lkp->lk_exclusivecount != 0)
811 panic("lockmgr: non-zero exclusive count");
812 lkp->lk_exclusivecount = 1;
813 if (extflags & LK_SETRECURSE)
814 lkp->lk_recurselevel = 1;
815 COUNT(lkp, l, cpu_num, 1);
816 break;
817
818 case LK_RELEASE:
819 if (lkp->lk_exclusivecount != 0) {
820 if (WEHOLDIT(lkp, pid, lid, cpu_num) == 0) {
821 if (lkp->lk_flags & LK_SPIN) {
822 panic("lockmgr: processor %lu, not "
823 "exclusive lock holder %lu "
824 "unlocking", cpu_num, lkp->lk_cpu);
825 } else {
826 panic("lockmgr: pid %d, not "
827 "exclusive lock holder %d "
828 "unlocking", pid,
829 lkp->lk_lockholder);
830 }
831 }
832 if (lkp->lk_exclusivecount == lkp->lk_recurselevel)
833 lkp->lk_recurselevel = 0;
834 lkp->lk_exclusivecount--;
835 COUNT(lkp, l, cpu_num, -1);
836 if (lkp->lk_exclusivecount == 0) {
837 lkp->lk_flags &= ~LK_HAVE_EXCL;
838 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
839 #if defined(LOCKDEBUG)
840 lkp->lk_unlock_file = file;
841 lkp->lk_unlock_line = line;
842 #endif
843 DONTHAVEIT(lkp);
844 }
845 } else if (lkp->lk_sharecount != 0) {
846 lkp->lk_sharecount--;
847 if (lkp->lk_sharecount == 0)
848 lkp->lk_flags &= ~LK_SHARE_NONZERO;
849 COUNT(lkp, l, cpu_num, -1);
850 }
851 #ifdef DIAGNOSTIC
852 else
853 panic("lockmgr: release of unlocked lock!");
854 #endif
855 WAKEUP_WAITER(lkp);
856 break;
857
858 case LK_DRAIN:
859 /*
860 * Check that we do not already hold the lock, as it can
861 * never drain if we do. Unfortunately, we have no way to
862 * check for holding a shared lock, but at least we can
863 * check for an exclusive one.
864 */
865 if (WEHOLDIT(lkp, pid, lid, cpu_num))
866 panic("lockmgr: draining against myself");
867 /*
868 * If we are just polling, check to see if we will sleep.
869 */
870 if ((extflags & LK_NOWAIT) && (lkp->lk_flags &
871 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
872 LK_SHARE_NONZERO | LK_WAIT_NONZERO))) {
873 error = EBUSY;
874 break;
875 }
876 error = acquire(&lkp, &s, extflags, 1,
877 LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
878 LK_SHARE_NONZERO | LK_WAIT_NONZERO,
879 RETURN_ADDRESS);
880 if (error)
881 break;
882 lkp->lk_flags |= LK_DRAINING | LK_HAVE_EXCL;
883 SETHOLDER(lkp, pid, lid, cpu_num);
884 #if defined(LOCKDEBUG)
885 lkp->lk_lock_file = file;
886 lkp->lk_lock_line = line;
887 #endif
888 HAVEIT(lkp);
889 lkp->lk_exclusivecount = 1;
890 /* XXX unlikely that we'd want this */
891 if (extflags & LK_SETRECURSE)
892 lkp->lk_recurselevel = 1;
893 COUNT(lkp, l, cpu_num, 1);
894 break;
895
896 default:
897 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
898 panic("lockmgr: unknown locktype request %d",
899 flags & LK_TYPE_MASK);
900 /* NOTREACHED */
901 }
902 if ((lkp->lk_flags & (LK_WAITDRAIN|LK_SPIN)) == LK_WAITDRAIN &&
903 ((lkp->lk_flags &
904 (LK_HAVE_EXCL | LK_WANT_EXCL | LK_WANT_UPGRADE |
905 LK_SHARE_NONZERO | LK_WAIT_NONZERO)) == 0)) {
906 lkp->lk_flags &= ~LK_WAITDRAIN;
907 wakeup(&lkp->lk_flags);
908 }
909 /*
910 * Note that this panic will be a recursive panic, since
911 * we only set lock_shutdown_noblock above if panicstr != NULL.
912 */
913 if (error && lock_shutdown_noblock)
914 panic("lockmgr: deadlock (see previous panic)");
915
916 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
917 return (error);
918 }
919
920 /*
921 * For a recursive spinlock held one or more times by the current CPU,
922 * release all N locks, and return N.
923 * Intended for use in mi_switch() shortly before context switching.
924 */
925
926 int
927 #if defined(LOCKDEBUG)
928 _spinlock_release_all(volatile struct lock *lkp, const char *file, int line)
929 #else
930 spinlock_release_all(volatile struct lock *lkp)
931 #endif
932 {
933 int s, count;
934 cpuid_t cpu_num;
935
936 KASSERT(lkp->lk_flags & LK_SPIN);
937
938 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
939
940 cpu_num = cpu_number();
941 count = lkp->lk_exclusivecount;
942
943 if (count != 0) {
944 #ifdef DIAGNOSTIC
945 if (WEHOLDIT(lkp, 0, 0, cpu_num) == 0) {
946 panic("spinlock_release_all: processor %lu, not "
947 "exclusive lock holder %lu "
948 "unlocking", (long)cpu_num, lkp->lk_cpu);
949 }
950 #endif
951 lkp->lk_recurselevel = 0;
952 lkp->lk_exclusivecount = 0;
953 COUNT_CPU(cpu_num, -count);
954 lkp->lk_flags &= ~LK_HAVE_EXCL;
955 SETHOLDER(lkp, LK_NOPROC, 0, LK_NOCPU);
956 #if defined(LOCKDEBUG)
957 lkp->lk_unlock_file = file;
958 lkp->lk_unlock_line = line;
959 #endif
960 DONTHAVEIT(lkp);
961 }
962 #ifdef DIAGNOSTIC
963 else if (lkp->lk_sharecount != 0)
964 panic("spinlock_release_all: release of shared lock!");
965 else
966 panic("spinlock_release_all: release of unlocked lock!");
967 #endif
968 INTERLOCK_RELEASE(lkp, LK_SPIN, s);
969
970 return (count);
971 }
972
973 /*
974 * For a recursive spinlock held one or more times by the current CPU,
975 * release all N locks, and return N.
976 * Intended for use in mi_switch() right after resuming execution.
977 */
978
979 void
980 #if defined(LOCKDEBUG)
981 _spinlock_acquire_count(volatile struct lock *lkp, int count,
982 const char *file, int line)
983 #else
984 spinlock_acquire_count(volatile struct lock *lkp, int count)
985 #endif
986 {
987 int s, error;
988 cpuid_t cpu_num;
989
990 KASSERT(lkp->lk_flags & LK_SPIN);
991
992 INTERLOCK_ACQUIRE(lkp, LK_SPIN, s);
993
994 cpu_num = cpu_number();
995
996 #ifdef DIAGNOSTIC
997 if (WEHOLDIT(lkp, LK_NOPROC, 0, cpu_num))
998 panic("spinlock_acquire_count: processor %lu already holds lock", (long)cpu_num);
999 #endif
1000 /*
1001 * Try to acquire the want_exclusive flag.
1002 */
1003 error = acquire(&lkp, &s, LK_SPIN, 0, LK_HAVE_EXCL | LK_WANT_EXCL,
1004 RETURN_ADDRESS);
1005 lkp->lk_flags |= LK_WANT_EXCL;
1006 /*
1007 * Wait for shared locks and upgrades to finish.
1008 */
1009 error = acquire(&lkp, &s, LK_SPIN, 0,
1010 LK_HAVE_EXCL | LK_SHARE_NONZERO | LK_WANT_UPGRADE,
1011 RETURN_ADDRESS);
1012 lkp->lk_flags &= ~LK_WANT_EXCL;
1013 lkp->lk_flags |= LK_HAVE_EXCL;
1014 SETHOLDER(lkp, LK_NOPROC, 0, cpu_num);
1015 #if defined(LOCKDEBUG)
1016 lkp->lk_lock_file = file;
1017 lkp->lk_lock_line = line;
1018 #endif
1019 HAVEIT(lkp);
1020 if (lkp->lk_exclusivecount != 0)
1021 panic("lockmgr: non-zero exclusive count");
1022 lkp->lk_exclusivecount = count;
1023 lkp->lk_recurselevel = 1;
1024 COUNT_CPU(cpu_num, count);
1025
1026 INTERLOCK_RELEASE(lkp, lkp->lk_flags, s);
1027 }
1028
1029
1030
1031 /*
1032 * Print out information about state of a lock. Used by VOP_PRINT
1033 * routines to display ststus about contained locks.
1034 */
1035 void
1036 lockmgr_printinfo(volatile struct lock *lkp)
1037 {
1038
1039 if (lkp->lk_sharecount)
1040 printf(" lock type %s: SHARED (count %d)", lkp->lk_wmesg,
1041 lkp->lk_sharecount);
1042 else if (lkp->lk_flags & LK_HAVE_EXCL) {
1043 printf(" lock type %s: EXCL (count %d) by ",
1044 lkp->lk_wmesg, lkp->lk_exclusivecount);
1045 if (lkp->lk_flags & LK_SPIN)
1046 printf("processor %lu", lkp->lk_cpu);
1047 else
1048 printf("pid %d.%d", lkp->lk_lockholder,
1049 lkp->lk_locklwp);
1050 } else
1051 printf(" not locked");
1052 if ((lkp->lk_flags & LK_SPIN) == 0 && lkp->lk_waitcount > 0)
1053 printf(" with %d pending", lkp->lk_waitcount);
1054 }
1055
1056 #if defined(LOCKDEBUG) /* { */
1057 _TAILQ_HEAD(, struct simplelock, volatile) simplelock_list =
1058 TAILQ_HEAD_INITIALIZER(simplelock_list);
1059
1060 #if defined(MULTIPROCESSOR) /* { */
1061 struct simplelock simplelock_list_slock = SIMPLELOCK_INITIALIZER;
1062
1063 #define SLOCK_LIST_LOCK() \
1064 __cpu_simple_lock(&simplelock_list_slock.lock_data)
1065
1066 #define SLOCK_LIST_UNLOCK() \
1067 __cpu_simple_unlock(&simplelock_list_slock.lock_data)
1068
1069 #define SLOCK_COUNT(x) \
1070 curcpu()->ci_simple_locks += (x)
1071 #else
1072 u_long simple_locks;
1073
1074 #define SLOCK_LIST_LOCK() /* nothing */
1075
1076 #define SLOCK_LIST_UNLOCK() /* nothing */
1077
1078 #define SLOCK_COUNT(x) simple_locks += (x)
1079 #endif /* MULTIPROCESSOR */ /* } */
1080
1081 #ifdef MULTIPROCESSOR
1082 #define SLOCK_MP() lock_printf("on CPU %ld\n", \
1083 (u_long) cpu_number())
1084 #else
1085 #define SLOCK_MP() /* nothing */
1086 #endif
1087
1088 #define SLOCK_WHERE(str, alp, id, l) \
1089 do { \
1090 lock_printf("\n"); \
1091 lock_printf(str); \
1092 lock_printf("lock: %p, currently at: %s:%d\n", (alp), (id), (l)); \
1093 SLOCK_MP(); \
1094 if ((alp)->lock_file != NULL) \
1095 lock_printf("last locked: %s:%d\n", (alp)->lock_file, \
1096 (alp)->lock_line); \
1097 if ((alp)->unlock_file != NULL) \
1098 lock_printf("last unlocked: %s:%d\n", (alp)->unlock_file, \
1099 (alp)->unlock_line); \
1100 SLOCK_TRACE() \
1101 SLOCK_DEBUGGER(); \
1102 } while (/*CONSTCOND*/0)
1103
1104 /*
1105 * Simple lock functions so that the debugger can see from whence
1106 * they are being called.
1107 */
1108 void
1109 simple_lock_init(volatile struct simplelock *alp)
1110 {
1111
1112 #if defined(MULTIPROCESSOR) /* { */
1113 __cpu_simple_lock_init(&alp->lock_data);
1114 #else
1115 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1116 #endif /* } */
1117 alp->lock_file = NULL;
1118 alp->lock_line = 0;
1119 alp->unlock_file = NULL;
1120 alp->unlock_line = 0;
1121 alp->lock_holder = LK_NOCPU;
1122 }
1123
1124 void
1125 _simple_lock(volatile struct simplelock *alp, const char *id, int l)
1126 {
1127 cpuid_t cpu_num = cpu_number();
1128 int s;
1129
1130 s = spllock();
1131
1132 /*
1133 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1134 * don't take any action, and just fall into the normal spin case.
1135 */
1136 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1137 #if defined(MULTIPROCESSOR) /* { */
1138 if (alp->lock_holder == cpu_num) {
1139 SLOCK_WHERE("simple_lock: locking against myself\n",
1140 alp, id, l);
1141 goto out;
1142 }
1143 #else
1144 SLOCK_WHERE("simple_lock: lock held\n", alp, id, l);
1145 goto out;
1146 #endif /* MULTIPROCESSOR */ /* } */
1147 }
1148
1149 #if defined(MULTIPROCESSOR) /* { */
1150 /* Acquire the lock before modifying any fields. */
1151 splx(s);
1152 __cpu_simple_lock(&alp->lock_data);
1153 s = spllock();
1154 #else
1155 alp->lock_data = __SIMPLELOCK_LOCKED;
1156 #endif /* } */
1157
1158 if (alp->lock_holder != LK_NOCPU) {
1159 SLOCK_WHERE("simple_lock: uninitialized lock\n",
1160 alp, id, l);
1161 }
1162 alp->lock_file = id;
1163 alp->lock_line = l;
1164 alp->lock_holder = cpu_num;
1165
1166 SLOCK_LIST_LOCK();
1167 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1168 SLOCK_LIST_UNLOCK();
1169
1170 SLOCK_COUNT(1);
1171
1172 out:
1173 splx(s);
1174 }
1175
1176 int
1177 _simple_lock_held(volatile struct simplelock *alp)
1178 {
1179 #if defined(MULTIPROCESSOR) || defined(DIAGNOSTIC)
1180 cpuid_t cpu_num = cpu_number();
1181 #endif
1182 int s, locked = 0;
1183
1184 s = spllock();
1185
1186 #if defined(MULTIPROCESSOR)
1187 if (__cpu_simple_lock_try(&alp->lock_data) == 0)
1188 locked = (alp->lock_holder == cpu_num);
1189 else
1190 __cpu_simple_unlock(&alp->lock_data);
1191 #else
1192 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1193 locked = 1;
1194 KASSERT(alp->lock_holder == cpu_num);
1195 }
1196 #endif
1197
1198 splx(s);
1199
1200 return (locked);
1201 }
1202
1203 int
1204 _simple_lock_try(volatile struct simplelock *alp, const char *id, int l)
1205 {
1206 cpuid_t cpu_num = cpu_number();
1207 int s, rv = 0;
1208
1209 s = spllock();
1210
1211 /*
1212 * MULTIPROCESSOR case: This is `safe' since if it's not us, we
1213 * don't take any action.
1214 */
1215 #if defined(MULTIPROCESSOR) /* { */
1216 if ((rv = __cpu_simple_lock_try(&alp->lock_data)) == 0) {
1217 if (alp->lock_holder == cpu_num)
1218 SLOCK_WHERE("simple_lock_try: locking against myself\n",
1219 alp, id, l);
1220 goto out;
1221 }
1222 #else
1223 if (alp->lock_data == __SIMPLELOCK_LOCKED) {
1224 SLOCK_WHERE("simple_lock_try: lock held\n", alp, id, l);
1225 goto out;
1226 }
1227 alp->lock_data = __SIMPLELOCK_LOCKED;
1228 #endif /* MULTIPROCESSOR */ /* } */
1229
1230 /*
1231 * At this point, we have acquired the lock.
1232 */
1233
1234 rv = 1;
1235
1236 alp->lock_file = id;
1237 alp->lock_line = l;
1238 alp->lock_holder = cpu_num;
1239
1240 SLOCK_LIST_LOCK();
1241 TAILQ_INSERT_TAIL(&simplelock_list, alp, list);
1242 SLOCK_LIST_UNLOCK();
1243
1244 SLOCK_COUNT(1);
1245
1246 out:
1247 splx(s);
1248 return (rv);
1249 }
1250
1251 void
1252 _simple_unlock(volatile struct simplelock *alp, const char *id, int l)
1253 {
1254 int s;
1255
1256 s = spllock();
1257
1258 /*
1259 * MULTIPROCESSOR case: This is `safe' because we think we hold
1260 * the lock, and if we don't, we don't take any action.
1261 */
1262 if (alp->lock_data == __SIMPLELOCK_UNLOCKED) {
1263 SLOCK_WHERE("simple_unlock: lock not held\n",
1264 alp, id, l);
1265 goto out;
1266 }
1267
1268 SLOCK_LIST_LOCK();
1269 TAILQ_REMOVE(&simplelock_list, alp, list);
1270 SLOCK_LIST_UNLOCK();
1271
1272 SLOCK_COUNT(-1);
1273
1274 alp->list.tqe_next = NULL; /* sanity */
1275 alp->list.tqe_prev = NULL; /* sanity */
1276
1277 alp->unlock_file = id;
1278 alp->unlock_line = l;
1279
1280 #if defined(MULTIPROCESSOR) /* { */
1281 alp->lock_holder = LK_NOCPU;
1282 /* Now that we've modified all fields, release the lock. */
1283 __cpu_simple_unlock(&alp->lock_data);
1284 #else
1285 alp->lock_data = __SIMPLELOCK_UNLOCKED;
1286 KASSERT(alp->lock_holder == cpu_number());
1287 alp->lock_holder = LK_NOCPU;
1288 #endif /* } */
1289
1290 out:
1291 splx(s);
1292 }
1293
1294 void
1295 simple_lock_dump(void)
1296 {
1297 volatile struct simplelock *alp;
1298 int s;
1299
1300 s = spllock();
1301 SLOCK_LIST_LOCK();
1302 lock_printf("all simple locks:\n");
1303 TAILQ_FOREACH(alp, &simplelock_list, list) {
1304 lock_printf("%p CPU %lu %s:%d\n", alp, alp->lock_holder,
1305 alp->lock_file, alp->lock_line);
1306 }
1307 SLOCK_LIST_UNLOCK();
1308 splx(s);
1309 }
1310
1311 void
1312 simple_lock_freecheck(void *start, void *end)
1313 {
1314 volatile struct simplelock *alp;
1315 int s;
1316
1317 s = spllock();
1318 SLOCK_LIST_LOCK();
1319 TAILQ_FOREACH(alp, &simplelock_list, list) {
1320 if ((volatile void *)alp >= start &&
1321 (volatile void *)alp < end) {
1322 lock_printf("freeing simple_lock %p CPU %lu %s:%d\n",
1323 alp, alp->lock_holder, alp->lock_file,
1324 alp->lock_line);
1325 SLOCK_DEBUGGER();
1326 }
1327 }
1328 SLOCK_LIST_UNLOCK();
1329 splx(s);
1330 }
1331
1332 /*
1333 * We must be holding exactly one lock: the sched_lock.
1334 */
1335
1336 void
1337 simple_lock_switchcheck(void)
1338 {
1339
1340 simple_lock_only_held(&sched_lock, "switching");
1341 }
1342
1343 /*
1344 * Drop into the debugger if lp isn't the only lock held.
1345 * lp may be NULL.
1346 */
1347 void
1348 simple_lock_only_held(volatile struct simplelock *lp, const char *where)
1349 {
1350 volatile struct simplelock *alp;
1351 cpuid_t cpu_num = cpu_number();
1352 int s;
1353
1354 if (lp) {
1355 LOCK_ASSERT(simple_lock_held(lp));
1356 }
1357 s = spllock();
1358 SLOCK_LIST_LOCK();
1359 TAILQ_FOREACH(alp, &simplelock_list, list) {
1360 if (alp == lp)
1361 continue;
1362 #if defined(MULTIPROCESSOR)
1363 if (alp == &kernel_lock)
1364 continue;
1365 #endif /* defined(MULTIPROCESSOR) */
1366 if (alp->lock_holder == cpu_num)
1367 break;
1368 }
1369 SLOCK_LIST_UNLOCK();
1370 splx(s);
1371
1372 if (alp != NULL) {
1373 lock_printf("\n%s with held simple_lock %p "
1374 "CPU %lu %s:%d\n",
1375 where, alp, alp->lock_holder, alp->lock_file,
1376 alp->lock_line);
1377 SLOCK_TRACE();
1378 SLOCK_DEBUGGER();
1379 }
1380 }
1381
1382 /*
1383 * Set to 1 by simple_lock_assert_*().
1384 * Can be cleared from ddb to avoid a panic.
1385 */
1386 int slock_assert_will_panic;
1387
1388 /*
1389 * If the lock isn't held, print a traceback, optionally drop into the
1390 * debugger, then panic.
1391 * The panic can be avoided by clearing slock_assert_with_panic from the
1392 * debugger.
1393 */
1394 void
1395 _simple_lock_assert_locked(volatile struct simplelock *alp,
1396 const char *lockname, const char *id, int l)
1397 {
1398 if (simple_lock_held(alp) == 0) {
1399 slock_assert_will_panic = 1;
1400 lock_printf("%s lock not held\n", lockname);
1401 SLOCK_WHERE("lock not held", alp, id, l);
1402 if (slock_assert_will_panic)
1403 panic("%s: not locked", lockname);
1404 }
1405 }
1406
1407 void
1408 _simple_lock_assert_unlocked(volatile struct simplelock *alp,
1409 const char *lockname, const char *id, int l)
1410 {
1411 if (simple_lock_held(alp)) {
1412 slock_assert_will_panic = 1;
1413 lock_printf("%s lock held\n", lockname);
1414 SLOCK_WHERE("lock held", alp, id, l);
1415 if (slock_assert_will_panic)
1416 panic("%s: locked", lockname);
1417 }
1418 }
1419
1420 void
1421 assert_sleepable(struct simplelock *interlock, const char *msg)
1422 {
1423
1424 if (curlwp == NULL) {
1425 panic("assert_sleepable: NULL curlwp");
1426 }
1427 spinlock_switchcheck();
1428 simple_lock_only_held(interlock, msg);
1429 }
1430
1431 #endif /* LOCKDEBUG */ /* } */
1432
1433 #if defined(MULTIPROCESSOR)
1434 /*
1435 * Functions for manipulating the kernel_lock. We put them here
1436 * so that they show up in profiles.
1437 */
1438
1439 /*
1440 * splbiglock: block IPLs which need to grab kernel_lock.
1441 * XXX splvm or splaudio should be enough.
1442 */
1443 #if !defined(__HAVE_SPLBIGLOCK)
1444 #define splbiglock() splclock()
1445 #endif
1446
1447 void
1448 _kernel_lock_init(void)
1449 {
1450
1451 simple_lock_init(&kernel_lock);
1452 }
1453
1454 /*
1455 * Acquire/release the kernel lock. Intended for use in the scheduler
1456 * and the lower half of the kernel.
1457 */
1458 void
1459 _kernel_lock(int flag)
1460 {
1461 struct cpu_info *ci = curcpu();
1462
1463 SCHED_ASSERT_UNLOCKED();
1464
1465 if (ci->ci_data.cpu_biglock_count > 0) {
1466 LOCK_ASSERT(simple_lock_held(&kernel_lock));
1467 ci->ci_data.cpu_biglock_count++;
1468 } else {
1469 int s;
1470
1471 s = splbiglock();
1472 while (!simple_lock_try(&kernel_lock)) {
1473 splx(s);
1474 SPINLOCK_SPIN_HOOK;
1475 s = splbiglock();
1476 }
1477 ci->ci_data.cpu_biglock_count++;
1478 splx(s);
1479 }
1480 }
1481
1482 void
1483 _kernel_unlock(void)
1484 {
1485 struct cpu_info *ci = curcpu();
1486 int s;
1487
1488 KASSERT(ci->ci_data.cpu_biglock_count > 0);
1489
1490 s = splbiglock();
1491 if ((--ci->ci_data.cpu_biglock_count) == 0)
1492 simple_unlock(&kernel_lock);
1493 splx(s);
1494 }
1495
1496 /*
1497 * Acquire/release the kernel_lock on behalf of a process. Intended for
1498 * use in the top half of the kernel.
1499 */
1500 void
1501 _kernel_proc_lock(struct lwp *l)
1502 {
1503
1504 SCHED_ASSERT_UNLOCKED();
1505 _kernel_lock(0);
1506 }
1507
1508 void
1509 _kernel_proc_unlock(struct lwp *l)
1510 {
1511
1512 _kernel_unlock();
1513 }
1514
1515 int
1516 _kernel_lock_release_all()
1517 {
1518 struct cpu_info *ci = curcpu();
1519 int hold_count;
1520
1521 hold_count = ci->ci_data.cpu_biglock_count;
1522
1523 if (hold_count) {
1524 int s;
1525
1526 s = splbiglock();
1527 ci->ci_data.cpu_biglock_count = 0;
1528 simple_unlock(&kernel_lock);
1529 splx(s);
1530 }
1531
1532 return hold_count;
1533 }
1534
1535 void
1536 _kernel_lock_acquire_count(int hold_count)
1537 {
1538
1539 KASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1540
1541 if (hold_count != 0) {
1542 struct cpu_info *ci = curcpu();
1543 int s;
1544
1545 s = splbiglock();
1546 while (!simple_lock_try(&kernel_lock)) {
1547 splx(s);
1548 SPINLOCK_SPIN_HOOK;
1549 s = splbiglock();
1550 }
1551 ci->ci_data.cpu_biglock_count = hold_count;
1552 splx(s);
1553 }
1554 }
1555 #if defined(DEBUG)
1556 void
1557 _kernel_lock_assert_locked()
1558 {
1559
1560 KDASSERT(curcpu()->ci_data.cpu_biglock_count > 0);
1561 simple_lock_assert_locked(&kernel_lock, "kernel_lock");
1562 }
1563
1564 void
1565 _kernel_lock_assert_unlocked()
1566 {
1567
1568 KDASSERT(curcpu()->ci_data.cpu_biglock_count == 0);
1569 simple_lock_assert_unlocked(&kernel_lock, "kernel_lock");
1570 }
1571 #endif
1572
1573 int
1574 lock_owner_onproc(uintptr_t owner)
1575 {
1576 CPU_INFO_ITERATOR cii;
1577 struct cpu_info *ci;
1578
1579 for (CPU_INFO_FOREACH(cii, ci))
1580 if (owner == (uintptr_t)ci || owner == (uintptr_t)ci->ci_curlwp)
1581 return (1);
1582
1583 return (0);
1584 }
1585
1586 #else /* MULTIPROCESSOR */
1587
1588 int
1589 lock_owner_onproc(uintptr_t owner)
1590 {
1591
1592 return 0;
1593 }
1594
1595 #endif /* MULTIPROCESSOR */
1596